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Chapter 1

Introduction

High dimensional numerical integration problems may require a significant amount
of computation power. Therefore, substantial effort has been invested in finding
techniques for performing these computations on all kinds of parallel architec-
tures (see [9, 26, 27, 46] for an exhaustive overview). In order to minimize the
communication amount within a parallel system, each processing element (PE)
requires its own source of integration nodes. Therefore, the aim is to investigate
techniques for using separately initialized and disjoint sets of integration nodes
on a single PE.

The work to date has only been applied to the field of high performance com-
puting, which is usually restricted to supercomputers and clusters. A trademark
of those is that the PEs run often at the same speed (i.e. homogenous clusters)
and are connected with high speed links, high speed network architecture or
shared memory. In recent years a new method of supplying computational
power has become available and was termed ’GRID’. The GRID however does
not enforce equal speed PEs nor does it grant a high speed link to those PEs,
which makes it necessary to reevaluate the methods proposed for and researched
on HPC architectures.

Currently, the most efficient numerical techniques for evaluating high- di-
mensional integrals are based on Monte Carlo and quasi-Monte Carlo tech-
niques [13]. Whereas in the Monte Carlo (MC) case the integration nodes are
produced by a random number generator (RNG), low-discrepancy point sets
and sequences (e.g. (t,m,s)-nets or (t,s)-sequences [35]) are employed in quasi-
Monte Carlo (QMC) algorithms. QMC techniques improve the probabilistic
error bounds of MC techniques especially in higher dimensions. Nevertheless,
these techniques are related [11] since a full period random number sequence
may be seen as a low-discrepancy point set (e.g. a rank-1 lattice rule in the case
of a linear congruential generator) as well.

In this section an overview over numerical integration as well as on the
(Austrian) GRID is given, in subsequent chapters a closer look on the various
topics is given as well as a more detailed view on the various subjects which
influence the performance or applicability of QMC Integration.
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1.1 QMC Computation of Integrals

The basic concept of any method for numerical integration is to approximate
the integral by a finite sum, such that

I(f) :=

∫

Is

f(x)dx ≈ 1

N

N
∑

n=1

f(xn) =: I ′N (f), (1.1)

where xn are suitably chosen and Is is the unit interval. To identify suitable,
i.e. uniformly distributed, point sets xn the star discrepancy is defined as

D∗
N := D∗

N (x1, . . . , xn) = sup
J∈F

∥

∥

∥

∥

#{x|x ∈ J}
N

−m(J)

∥

∥

∥

∥

(1.2)

where F is the family of all subintervals of the form J =
∏s

i=1[0, ti) ∈ Is

with volume m(J). There are a number of other ways to measure the ”well
distributedness” of point sets, such as the diaphony, but the most prominent
and widely used is the star discrepancy so we stick with it as much as possible.

To gain a proper error estimation we also need to assess the function, i.e. a
continuous function is easy to integrate numerically and any amount of points
will result in an exact integral, a function which oscillates on the other hand
is harder to approximate. The variation is a way to measure a function in this
regard and it is defined as

V[a,b](f) = sup
P∈P

(
∑

i

f(xi+1)− f(xi)),

where P is a family of partitions P := {a = x0, x1, . . . , xn−1, xn = b} of the
interval [a, b]. For dimension one this is rather intuitive and simple, for higher
dimensions this is not sufficient. The extension of this variation to higher di-
mensions, called variation in the sense of Vitali, can’t be directly used for the
error estimate, rather the variation in the sense of Hardy and Krause, which is
incidentally based on the variation in the sense of Vitali, is used. For a more
detailed look on the variation (in the sense of Hardy and Krause) see [39].

The approximation error

EN (f) := |I ′N (f)− I(f)| (1.3)

depends on D∗
N and the variation V (f) of the function f in the following way

(Koksma-Hlawka inequality [35]):

EN (f) ≤ V (f)D∗
N . (1.4)

Consequently, point sets exhibiting low discrepancy values are attractive
candidates to be used in numerical integration. Using low discrepancy sequences
as point set xn is denoted QMC approach.

Ultimately we do not only want to integrate bounded but also unbounded
functions. This leads to the problem of an unbound variation, and consequently
to an unbounded error estimate. There are a number of methods which try
to prevent the variation from becoming unbounded, usually at the cost of a
reduced class of functions to which it can be applied.
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1.2 Parallel Execution of Numerical Integration

As stated initially high dimension numerical integration requires a high amount
of computational power. This computational power can be gained through
parallelization and a, relatively, new method of doing this is called the GRID, in
allusion to the power grid. The GRID basically is a network middleware which
allows the linking of any number of computers into a heterogenous network.
While the single machines the GRID utilizes might not be the fastest computers
the overall setup gives access to all the machines, such that, if the task at
hand can be properly distributed, the whole can compete with even the fastest
clusters.

The problem is that the overall network has no restrictions on network links
or machines. Thus we can neither assume fast connections nor any homogeneity,
which leads directly to a problem with numerical integration. For an error
estimate we need the discrepancy of the point set we utilize. However, the
discrepancy is usually only known if all points in a given point set are used. A
first approach which would grant that is a client server setup where one server
generates the points and sends it out to all clients which need them. This setup
however turned out to be less than ideal since even for a low number of clients
the server soon turns into a bottleneck which slows down the overall process.

Fortunately there are a number of methods which can alleviate this problem.
Originally these methods have been used on HPC clusters and some require
homogeneity which is not given in the GRID. Thus we have to reevaluate this
distribution methods and see how well they are fit to be used in the GRID.

As a result of these methods we also have to take a closer look at the point
sets we use, since some of these methods allow for points to be ”lost”. Lost
points are such which are assigned to a client but never used, leaving gaps in
the point sequence which in turn leads to problems concerning the discrepancy.
While it is often not possible to gain proper discrepancy bounds for these point
sequences if they have gaps we will have to experimentally estimate their fitness
for such an approach.

1.3 Austrian Grid

“The AUSTRIAN GRID consortium combines Austria’s leading researchers in
advanced computing technologies with well-recognized partners in grid-dependant
application areas. The goal of the AUSTRIAN GRID is to start and support
grid computing in Austria in general, and to provide coordination and collabo-
ration between research areas interested in grid computing.”1

The grid in general tries to subsume computational resources to create a
network which can as a whole provide a high amount of computational power
or storage space (in which case it is often called data grid). To achieve this
an abstraction layer is used, as such the grid can be seen as an middleware
abstraction layer for heterogenous networks. In the Austrian Grid the Globus
Toolkit, a open source toolkit for building grids, is used.

