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Summary. The appropriateness of Zinterhof sequences to be used in GRID-based
QMC integration is discussed. Theoretical considerations as well as experimental
investigations are conducted comparing and assessing different strategies for an effi-
cient and reliable usage. The high robustness and ease of construction exhibited by
those sequences qualifies them as excellent QMC point set candidates for heteroge-
neous environments like the GRID.

1 Introduction

High dimensional numerical integration problems may require a significant
amount of computational effort. Therefore, substantial effort has been in-
vested in finding techniques for performing these calculations on all kinds of
high performance computing platforms (see e.g. [KÜ94, SU03]). GRID envi-
ronments are highly beneficial but exhibit specifically challenging properties
for numerical integration techniques. This class of computing facilities show
extreme heterogeneity in terms of computing speed (caused by different mem-
ory capacity, cache sizes, and processor speed of the involved compute nodes)
and network connections, moreover the available computing resources may
change over time even during ongoing computations. These hardware proper-
ties require the employed integration routines to exhibit certain features:

• Variety in computing speed requires dynamic load balancing capability.
• Variety in network bandwidth and latency requires load balancing strate-

gies without central organization and a minimal number of control mes-
sages exchanged among the computing nodes.

• Failure in hardware resources requires tolerance to lost partial results.
• Additional resources becoming available require a possibility to assign

workload to these resources (i.e. by redistributing or redefining workload).

Additionally, error bounds and numerical results should preferable carry
over from sequential execution, also reproducibility is considered an important
issue.
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Quasi-Monte Carlo (QMC) algorithms are among the most efficient tech-
niques for evaluating high-dimensional integrals. Consequently, recent work
has been devoted to apply this numerical integration approach in GRID en-
vironments [LKd05, LM05, HUZ06], however, many QMC techniques investi-
gated for heterogeneous distributed systems may be used in the GRID context
as well (e.g. [ÖS02, SU01, dZCG00]).

In this work we investigate a special type of QMC sequences, so-called
Zinterhof sequences, for their applicability in GRID environments. In Section
2, we discuss the use of Zinterhof sequences in the general (sequential) QMC
setting. Section 3 reviews strategies for using QMC techniques on parallel or
distributed architectures. The main contribution of this work is presented in
Section 4 where we give theoretical as well as experimental results on the use
of Zinterhof sequences in GRID-type environments. Section 5 concludes the
paper.

2 QMC Integration using Zinterhof Sequences

The basic concept of any QMC method for numerical integration is to ap-
proximate the integral by a finite sum, such that

I(f) :=
∫

Is

f(x)dx ≈ 1
N

N∑
n=1

f(xn) =: I ′N (f)

where xn are suitably chosen and Is is the unit interval. To identify suitable,
i.e. uniformly distributed, points xn with low star discrepancy are selected in
order to exploit the Koksma-Hlawka inequality [Nie92]:

EN (f) ≤ V (f)D∗
N (f),

where EN (f) := |I(f)− I ′N (f)| is the integration error.

2.1 Zinterhof Sequences

Zinterhof sequences [Zin69] are a special case of Weyl sequences. Weyl se-
quences are defined by

xn = nθ = ({nθ1}, {nθ2}, . . . , {nθs}) n = 1, 2, 3, . . .

where s is the dimension and {x} is the fractional part of x. It is well known
that a Weyl sequence is uniformly distributed if and only if θi are independent
irrational numbers. An important issue with respect to their quality in terms
of uniformity of distribution is the amount or degree of irrationality of the
employed starting vector Θ = (θ1, . . . , θs). See [KY81][Theorem 4.15] for an
estimation of discrepancy for this type of sequences. For the Zinterhof sequence
we set θi = e1/i and consequently:
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xn = ({ne1/1}, . . . , {ne1/s}) n = 1, 2, 3, . . . . (1)

Note that due to their simplicity these sequences are extremely easy to
generate and may be used by non-experts in a straightforward way without
specific knowledge (which is not the case for all types of QMC sequences).

2.2 Numerical Integration with Zinterhof Sequences

Consider for dimension s the Fourier series expansion of the function f(x) to
be numerically integrated

f(x) =
∞∑

m1,...,ms=−∞
C(m)e2πi(m1x1+···+msxs) (2)

with the integration error

EN (θ) =
1
N

N∑
n=1

f(nθ)−
∫ 1

0

· · ·
∫ 1

0

f(x)dx1 . . . dxs (3)

where x = (x1, . . . , xs), m = (m1, . . . ,ms) and θ = (θ1, . . . , θs).
For absolute convergent Fourier series the error is

EN (θ) =
∞∑

m1,...,ms=−∞
m 6=0

C(m)
1
N

N∑
n=1

e2πi(θ1m1+···+θsms)n =
∑
m 6=0

C(m)SN (θ) .