In the following chapters the stated problems, integration of unbounded
functions, quality of the point sequences and quality of the distribution methods,

1Taken from the Austrian Grid homepage http://www.austriangrid.at.



4 CHAPTER 1

will be looked at in more detail.
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Chapter 2

Numerical Integration of

Unbounded Functions

A big problem with error estimation in numerical integration is the fact that
the variation is rather restrictive. Even simple functions like m(x) = max(x1 +
x2 + x3 − 1, 0) are of unbounded variation V (m) = ∞, see [39]. Also if a
function is unbounded the variation is unbounded resulting in an error estimate
EN (f) ≤ ∞.

There have already been a number of methods proposed in literature which
aim at tackling the problem of numerically integrating unbounded functions,
which will be discussed in Section 2.1. All of these methods severely restrict the
class of functions to which they can be applied. Some methods however also are
problematic in application.

In this chapter we will give an overview over the state of the art methods. Af-
terwards, Zinterhof’s method will be described in detail since this is the method
used in all experiments. The closer look at Zinterhof’s method will especially
concern the restrictiveness of the method as well as experiments to get a better
understanding how it works.

2.1 Discussion of Previous Work

In the case of singularities the Koksma-Hlawka inequality becomes meaningless
since functions containing singularities are unbound and thus of infinite vari-
ance. When examining methods of numerical integration for integrands with
singularities usually the distinction is made whether the singularities are in the
interior of the unit cube or on the boundary.

2.1.1 Singularities on the Boundary

Sobol’ [48] investigated a number of functions which have singularities in the
origin. By restricting the growth of the integral near the singularity to o(N) he
shows that

lim
N→∞

1

N

N
∑

µ=1

f(Pµ) =

∫

Is

f(P )dP

5
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Figure 2.1: Hyperbolic origin and all corner avoidance.

holds, but unfortunately fails to give an error bound. He allows one dimensional
functions f(x) to have a rational singularity 0 < ξ < 1 but reduces them to func-
tions with singularities in the origin by linearly transforming [0, ξ) into (0, 1)
and (ξ, 1] into (0, 1]. Thus two functions are obtained f1

ξ = (1− ξ)f(ξ+x+xξ),
f2
ξ = ξf(ξ+xξ) where f(x) = f1

ξ +f
2
ξ . In the multi dimensional case Sobol’s test

function is f(x) = x−β1

1 · · ·x−βs
s where the growth condition holds if ∀i βi < 1,

which is the general form of a test function we use (i.e. β1 = · · · = βs = α
and thus f(x) = x−α

1 · · ·x−α
s ). Sobol’ supplied no experimental evaluation of

his theory in the paper.

The basic idea in [38] is to replace the part of the function which is not
touched by the numerical integration, i.e. the part lying in the hyperbolic or
L-shaped region avoided by the Halton sequence, by a bounded extension of
the function. This way the he attains a finite variance for the function and can
proof error bounds for the numerical integration.

Owen shows that the Halton sequences avoid all corners in a hyperbolical
sense. He also shows that for a finite C > 0 the Halton points x1, . . . , xn avoid
the hyperbolic region {x|∏j x

j ≤ Cn−1}, illustrated in fig. 2.1, while indepen-
dent uniform points xn enter that region infinitely often, with probability one.
It is also shown that while points from the Halton sequence avoid the 0 and 1
corner stronger than independent uniform points this doesn’t hold for all other
corners. To show an error bound for numerical integration with point sequences
which avoid the origin in a hyperbolic {x ∈ [0, 1]d|∏1≤i≤d x

i ≥ ǫ} or L-shaped

{x ∈ [0, 1]d|min1≤i≤d x
i ≥ ǫ} way Owen also imposes growth conditions on the

functions. The grow condition for functions on (0, 1]d that are singular as x ap-
proaches the origin is as follows where χu(j) is the characteristic function of j in
u. The function f fulfills the growth condition if, where for a set u ⊂ {1, . . . , d}
of indices the symbol ∂uf(x) represents (

∏

i∈u ∂/∂x
i)f(x) (with the convention
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that ∂∅f(x) = f(x)),

|∂uf(x)| ≤ B

d
∏

j=1

(xj)−Aj−χu(j)

holds for some Aj > 0, and B <∞ and all u ⊂ {1, . . . , d}.
Putting the growth condition and the corner avoidance properties (for hy-

perbolic regions) together he states the following theorem:

Let the function f satisfy the condition |∂uf(x)| ≤ B
∏d

i=1(x
i)−Ai−ξu(i) for

some Ai > 0, B < ∞ and all u ⊂ {1, . . . , s}. Also suppose that for N ≥ 1 and

all 1 ≤ n ≤ N the sequence (xn)1≤n satisfies
∏s

i=1 x
(i)
n ≥ cN−r. Then for any

η > 0 we have

|I ′ − I| ≤ C1D
∗
N(x1, . . . , xN )Nη+rmaxi Ai + C2N

r(maxu Ai−1)

with finite constants C1 and C2, that may depend on η. The estimate holds
with η = 0, if there exists a unique maximum among A1, . . . , As.

Finally it is shown that for L-shaped regions Monte Carlo methods attain
a root mean square error of O(n−1/2) when maxjAj < 1/2. While low dis-
crepancy sequences which are confined to an L-shaped region with ǫ = C/n

are asymptotically superior to Monte Carlo when
∑d

j=1 Aj < 1/2, they can be

inferior if
∑d

j=1 Aj > 1/2, especially when maxj Aj < 1/2 and
∑d

j=1 Aj > 1

where Monte Carlo sampling has a root mean square of O(n−1/2) and for low
discrepancy sequences we only have the estimate |I ′ − I| ≤ ∞.

For hyperbolic corner avoidance the error of Monte Carlo sampling is the
same as for the L-shaped case. The error bound of the Halton sequence is asymp-
totically smaller than O(n−1/2) when maxj Aj < 1/(2r). For origin avoidance
or for d = 1, r becomes 1 and then the Halton sequence is superior to Monte
Carlo. When not in the origin there is always a bound, dependent on r, where
the Halton sequence is provably superior to Monte Carlo but not necessarily if
1/2r < maxjAj < 1/2.

The only experimental results in the paper are plots illustrating the corner
avoidance properties of the Halton sequence regarding a measure used in the
proofs and in relation to uniformly distributed points.

Kainhofer et al. show in [16] that generalized Niederreiter sequences possess
corner avoidance properties similar to Halton sequences around the origin. They
also show the corner avoidance rates for Halton and Faure sequences for corners
different than the origin. This is essentially an extension of the results found
by Owen ([38]) to Niederreiter sequences. To get efficient QMC rules for the
integrands one has to find point sets satisfying the condition

s
∏

i=1

x(i)n ≥ cN−r

with small r as stated in [38]. The theorem also holds for an all corner case
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when the avoidance condition is written as

min
1≤n≤N

s
∏

i=1

min(1− x(i)n , x(i)n ) ≥ cN−r.

They show that for each point xn ≤ n < bl of a generalized Niederreiter (t, s)-

sequence in base b the bound
∏s

i=1 x
(i)
n ≥ b−l−t−s holds. Consequently, for a

generalized Niederreiter (0, s)-sequence in base b (sometimes called generalized

Faure sequence) (xn)1≤n and 0 ≤ n ≤ bl the bound
∏s

i=1 x
(i)
n ≥ b−l−s holds.

Now for bl−1 ≤ n < bl with arbitrary l > 1 we have
∏s

i=1 x
(i)
n ≥ b−l−t−s ≥

b−t−s+1n−1, and thus (t, s) sequences avoid the origin hyperbolically with order
r = 1.

For the numerical evaluation of functions with singularities on all boundaries
of the unit cube Kainhofer uses the minimal volume intervals defined by a given
corner h = (h1, . . . , hs) ∈ {0, 1}s of the unit cube and the points xn, called the
minimal hyperbolic distance of the points xn to the corner h,

MN(h) = min
1≤n≤N

s
∏

i=1

|hi − x(i)n |.

The left part can be written MN(min) meaning minhMN(h). In the following
J := {i ∈ {1, . . . , s}|hi = 0} and K := {i ∈ {1, . . . , s}|hi = 1}, i.e for a corner h
J is the index set where the hi are 0, and K is the index set where the hi are 1.

For Halton sequences Kainhofer et al. show that for n > 1 and xn the
n-th point of the Halton sequence in distinct prime base p1, . . . , ps there exist
subsequences yn = xN(n) for which the minimum distance MN(n)(h) to any
mixed corner (h) is bounded by

MN(n)(h) = O(
1

N(n) logN(n)
).

Owen [38] showed that MN (0) ≥ cN−1 and thus Halton sequences tend
faster to mixed corners than towards the origin.

Additionally he shows that for Halton sequences in relative prime bases pi
the corner avoidance bound becomes MN (min) = O(N−1−ǫ) for every ǫ > 0 if
and only if there are C, C̃, αj and βk which fulfill

1 = C̃
∏

k∈K

pβk

k − C
∏

j∈J

p
αj

j .

For Faure sequences we know thatMN(0) > cN−1 since they are generalized
Niederreiter (0, s)-sequences. For the mixed corner case, let s be prime and p be
the least prime larger or equal to s, than there exists a subsequence yn = xN(n)

such that
∏s

i=1 |hi − y
(i)
n | ≤ p3

N(n)2 .

For the corner 1 = (1, 1, . . . , 1, 1) Kainhofer et al. show that for s = 2 there
exists a subsequence yn = xN(n) such that

s
∏

i=1

|hi − y(i)n | ≤ p2

N(n)2
,
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and for s > 2 there exists a subsequence yn = xN(n) such that

s
∏

i=1

|hi − y(i)n | ≤ p5/2

(N(n) + 1)3/2
,

where for both cases p is the least prime larger or equal to s.
No experimental results are given.
In relation to Zinterhof’s work the requirements are rather stiff, hyperbolic

corner avoidance, singularities on the boundaries, rather specific growth condi-
tions, but if these requirements are fulfilled the method can be applied without
further ado and is under such conditions rather elegant.

Kainhofer, Hartinger, and Tichy [18] also dealt with QMC methods for mul-
tidimensional integrals with respect to a measure other than the uniform distri-
bution. They allow the integrand to be unbound on the lower boundary of the
interval and justify the “strategy of ignoring the singularity” by using weighted
integration with an non uniform distribution. This means integration problems
of the form

I[a,b] :=

∫

[a,b]

f(x)dH(x)

where H denotes a s-dimensional distribution with supportK = [a,b] ⊂ Rs and
f is a function with singularities on the left boundary ofK. To use a generalized
version of the Koksma-Hlawka inequality they have to define a H-discrepancy
of ω = (y1, . . .) which measures the distribution properties of the sequence. It
is defined as

DN,H(ω) = sup
J⊂K

|N−1AN (J, ω)−H(J)|

where AN counts the number of elements in (y1, . . . , yN) falling into the interval
J, e.g. AN (J, ω) =

∑s
n=1 χJ(yn), and H(J) denotes the probability of J ⊂

K under H . With this DN,H they can define the define the Koksma-Hlawka
inequality for this case as

|IK −N−1
N
∑

n=1

f(yn)| ≤ V (f)DN,H(ω).

Now for the one-dimensional case let a ≤ c ≤ cN . If a sequence (yi)i ∈ N

and a differentiable function f(x) on [a, b] with a singularity only at the left
boundary satisfy the condition

DN,H(ω)

∫ b

c

|f ′(x)|dx = o(1)

as well as cN → a for N → ∞, then the QMC estimator converges to the value
of the improper integral of f(x) on [a, b]:

lim
N→∞

N−1
N
∑

n=1

f(yn) =

∫ b

a

f(x)dH(x)

where cN = min1≤n≤Nyn.
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While the authors state that there is a certain lack of sequences with low H-
discrepancy they also propose a fix by using the Hlawka and Mück method [19]
for constructing such sequences. However for such a sequence ω̃ there might be
some elements ỹk which are 0. Since the singularities of f(x) are on the lower
boundary these sequences are not directly fit to be used with the numerical
integration, however a simple change is proposed, generating a new sequence ω̄
as follows:

ȳi =

{

ỹk if ỹk ≥ N−1,

N−1 if ỹk = 0

for i = 1, . . . , N . The H-discrepancy of ω̄ is then bound by

DN,H(ω̄) ≤ (M + 1)(DN +
1

N
)

where M = supx∈[0,1] h(x). Since the discrepancy of uniform low discrepancy

sequences is typically of the order O( logNN ) the additional factor N−1 inher-
ited through the transformation doesn’t change the asymptotic behavior of the
integration error.