Thus to determine the quality of the integration method we have to esti-
mate SN (θ). Clearly θ1, . . . , θs must be rational independent unless θ1m1 +
· · ·+ θsms ∈ Z and thus SN(θ) = 1. Furthermore, by using Weyl’s criterion,
we know that for independent irrational numbers θ it holds that

lim
N→∞

SN (θ) → 0 ∀m ∈ Zs\{0}.

Since SN (θ) is a geometric series we can write

SN (θ) =
1
N
e2πi(m1θ1+···+ms)

1− e2πi(m1θ1+···+ms)N

1− e2πi(m1θ1+···+ms)
.

For the rational independent θ1, . . . , θs with the equality eix = cos(x) +
i sin(x) and the basic approximation | sin(πx)| ≥ 2 ≪ x ≫, where ≪ x ≫ is
the distance of x to the nearest integer, we can approximate

|SN (θ)| ≤ 1/N
1

2 ≪ m1θ1 + · · ·+msθs ≫ .

Consider for α > 1 the class Es
α(C) = {f(x) : |C(m)| ≤ C

||m||α } then
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|EN (θ)| ≤ 1/N
∑
m6=0

C

||m||α
1

2 ≪ m1θ1 + · · ·+msθs ≫

where ||m|| = ∏s
i=1 max(1, |mi|).

Now for θ1 = er1 , . . . , θs = ers , ri 6= rj for i 6= j, ri ∈ Q the subsequent
result follows from an approximation by A. Baker (c.f. [KY81]):

≪ m1θ1 + . . .+msθs ≫≥ C(θ)
||m||ψ(m)

,

where ψ(m) weakly converges towards ∞ for ||m|| → ∞.
Since there is no irrational vector θ such that for all m ≪ m1θ1 + · · · +

msθs ≫ ≥ C(θ)
||m|| holds, we obtain the final error approximation for α > 2

(Zinterhof provides the same error magnitude even for α > 1 [Zin69])

|EN (θ)| ≤ 1/N
∑
m6=0

C||m||
||m||α

ψ(m)
2C(θ)

.

To give an illustration of the excellent actual integration performance,
Fig. 1 shows a comparison of numerical integration accuracy among several
QMC sequences for two of the test functions used in Section 4 (we plot the
integration error versus sample size).
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Fig. 1. Comparison of Zinterhof, Halton, Sobol, Niederreiter/Xing (N/X) and Faure
sequences.

It can be clearly seen that for each of the two test scenarios there is a single
QMC sequence which shows very poor integration results, the Halton sequence
in the first case and the Faure sequence in the second case. While being the
top performing sequence considered for some test functions (compare also
[HUZ06] and Fig. 5), Zinterhof sequences are at least always competitive to
the best sequences available and lead to consistently low integration errors.

This fact taken together with the available error estimates and the sim-
plicity of their construction and generation makes these sequences attractive
candidates for practical QMC integration applications.



Zinterhof Sequences in GRID-based Numerical Integration 5

3 QMC Techniques in GRID Environments

The generation of the points of a QMC sequence on a single machine and
and the subsequent distribution of the generated points generates a significant
bottleneck for the integration application. When considering GRID properties,
the constraint of the unknown network capacity can become a problem, as
such a fast processing element (PE) behind a slow link would be wasted.
Likewise, if the point generating PE is behind a slow network link all other
PEs are penalized when they have to wait for new points. Thus, rather than
distributing the points, the generation of the points itself is distributed in
such a fashion that each PE can generate the points nearly independently of
other PEs.

So far, two entirely different strategies have been discussed in literature to
employ QMC sequences in parallel and distributed environments (see [HUZ06]
for an exhaustive literature review and a detailed assessment of the effective-
ness of the different strategies in GRID environments).

1. Splitting a given QMC sequence into separately initialized and disjoint
parts which are then used independently on the PEs. This strategy comes
in two flavors (assuming availability of p PEs):

Blocking: p disjoint contiguous blocks of maximal length l of the original
sequence are used on the PEs. This is achieved by simply using a different
starting point on each PE (e.g., PEi, i = 0, . . . , p−1, generates the vectors
xil,xil+1,xil+2, . . . ,xil+l−1) (“big blocks” scenario). In case a large num-
ber of smaller blocks is used index j is assigned dynamically to PEi which
generates the vectors xj ,xj+1, . . . ,xj+l−1 (where j is incremented in steps
of size l to avoid overlap – “small blocks” scenario). See [LM05, SU01] for
investigations and applications with respect to the blocking approach.