For the multi-dimensional case the idea is basically the same, Kainhofer et
al. state a convergence criterium as follows.

Let f(x) be a function in [a, b] with singularities only at the left boundary
of the definition interval (i.e. f(x) → ∞ only if x(j) → aj for at least on j),

and let furthermore cNj = min1≤n≤N y
(j)
n and aj < cj ≤ cNj . If the improper

integral exists and if
DN,H(ω)V[a,b](f) = o(1),

then the QMC estimator converges to the value of the improper integral:

lim
N→∞

N−1
N
∑

n=1

f(yn) =

∫

[a,b]

dH(x).

Similar to the one-dimensional case the construction of H-distributed se-
quences leads to problems when using Hlawkas method. However a fix to the
generated sequence is given by the authors:

Let H be a s-dimensional distribution with independent marginal distribu-
tion H1, . . . , Hs and M = suph(x) < ∞. Let furthermore ω = (x1, . . .) be a
sequence with uniform discrepancy DN (ω) and define the sequence ω̃ = (ỹ1, . . .)
by

ỹ
(j)
i =

1

N

N
∑

n=1

⌊1 + x
(j)
i −Hi(x

(j)
n )⌋,

for j = 1, . . . , s and n = 1, . . . , N . Then the sequence ω̄ with elements

ȳ
(j)
i =

{

ỹ
(j)
k if ỹ

(j)
k ≥ 1

N ,
1
N if ỹ

(j)
k = 0

has the following two properties:

DN,H(ω̄) ≤ (1 + 4M)sDN (ω),
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min
1≤j≤s,1≤i≤N

ỹ
(j)
i ≥ 1

N
.

No experimental results were given.

In [17] Hartinger and Kainhofer deal with the problem of generating low
discrepancy sequences with an arbitrary distribution H . While they did so be-
fore ([18]) they identify some disadvantages which carry over to the transformed
sequence they proposed. They specifically deal with the property of the Hlawka-
Mück method that for some applications the points of the generated sequence
of a set with cardinality N lie on a lattice with spacing 1/N . Their solution
is to use a smoothed approximation where the values between the jumps are
interpolated in the empirical distribution function. Specifically they state the
following theorem.

Let ωN = (x1, . . . , xN ) be a sequence in Us with discrepancy DN(ωN ),
and H(x) a distribution function with bounded, continuous density h(x) =
∏s

i=1 hi(x
(i)) and hi(x

(i)) ≤ M < ∞ for all i. Furthermore, let Hi(x) =
∫ x

0 hi(u)du and define for k = 1, . . . , N and l = 1, . . . , s the values

x
(l)−
k = max

A={xi∈ωN |Hi(x
(l)
i )≤x

(l)
k

}

x
(l)
i and x

(l)−
k = 0 for A = ∅,

x
(l)+
k = max

B={xi∈ωN |Hi(x
(l)
i )≥x

(l)
k

}

x
(l)
i and x

(l)+
k = 1 for B = ∅.

Then the discrepancy of the set ω̄N = (yk)1≤k≤N generated by

y
(l)
k =

Hl(x
(l)+
k )− x

(l)
k

Hl(x
(l)+
k )−Hl(x

(l)−
k )

x
(l)−
k +

x
(l)
k −Hl(x

(l)−
k )

Hl(x
(l)+
k )−Hl(x

(l)−
k )

x
(l)+
k

can be bound by
DN,H(ω̄) ≤ (1 + 2M)sDN (ω).

In order to integrate functions with singularities at the boundary it will be
convenient to shift the interpolated sequences in an appropriate way to avoid
regions that lie too close to that singularity. The authors define how to gen-
erate a new sequence ω̂ from the above constructed sequence ω̄ which has the

same distance to the boundaries mink=1,...,N min1≤j≤s min(ŷ
(j)
k , 1− ŷ

(j)
k ) as the

original sequence ω. The new sequence has the same bounds concerning the
discrepancy as the sequence ω̄

DN,H(ω̂) ≤ (1 + 2M)sDN (ω)

and is constructed by

ŷ
(l)
k =











ŷ
(l)+
k if (A) = ∅,
ŷ
(l)−
k if (B) = ∅,
ŷ
(l)
k otherwise

where ω̂ = (ŷ1, . . . , ŷn).
They show, by utilizing the same techniques as Owen in [38], that the se-

quence can be used to integrate improper integrals which have a singularity in
the corner. For L-shaped corner avoidance of the sequence they give an error
by the following theorem, where Kom(ǫ) = {x ∈ Us|min1≤j≤s x

(j) > ǫ}.
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Let f : Us → R, and ωN = {x1, . . . , xn} be a sequence with xj ∈ Kom(ǫN )
for 1 ≤ j ≤ N . Let furthermore H(x) be a distribution on Us with density h(x)
and Mǫ = supx∈U Kom(ǫ) h(x) ≤ ∞. If f fulfills the growth condition given in

[38], and 0 ≤ ǫN = CN−r, then

|I ′ − I| ≤ C1DN,HN
r
∑s

j=1 Aj + C2MǫNN
r(maxAj−1)

with some explicitly computable, finite constants C1 and C2.
Similarly they can show an error for the hyperbolic corner avoidance case,

and finally they give an order of the error estimate for hyperbolic corner avoid-
ance by O(N−1+ǫ+smaxj=1,...,s Aj ).

The only experiments conducted were done in order to show the difference
between the method proposed by Hlawka and Mück and their interpolation
method. No experiments directly connected to numerical integration are given.

In [18] and [17] the singularity is ignored but not by bounding the func-
tion, as in [54], but by modifying the integration, i.e. weighted integration.
In comparison the generation of weighted integration is computationally more
expensive than the simple bounding of the function, additionally due to the
modification of the H distributed points to avoid 0 this is only applicable to
singularities on the lower bounds of the integration domain.