Leaping: interleaved streams of the original sequence are used on the
PEs. Each PE skips those points consumed by other PEs (leap-frogging)
(e. g. employing p PEs, PEi, i = 0, . . . , p − 1, generates the vectors
xi,xi+p,xi+2p, . . .). Usually a QMC point set is partitioned into p in-
terleaved substreams if p PEs are available. However, if more PEs become
available during the computation, there is no additional substream avail-
able in this scenario. A way to handle this situation is to partition a given
QMC point set into I > p substreams in case of p PEs are available. The
I−p substreams are not used by default but kept as additional work share
in case additional PEs become available. See [Bro96, SU01, ESSU03] for
investigations and applications with respect to the leaping approach.

2. Using inherently independent sequences on the different PEs (denoted as
“parameterization” which can be realized for example by randomizations
of a given QMC sequences). The most important difference (and also
disadvantage) of parameterization as compared to blocking and leaping is
that the QMC point set used in parallel or distributed computation does
not correspond to a single (sequentially used) point set. Therefore, the
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investigation of the results’ quality when using this technique is of great
importance since it is not clear a priori how results from different point
sets will interact in the final result. See [Cd02, ÖS02] for investigations
and applications with respect to the parameterization approach.

4 Zinterhof Sequences in GRID Environments

In this section we investigate whether Zinterhof sequences are sensible candi-
dates for use in GRID environments. We present theoretical as well as experi-
mental results with respect to the three approaches for distributed generation
of QMC point sets as discussed in the previous section.

4.1 Theoretical Results

Leaping

For estimating the integration error resulting from using leaped Zinterhof
sequences, we replace θ in equation (3) by Lθ1, . . . , Lθs for leap size L ∈ N.
Then instead of SN (θ) we have

SN (Lθ) =
1
N

N∑
n=1

e2πi(Lm1θ1+···+Lmsθs)n.

By analogy to the general case we can approximate the integration error,
however this approximation is worse since instead of m we now have Lm in
all formulas. Thus with ||Lm|| =

∏s
i=1 max(1, |Lmi|) ≤ Ls||m|| and ψ(Lm)

instead of ψ(m) we get

|EN (Lθ)| ≤ 1/N
∑
m6=0

LsC||m||
||m||α

ψ(Lm)
2C(θ)

.

Considering that ψ(m) grows only logarithmically for θ = (θr1
1 , . . . , θ

rs
s )

and likewise for ψ(Lm) the difference of ψ(m) to ψ(Lm) plays hardly any
role. Thus the error approximation for leaping with leap size L is worse by
the factor Ls than the error approximation for the unleaped sequence. This
indicates a potentially significant deterioration of the results independent of
the specific leap value (note that contrasting to this result we have derived
poor discrepancy estimates only for 2n type leaped (t,s)-sequence substreams
in earlier work [SU01]).

Blocking

Again, consider the Fourier series given in Equation (2) and the error given
in Equation (3) with the same parameters.
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Then we have for f ∈ Es
α(C) with α > 3/2 and x1, . . . , xN ∈ Is := [0, 1]s

the approximation ([DT97, Theorem 1.35])∣∣∣∣∣ 1
N

N∑
n=1

f(xn)−
∫

Is

f(x)dx1, . . . , dxs

∣∣∣∣∣ ≤ C

(
4α− 4
2α− 3

)s/2

FN (xn) (4)

where FN (xn) is the diaphony of x1, . . . , xN .
It is known [Zin76] that for the Zinterhof sequence the estimation of the

diaphony
FN (nθ) = O(1/N1−ǫ), (5)

for ǫ > 0 holds, since θ is of the form θ1 = er1 , . . . , θs = ers where the
ri ∈ Q ∀i = 1, . . . , s are rationally independent.