De Doncker [5] reduces the error rate of the methods of Klinger and Sobol’
by constructing extensions which reduce the approximation error. She looks at
the leading asymptotic order of the error and generates extrapolations for such
functions in such a way that error terms vanish. She has shown that for one
dimensional functions with algebraic end point singularities her method works
very well, furthermore it gains significant convergence acceleration when applied
to some logarithmic and interior algebraic singularities. Additionally an asymp-
totic error expansion was derived for integrands with algebraic singularities at
the boundaries of the d-dimensional unit cube.

The improvements were found to occur in stages, as each error term vanishes.
She also states that further research is needed to determine conditions for which
an exact order of leading error terms can be established, and thus a proper
extrapolation can be made.

2.1.2 Singularities in the Interior

In [40] Owen applied and extended his results from [38] to singularities z ∈ [1, 0]d

inside the unit cube. However since the sequences don’t avoid the region of the
singularity, which can be in the interior of the unit cube, he proposes using the
extended function f̃ instead of the original function f for numerical integration.
Like in [38] he requires the function to obey a growth condition

|∂uf(x)| ≤ B||x− z||−A−|u|
p

for all u ⊂ {1, . . . , d}, all x 6= z, some 0 < A < d, some B < ∞, and some
1 ≤ p < ∞. He then defines an extendible region K around z for which ||x −
z||p ≥ ν holds for some ν > 0, additionally he defines an anchor c ∈ K for which
rect[c, y] ⊂ K ∀y ∈ K holds, where rect[x, y] =

∏s
i=1[min(xi, yi),max(xi, yi)] is

the rectangular hull of x and y. Thus he can use Sobol’s extension f̃(x), see [40]
and [38] for details. With the help of the extendible region, f̃ and the growth
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condition he shows that for any Lebesgue measurable function f with integral
I the equation

E(|I ′ − I|) = O(N (−1+ǫ)(d−A)/d)

holds where I ′ = 1
N

∑N
i=1 f̃(xi). In a final corollary he shows that if A < d/2

then E(I ′ − I) = o(N−1/2) holds for randomized quasi-Monte Carlo.
Owen has not given any experimental results.
Owen states in the conclusion that it is not clear if such a good extension to

f can be found. This and the fact that the generation of the extension requires
specific knowledge of the function f makes this method rather unwieldy when
compared to the simple transformation used by Zinterhof.

Klinger [24] shows that the numerical integration of a function is still possible
when it has a singularity in the origin, or can be transformed such that the
singularity is in the origin, by removing the point closest to the origin from
the integration. This basically excludes an elemental interval containing the
origin from the estimation, for Halton sequences he defines similar intervals.

He researches the function fy(x) =
g(x)

|x1−y1|β1+···+|xs−ys|βs
where g has bounded

variation, g(y) 6= 0 and βk > 0 for all k. Clearly this function has a singularity
in y and g doesn’t influence the asymptotic behavior near y. Klinger only deals
with the function f(x) := f0(x)x

−β1

1 · · ·x−βs
s , e.g. y = 0 and g(x) = 1. Should

for some case y 6= 0 a simple transformation x∗ = {x− y+1}, where {x} is the
fractional part of x, will reduce the function fy(x) to f(x

∗). Only Halton and
(0, s)-sequences are used and he uses the properties of elemental intervals to find
points which are near the singularity and thus not included in the numerical
integration. While the (0, s)-sequence is a Niederreiter sequence, and thus a
notion of elemental intervals already exits, Klinger needs to define a similar
notion for Halton sequences:

Let ak be positive rational numbers which satisfy
∑s

k=1 1/ak ≥ 1 and define
positive numbers, coprime integers pk, qk by pk/qk := ak. Now let

R =

s
∏

k=1

[δk(δk − CN−1/ak), (1 − δk)CN
−1/ak + δk)

where δk ∈ {0, 1} and C = min1≤k≤s b
−qk
k . Then at most one of the first N

points x0, . . . , xN of Halton’s sequence falls into R.
Consequently he states that since x0 = 0, this arguments also shows that

none of the first N points of a Halton sequence xn fall into the the above interval
when δk = 0 for all 1 ≤ k ≤ s.

He then states the error bounds for Halton and (0, s)-sequences as follows.
Let x1, . . . , xN be the s-dimensional Halton sequence and f(x) as above then

we have
EN = O(N

−1+(
∑s

i=1
1
βi

)−1

(logN)s).

Let x1, x2, . . . be a (0, s)-sequence and f(x) as above then we have

|I(f)− S∗
N (f)| = O(N

−1+(
∑s

i=1
1
βi

)−1

(logN)s),

where

S∗
N = SN − 1

N
max

1≤n≤N
f(xn).
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In the error bound for the (0, s)-sequence the SN is the usual QMC estimator
for the integral and max1≤n≤N f(xn) is the point closest to the singularity,
which is in y 6= 0 and thus the point is the only point in the elementary interval
bordering the origin. This is essentially the same as removing x0 from the
Halton sequence, except that the n for the point is dependent on N and thus
can’t be specified in advance as with the Halton sequence.

The computational experiments included in the paper compare the error
bounds of the Halton, Sobol’ and Niederreiter sequences. The error bounds are
shown to be reasonable and also that Halton sequences have, for low dimension,
basically the same characteristics as Sobol’ or Niederreiter sequences but are
less computationally expensive. For high dimension, shown for dimension 10 in
the experiments, Halton sequences are worse for at least moderate N.

Clearly these methods, especially for singularities in the interior, are rather
hard to implement for non specialists. Owen even notes that for his method
it might not be possible to find good extensions around the singularity. The
method proposed in the subsequent section is in this respect extraordinarily
simple, however this simplicity in application entails a rather problematic (at
least theoretically) restriction to the class of functions to which it can be applied.

2.2 A Pragmatic Approach - Zinterhof’s Method

A number of people, starting with Sobol’ in [48], have conducted research for er-
ror bounds for improper integrals. One of the more recent results is by Zinterhof
[54].

Theorem 2.2.1. For a function f(x) and a B > 0 the functions fB(x) and

f̂B(x) are defined as

fB(x) =

{

f(x) |f(x)| ≤ B

0 |f(x)| > B

f̂B(x) =

{

0 |f(x)| ≤ B

f(x) |f(x)| > B.

The Class C(β, γ) of s-variate functions f(x1, . . . , xs), 0 ≤ xi ≤ 1, i =
1, . . . , s, consists of all functions which fulfill

(a) I(|f̂B|) = O(B−β) for some β > 0

(b) V (fB) = O(Bγ) for some γ ≥ 1.

Let f ∈ C(β, γ), D∗
N be the discrepancy of the set of nodes ~x1, . . . , ~xn and

B = D∗
N

−1/(β+γ), then the estimate

I(f) =
1

N

N
∑

n=1

fB(~xn) + O(D∗
N

β/(β+γ))

holds, where I(f) = I(fB) + I(f̂B).
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Proof. From
I(f) = I(fB) + I(f̂B)

using the Hlawka-Koksma inequality we get

∣

∣

∣

∣

∣

I(fB)−
1

N

N
∑

n=1

fB(xn)

∣

∣

∣

∣

∣

≤ V (fB)D
∗
N ≤ C1(f)B

γD∗
N

and from condition (a) we get

|I(f̂B)| ≤ C2(f)B
−β .

Consequently

EN =

∣

∣

∣

∣

∣

I(f)− 1

N

N
∑

n=1

fB(xn)

∣

∣

∣

∣

∣

≤ C1(f)B
γD∗

N + C2(f)B
−β ,

which takes it’s minimum of order when using

B = D∗
N

−1
β+γ .

Thus for an error estimate we get

EN ≤ C(f)D∗
N

β/(β+γ)

where C(f) is a constant depending on f .

Remark 2.2.1 (Quality of the error bound). Let us look at dimension s = 1,
f(x) = x−α and the points k

N k = 1, . . . , N . We can easily get the following:

V (fB) = O(B)

I(|f̂B|) =
1

1− α
(
1

B
)

1
α
−1 = O(B−β)β =

1

α− 1

D∗
N (

1

N
, . . . ,

N

N
) =

1

N
.

Consequently we use B = Nα and the point where the functions fB and f̂B
jump is a = N−1. To confine the error from above and below we get the upper
bound

RN = I(f̂B) +

∣

∣

∣

∣

∣

N
∑

k=1

1

( k
N )α

− I(fB)

∣

∣

∣

∣

∣

≤ I(f̂B) + V[1/N,1](fB)D
∗
N ≤

≤ 1

1− α
N−α+1 + (Nα − 1)

1

N
.

And likewise the lower bound

RN =
1

N

N
∑

k=1

1

( k
N )α

− I(f) =
1

1− α
N−α+1 +

N
∑

k=1

(

Nα−1

kα
−
∫ (k+1)/N

k/N

1

xα
dx

)

>

>
1

1− α
N−α+1 +

1

2N

N
∑

k=1

(

1

( k
N )α

− 1

(k+1
N )α

)

=
1

1− α
N−α+1 +

1

2N
(Nα − 1).
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When we put this together we have:

1

1− α
N−α+1 +

1

2N
(Nα − 1) < RN ≤ 1

1− α
N−α+1 +

1

N
(Nα − 1)

and with γ = 1, β = 1/(α− 1) and D∗
N = 1/N we can write

C1(α)D
∗
N

β/(β+γ) < RN ≤ C2(α)D
∗
N

β/(β+γ)

where

C1(α) =
1

1− α
+ 1/2

C2(α) =
1

1− α
+ 1.

So concerning O(D∗
N

β/(β+γ)) we can do no better.

2.2.1 The Class C(β, γ)

An important issue remains: the richness of the class C(β, γ). Generally if the
jump line, i.e. f(x) = B, x ∈ Us, is not axis parallel the variation is unbounded
and consequently f /∈ C(β, γ) since condition (b) (in Theorem 1) is violated 1.
Fig 2.2 illustrates this for a simple case, a function from R2 to R, the hatched
area is a constant value B greater than zero and the rest is zero. On the left side
the jump line from B to zero is axis parallel and on the right side is the simplest
version where this is not the case, a diagonal. When we look at the area in the
center we see that the variation (in the sense of Vitali) is B for this area. When
we refine this part of the partition, the areas displayed by dashes, we see that
in the left side only the part which covers the corner has variation greater than
zero. All other areas are either constant or cross the jump line in such a way
that two adjacent corners lie in the f(x) = B region and two adjacent corners
lie in the f(x) = 0 region. However, adjacent corners are of opposite sign and
thus cancel out. The case on the right hand side is different, here we can create
a refinement where there is more than one area which attains a value greater
than zero. Only one point of the dashed areas is in the f(x) = B region and
thus the variation of the area is B. Through this refinement we have tripled the
variation of the original area, and we can in turn refine each of this smaller areas
further. It is simple to get an infinite variation, we just have to keep refining.
When we use the variation in the sense of Hardy and Krause, for the right hand
we are still infinite. For the left side it is easily seen that the lower dimensional
faces also can only have axis parallel jump lines and thus are similarly fixed in
their value. It can clearly be seen that the class C(β, γ) is very restrictive.

Consider the class T of bounded step functions t ∈ T , t(x1, ..., xs) : U
s → C.

These are functions which are piecewise constant on Us where Us is partitioned
into a finite number of, pairwise disjoint, intervals of the form

∏s
i=1[ai, bi). All

functions t ∈ T are of bounded variation, furthermore considering the class
D := {f |f ∈ C(β, γ) and fb ∈ T } we can state T ⊂ D ⊂ C := C(β, γ).

It is well known that if g ∈ L1, which also means
∫

Us |g(~x)|d~x < ∞, then
there exists for every ǫ > 0 a tǫ(x) ∈ T such that

∫

Us

|g(~x)− tǫ(~x)|d~x < ǫ.

1Thanks to Reinhold Kainhofer for pointing this out.
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Figure 2.2: Illustration of problems with non axis parallel jump lines.

Also since T ⊂ D we can easily write

∫

Us

|g(~x)− dǫ(~x)|d~x < ǫ,

with dǫ(x) ∈ D. Generally, the functions ∈ D will approximate a given function
g ∈ C ⊂ L1 better than functions ∈ T .