The definition of the diaphony FN for a general s-dimensional sequence
x1, . . . ,xN is

F 2
N (xn) =

1
N

N∑
i,j=1

H2(xi − xj), (6)

with

H2(x) =
s∏

i=1

h2(xi)− 1,

and h2 being the normed Bernoulli polynomial of degree 2,

h2 = 1 + 2π2

(
{x}2 − {x}+

1
6

)
,

where {x} is the fractional part of x.
The diaphony FN of the sequence x1, . . . , xN is translation invariant, which

follows directly from Equation (6) where we get H2((a + xi) − (a + xj)) =
H2(xi − xj), thus for any a = (a1, . . . , as)

FN (xn) = FN (a+ xn)

holds.
For the Zinterhof sequence we can choose a = xB = (Bθ1, . . . , Bθs) such

that we obtain
FN (xn) = FN (xB + xn) = FN (xB+n)

where n = 1, . . . , N .
Thus when using the error approximation (4) we see that we can use an

arbitrary block of length N instead of the first N points without deteriora-
tion of the integration error. Note that this corresponds well to an earlier
result on (t,s)-sequences where we showed that discrepancy estimates of arbi-
trary blocks do not degrade as compared to estimates of entire (t,s)-sequences
[SU01].
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Now, similar to [ÖS02], let us consider the general case of blocking with
block size b where new blocks are handed out as requested (“small blocks”).
The classical blocking scheme, which we call “big blocks”, is essentially a
subset of this general case. When using p PEs we have always p continuous
subsets, each subset of points ends where a block is still unfinished. So we
have p sequences each generating an approximation of the integral I

I ′i =
1
ci

∑
λ(ci)

f(xi)

where i = 1, . . . , p, ci is the number of vectors in sequence i and λ(ci) is the
set of indices of vectors of the original Zinterhof sequence which generates
sequence i and the numbering be such that cp ≤ cp−1 ≤ · · · ≤ c1 holds.
Figure 2 illustrates this for three PEs, when an PE finishes with block 3 the
former c1 and c2 collapse to form the new c1. Also when one block is finished
another block is assigned and an PE starts to work on it, this forms a new
sequence c3.
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Fig. 2. Growth of subsequences with small blocks.

Now with N the total number of points, we get

I ′N =
1
N

∑
λ(N)

f(xi) =
p∑

i=1

ci
N

1
ci

∑
λ(ci)

f(xi) =
p∑

i=1

ci
N
I ′i,

which gives us the overall estimate from the estimates of the individual se-
quences.

We can consider the error

EN (f) = |I ′N − I(f)| ≤
p∑

i=1

ci
N
|I ′i − I(f)| ≤

p∑
i=1

ci
N
D∗

ci
V (f).
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When looking at blocking with a small block size, i.e. not the big block
scenario, it is clear that the first sequence grows continuously as more interme-
diate blocks are finished and likewise new sequences are introduced at the end
with a very small cp. From the above error estimate we see that the weighted
average of the discrepancies is used, but since c1 continually grows for N →∞
we get ci/c1 → 0 for 1 < i ≤ p. Since cp ≤ ci ≤ c2 for i = 3, . . . , p− 1, we get

EN (f) ≤ V (f)(
c1
N
D∗

c1
+

(p− 1)c2
N

D∗
cp

).

For very big N the error estimation thus becomes approximately

EN (f) ≤ V (f)D∗
c1

where c1 ≈ N .
Clearly the smaller the blocks are the faster they become insignificant and

the faster the first sequence grows. For big blocks we have the same problem
as with parameterization since unlike normal blocking no sequence becomes
insignificant and for the error we can only get the general error estimate.
Given a homogenous environment where c1 = · · · = cp we get only

EN (f) ≤ V (f)D∗
N/p

which shows no advantage over using a single machine.

Parameterization

A result with respect to a possible parameterization of Zinterhof sequences
may be found in [HUZ07], which provides a set of almost uncorrelated se-
quences.

For almost all collections of P specimen of s-dimensional Weyl sequences
f

(k)
1 = ({kθ1}, . . . , {kθs}), . . . , f (k)

i = ({kθ(i−1)s+1}, . . . , {kθis}), . . . , f (k)
P =

({kθ(P−1)s+1}, . . . , {kθPs}), k = 1, 2, . . . , N, . . . the estimations for covariance
and correlation

covN (f1, . . . , fP ) =
s

12
IP + O(N ǫ−1)

and
corN (f1, . . . , fP ) = IP + O(N ǫ−1)

hold, where IP is the P × P unit matrix with entries eii = 1 and ejk = 0 for
j 6= k and i, j, k = 1, . . . , P . The estimations hold especially for the collections
of P sequences of the Weyl type having generators θ1, . . . , θs, θs+1, . . . , θPs of
the form θu = exp(ru), ru ∈ Q, ru 6= rv 6= 0, 1 ≤ u, v ≤ Ps.

Since the Zinterhof sequences are of the form given above, we have well
distributed s-dimensional point generating sequences which are nearly uncor-
related. Essentially this allows us to use Zinterhof sequences for a parameter-
ization approach where PEn uses xn = ({ke1/(n−1)s+1}, . . . , {ke1/ns}), k =
1, 2, . . ..
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4.2 Numerical Experiments

Settings

For the Zinterhof sequences, we use our own custom implementation. In order
to be able to assess the accuracy of our results, we also employ different QMC
sequences. Overall we used Zinterhof, Sobol’, Halton, Faure and Niederre-
iter/Xing sequences, due to page limitation only the more interesting results
are shown, however, we will always comment on the remaining sequences.
For generating the Sobol’, Halton, Faure and Niederreiter-Xing sequences
we use the implementation of the “High-dimensional Integration Library”
HIntLib3. The HIntLib uses an implementation of construction 6, 8 and 18
from [MMN95] for the Sobol’, Faure and Niederreiter/Xing sequences respec-
tively. For Halton it uses the construction which was introduced in [Hal60].
For more information on Sobol’, Faure, and Niederreiter-Xing sequences see
[SS], and for Halton sequences see [Hal60].

The numerical experiments have been conducted by integrating the fol-
lowing test functions:

f(x) =
s∏

i=1

1
x0.5

i

, (7)

g(x) =

√
45
4s

(
s∑

i=1

x2
i −

s

3

)
, (8)

h(x) =
s∏

i=i

(
x3

i −
1
4

+ 1
)
. (9)

All three functions have been employed extensively in experimental evalu-
ations, e.g. in own earlier work function (7) in [HUZ06] and functions (8) and
(9) in [SU01]. The function f(x) is unbounded due to the singularity in 0, the
value of the integral is 2s (we use the identical integration routine as outlined
in [HUZ06]). The integral for g(x) and h(x) is 0 in both cases, therefore we
display an absolute integration error on the ordinate of the plots instead of
a relative error as for f(x) (the abscissa shows the number of points used in
numerical integration).

For all experiments we used a randomly chosen mixture of machines us-
ing AMD CPUs with 1200, 1600, and 2000 MHz interconnected by 100Mbit
ethernet [HUZ06]. The actual number of machines used is given for each ex-
periment.

Results

For leaping, the experimental results (fortunately) do not confirm the poor
error estimate. Figure 3 shows integration results when single leaps (with dif-
ferent leap sizes) are used in sequential execution instead of the unleaped

3Available at: http://www.cosy.sbg.ac.at/˜rschuer/hintlib/
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sequence. Surprisingly it turns out that the leaped substreams actually im-
prove the integration result and lead to significantly faster convergence as
compared to the baseline case. A similar behavior (except for leap 65) has
been observed for f(x) (see also [HUZ06]), g(x) is very easy to handle and
therefore almost no differences show up between the original and leaped ver-
sions of the Zinterhof sequence.
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Fig. 3. Comparison of different leap sizes for the Zinterhof sequence, function h(x),
s = 10.

Of the remaining sequences only the Niederreiter-Xing sequences show
comparable (and even better) stability with respect to splitting. All other
sequences show significant result degradation for one or more leaps.

In order to relate these results to an execution in a GRID like environ-
ment, we simulate failure of PEs in the following manner: “client-server” is
numerically identical to the sequential result (but executed in the distributed
environment), “leap” is the standard case where one stream is assigned each
PE, and “one-fast” and “one slow” are scenarios where one PE is speed up
or slowed down by a factor of 103: consequently, one-slow simulates the case
of one failing PE, whereas one-fast simulates the rather unlikely case that all
but one PE fail after an initial start.

Figure 4 gives the results for leap 11 (on 11 PEs) and compares them to
the result employing the Sobol’ sequence with leap 23 + 1 = 9 which is of the
form 2n+1 (which is known to have a good star discrepancy estimate [SU01]).

It is clearly visible, that the Zinterhof sequence is very robust against PE
failure and that the integration errors are significantly smaller as compared
to the Sobol’ sequence. However, the Sobol’ case shows severely degraded
results, especially in the highly probable one-slow case. In this scenario we
have a systematic missing of equally spaced points which can not be grasped
by a discrepancy estimate of a single leaped substream and obviously leads to
significant problems in this type of point sets. Comparable results are found
for h(x).