In any case, C is rich since T is rich and T ⊂ C. The restrictiveness of
C(β, γ) is a direct result of the restrictiveness of the variation in the sense of
Hardy and Krause.

2.2.2 The function f(~x) = max(x1, ..., xs)
−β

Now let us consider the function f = 1
max(x1,...,xs)β

with 0 < β < 1. Certainly

f /∈ T and lim~x→0 f(~x) = ∞, thus if we can show that f ∈ C we have T ( C.
To do this we need to estimate the integral value and variation of the function
f to see if conditions (a) and (b) in Theorem 2.2.1 are met.

Integral Value

Theorem 2.2.2. Let f = 1
max(x1,...,xs)β

with 0 < β < 1, then
∫

Is f(~x)d~x = s
s−β

0 < β < 1.

Proof. With induction. For s = 1 the claim holds since
∫ 1

0
x−β
1 dx1 = 1

−β+1x
−β+1
1 |10 =

1
1−β .

Now

∫ 1

0

. . .

∫ 1

0

max(x1, . . . , xs)
−βdx1 . . . dxs =

=

∫ 1

0

(
∫ 1

0

. . .

∫ 1

0

max(x1, . . . , xs)
−βdx1 . . . dxs−1

)

dxs

=

∫ 1

0

. . .

∫ 1

0

dx1 . . . dxs−1

∫ 1

0

max(x1, . . . , xs)
−βdxs.
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Let us consider
∫ 1

0
max(x1, . . . , xs−1, xs)

−βdxs, and let x̂s := max(x1, . . . , xs−1),

thus
∫ 1

0
max(x1, . . . , xs−1, xs)

−βdxs =
∫ 1

0
max(x̂s, xs)

−βdxs where

max(x̂s, xs) =

{

xs xs ≥ x̂s

x̂s xs < x̂s.

Thus
∫ 1

0

max(x̂s, xs)
−βdxs =

∫ x̂s

0

x̂−β
s dxs +

∫ 1

x̂s

x−β
s dxs =

−βx̂−β+1
s + 1

1− β

Now we have
∫ 1

0

. . .

∫ 1

0

dx1 . . . dxs−1

∫ 1

0

max(x1, . . . , xs)
−βdxs =

=

∫ 1

0

. . .

∫ 1

0

dx1 . . . dxs−1
1− βx̂−β+1

s

1− β
=

=
1

1− β

[

1− β

∫ 1

0

. . .

∫ 1

0

max(x1, . . . , x
−β+1
s−1 dx1 . . . dxs−1

]

.

Now using the induction hypothesis we get
∫ 1

0

. . .

∫ 1

0

dx1 . . . dxs−1

∫ 1

0

max(x1, . . . , xs)
−βdxs =

=
1

1− β
[1− β

s− 1

s− 1− β + 1
] =

s− β − sβ + β

(1− β)(s − β)
=

s

s− β
.

Remark 2.2.2. In a similar fashion we obtain
∫

Is f̂B(~x)d~x = s
s−β (

1
B )

s−β
β .

Variation

Definition 2.2.1. Let T = {0 = t0 < . . . < tn−1 < tn = 1} and Zs(t0, . . . , tn) =
{(z1, . . . , zs)|zk ∈ T , 1 ≤ k ≤ s}. The partition of Is = [0, 1]s belonging to
Zs(t0, . . . , tn) is called valid partition if P (Zs(t0, . . . , tn)) =

⋃n
n1,...,ns

[tn1−1, tn1 ]×
· · · × [tns−1, tns

].

Every partition of Is can be refined to a valid partition. In the following,
VV (f) will denote the variation of f in the sense of Vitali and VHK(f) will
denote the variation in the sense of Hardy and Krause.

Lemma 2.2.1. VV (max(x1, . . . , xs)) = 1 for (x1, . . . , xs) ∈ Is.

Proof. The function f(x1, . . . , xs) = max(x1, . . . , xs) fulfills max(x1, . . . , xk−1,
xk, xk+1, . . . , xs) = xk for max(x1, . . . , xk−1, xk+1, . . . , xs) ≤ xk. Let In1,...,ns

=
[tn1−1, tn1 ]×· · ·×[tns−1, tns

] be an interval of the valid partition P (Zs(t0, . . . , tn)),
which doesn’t cross the principal diagonal (x1, . . . , xs) = t(1, . . . , 1) 0 ≤ t ≤ 1.

Let VV (f ; In1,...,ns
) = |∑1

τ1=0 · · ·
∑1

τs=0 (−1)τ1+···+τs max(tn1−1 + τ1(tn1 −
tn1−1), . . . , tns−1+τs(tns

−tns−1)|. Since In1,...,ns
is not on the principal diagonal

of Is there is a k0, 1 ≤ k0 ≤ s such that

max(tn1−1 + τ1(tn1 − tn1−1), . . . , tnk0
−1 +

τk0(tnk0
− tnk0

−1), tnk0
, tnk0

+1 + τk0+1(tnk0
− tnk0

−1), . . .) = tnk0
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and

max(tn1−1+τ1(tn1−tn1−1), . . . , tns−1+τs(tns
−tns−1)) = tnk0

−1+τk0(tnk0
−tnk0

−1)

for all τ1, . . . , τk0−1, τk0+1, . . . , τs, ∀i : τi ∈ {0, 1}.
It follows that

VV (f ; In1,...,ns
) = |

1
∑

τ1=0

. . .

1
∑

τk0−1=0

1
∑

τk0+1=0

. . .

1
∑

τs=0

(−1)τ1+···+τk0−1+τk0+1+···+τs(tnk0
− tnk0

−1)| =

= (tnk0
− tnk0

−1)|
1
∑

τ1=0

. . .

1
∑

τk0−1=0

1
∑

τk0+1=0

. . .

1
∑

τs=0

(−1)τ1+···+τk0−1+τk0+1+···+τs | = 0.

If on the other hand In1,...,ns
lies on the principal diagonal of Is, then n1 =

· · · = ns = n0 and

In1,...,ns
= In0,...,n0 = [tn0−1, tn0 ]× [tn0−1, tn0 ]× . . .× [tn0−1, tn0 ],

then

VV (f ; In0,...,n0) = |
1
∑

t1=0

. . .