For the other sequences, except for the Niederreiter/Xing sequence, we
find problems comparable to those seen with the Sobol’ sequence. Overall, a
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Fig. 4. Comparison of Zinterhof and Sobol’ sequences, g(x), s = 10.

high robustness in the case of employing leaped substreams can be stated for
Zinterhof sequences.

Contrasting to the leaping case, robust behavior is to be expected due to
the theoretical result when using contiguous blocks of Zinterhof sequences in
distributed integration.

Figure 5 compares the results of different QMC sequences for blocking
using 11 machines. For small blocks we use block size 500 and for big blocks
the relatively bad case of block size N is chosen, which results in gaps roughly
nine times the size of the actually used blocks. As a baseline for comparison we
show integration with the Zinterhof sequence using all N points in consecutive
manner.
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Fig. 5. Comparison of blocking (big and small blocks) using Zinterhof, Halton,
Faure, Niederreiter/Xing and Sobol’ sequences, f(x), s = 10.

The first things to note is that the three results corresponding to the
Zinterhof sequence are the best ones in terms of error magnitude. The small
blocks’ result is in fact identical to the baseline version (which holds true for
all sequences and was to be expected since the error estimate for small blocks
is practically independent of block discrepancy for high N and thus valid for
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all sequences) whereas the big blocks’ result shows lower error but a higher
degree of result fluctuations in the Zinterhof sequence case.

For all cases (except the Zinterhof sequence between 8 × 106 and 9× 106

integration points) the big blocks case is better than the small blocks case,
and thus the baseline. While this isn’t generally the case (see Fig. 6) it seems
that the integration error estimation gained from our approach for big blocks
is not the best possible.
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Fig. 6. Comparison Niederreiter/Xing and Zinterhof sequences regarding overlap,
gaps and unused streams for f(x), s = 10.

Figure 6 shows results corresponding to the more realistic case that we
employ big blocks with a gap between blocks that cover 20% of the size of a
block and big blocks resulting in an overlap where about 30% of one block
overlaps the following block. Additionally, we investigate the “Streamsave”
scenario, where we use small blocks with a block size of 75 and between
the blocks there is a 25 point gap. This simulates the synchronized use of
substreams with leap 100 where the last 25 out of 100 streams are reserved
for PEs which become available during the computation (but are not used in
the experiment). 71 PEs are used for these computations.

The result shows that both considered sequences can cope well with gaps,
overlap, and the “streamsave” scenario, no degradation of the result is ob-
served.

To relate parameterization behavior to blocking and leaping effects, we
compare all three approaches in the following. Results with respect to func-
tions f(x) and h(x) for dimension s = 10 (not shown) raise doubts about
the reliability of parameterization since the error seems to decrease slower for
increasing N as compared to other techniques. In order to facilitate a fair
comparison we increase the dimension and employ 10 PEs and less favorable
conditions for leaping and blocking: For blocking the block size is set to N and
for leaping we use leap 100 resulting in 90% gaps for blocking and likewise to
90% unused streams for leaping (note that the gaps are distributed differently
in both variants).
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Fig. 7. Comparison of leaping (with large leapsize), blocking (large gaps) and
parameterization for Zinterhof sequences.

As observed in Fig. 7, for higher dimension the approximation becomes
worse, which is to be expected since we use the same number of points inde-
pendent of dimension (compare e.g. Figs. 3 and 4). The results of blocking and
leaping are almost identical to the baseline version, although the conditions
are much more difficult in the current setting. On the other hand, parame-
terization shows a larger error and a slower convergence towards the correct
solution.

5 Conclusion

Overall, we have shown that Zinterhof sequences are well suited for numerical
integration in GRID environments. Whereas the error estimation for leaped
substreams suggests worse integration errors as compared to sequential usage,
we have found no experimental evidence corresponding to this result. In con-
trary, leaping turns out to behave very reliable and robust even to hardware
failures and may be used in a flexible way.

For the case of using contiguous blocks for integration the theoretical pre-
diction suggesting behavior equal to the sequential case is supported by ex-
perimental results. Similar to leaping, high robustness against gaps between
blocks and against overlap has been observed.

While the suggested parameterization scheme works in principle, the re-
sults show clearly slower convergence as compared to the leaping or blocking
strategies, respectively. Parameterization (at least in the proposed manner)
should only be used if this effect is acceptable.

Concluding we may state that Zinterhof sequences have been shown to
exhibit excellent behavior when using separately initialized and disjoint sub-
streams for distributed numerical integration and they excel by their ease of
construction and implementation even for non-specialists.
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