1
∑

ts=0

(−1)τ1+···+τs

max(tn0−1 + τ1(tn0 − tn0−1), . . . , tn0−1 + τs(tn0 − tn0−1))| =

= |
1
∑

τ1,...,τs=0

(−1)τ1+···+τs(tn0−1 max(τ1, . . . , τs)(tn0 − tn0−1))| =

= |tn0−1

1
∑

τ1,...,τs=0

(−1)τ1+···+τs +

(tn0 − tn0−1)(

1
∑

τ1,...,τs=0

(−1)τ1+···+τs −
0
∑

τ1,...,τs=0

(−1)τ1+···+τs)| =

= |tn0−10 + (tn0 − tn0−1)(0− 1)| = tn0 − tn0−1.

Then holds VV (f ; I
s) =

∑n
n0=1(tn0 − tn0−1) = 1, where VV (f ; I

s) is attained
already at the principal diagonal of Is.

Remark 2.2.3. If g(x) in [0, 1] is monotone or of finite variation Var(g) then

VV (g(max(x1, . . . , xs); I
s)) = |g(1)− g(0)|

or
VV (g(max(x1, . . . , xs); I

s)) = Var(g).

Remark 2.2.4. Let 0 ≤ ak < bk, 1 ≤ k ≤ s then for Ia,b =
∏s

k=1[ak, bk] we
analogously get

VV (g(max(x1, . . . , xs)); Ia,b) = |g(b)− g(a)|
for a1 = · · · = as and b1 = · · · = bs, otherwise VV (g(max(x1, . . . , xs)); Ia,b) = 0.
The variation in the sense of Vitali of functions g(max(x1, . . . , xs)) is concen-
trated on the principal diagonal of the unit cube.
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Remark 2.2.5. For functions f = g(max(x1, . . . , xs))

VHK (f ; Is) = VV (f ; I
s)

holds. The variation of Hardy and Krause is defined as

VHK(f ; Ia,b) =
∑

J⊂Is

VV (f ; J)

where J are all k-dimensional faces {(u1, . . . , us) ∈ Is|uj = 1, j 6= i1, . . . , ik}
with 1 ≤ k ≤ s and 1 ≤ i1 < · · · < ik ≤ s. Since for k < s there are some uj = 1,
the function f = g(max(x1, . . . , xt−1, 1, xt+1, . . . , xs)) = g(1), t 6= i1, . . . , ik, is
constant and consequently VV (f ; J) = 0, ∀J ( Is.

Let now g(x) = 1/xβ, 0 < x ≤ 1, 0 < β < 1 and fβ(x1, . . . , xs) =
1/max(x1, . . . , xs)

β , (x1, . . . , xs) ∈ Is. Now let

f̂β,B =

{

0 fβ(x1, . . . , xs) > B, max(x1, . . . , xs) < 1/Bβ = B′

fβ(x1, . . . , xs) fβ(x1, . . . , xs) ≤ B, max(x1, . . . , xs) ≥ 1/Bβ = B′,

and

f̃β,B =

{

fβ(B
′, . . . , B′) = B fβ(x1, . . . , xs) > B

fβ(x1, . . . , xs) fβ(x1, . . . , xs) ≤ B,

and

χβ,B =

{

B fβ(x1, . . . , xs) > B

0 fβ(x1, . . . , xs) ≤ B,

and clearly f̃β,B = f̂β,B + χβ,B. It can be easily seen that VV (χβ,B; I
s) =

B and from the remarks before we know that VV (f̃β,B) = |g(0) − g(1)| =

B − 1. Consequently, VV (f̂β,B; I
s) = VV (f̃β,B − χβ,B; I

s) ≤ VV (f̃β,B; I
s) +

VV (χβ,B; I
s) = 2B − 1.

Thus we have finally shown that f(~x) = max(~x)−β , 0 < β < 1 is in C.

2.3 Experimental Results

First, we want to investigate the behavior of function f(~x) = max(x1, ..., xs)
−β

as discussed in the last section in numerical experiments. As point sequence we
used the Zinterhof sequence [52] (see Chapter 4 for more theoretical results),
which is a special case of Weyl sequences defined as follows

xn = ({ne1/1}, . . . , {ne1/s}), n = 1, 2, 3, . . . ,

for points n = 1, 2, ... and dimension s. Note that the Zinterhof sequence has
certain corner avoidance properties as well, which is due to the high degree
of irrationality of the generated points. Caused by corresponding diophantine
properties this is true not only for the origin but for all rational points as well.

Figure 2.4 displays the results for the original and integral preserving trans-
formed function (transformed in such a way as to get singularities in the interior
of the unit interval as well as on the border, see Fig. 2.3 for an illustration of
the transformation)

max = max(x1, ..., xs)
−0.5



Numerical Integration of Unbounded Functions 21

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

max
max ′

Figure 2.3: Illustration of the transformation of function max to max ′.

max ′ = max({5x1}, ..., {5xs})−0.5

respectively, where {x} is the remainder of x. We let N run and hold B =
1000000000 fixed for dimensions 10 and 15 (labeled d10 and d15 respectively).
As expected, the the error rates are very good.
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Figure 2.4: Functions max and max′ for dimension 10 and 15 with B =
1000000000, relative error over N .

Theoretically, we are restricted to functions of class C, practically however
the method can be applied to a wider range of functions. Consider the functions

f1 =

s
∏

i=1

1

x0.5i

f2 =

s
∏

i=1

1

ln( 1
xi
)0.5

where f1
B and f2

B both have non axis parallel jump curves and consequently
infinity variation.
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Experimentally, functions f1 and f2 can be integrated using our technique,
even though their bound representations for this method have infinite variation,
c.f. Theorem 2.2.1 condition (b). For a test we used a fixed B = 1000000000,
which also hints at a serious problem with this method if f /∈ C. Since the
variations of f1

B and f2
B are infinite we can not obtain a β and thus no optimal

bound B using dimension 10 and 15.
Figure 2.5 left hand side shows the results for function f1 over the number

of points N , and the right side shows the results for the integral preserving
transformation

f ′1 =

s
∏

i=1

1

{5xi}0.5

where {x} is again the remainder of x.
The figures show that the estimation converges toward a fixed error, this is to

be expected since we will by construction always miss I(f̂B) (see Theorem 2.2.1)
since we kept B fixed while it is actually a function of the discrepancy and thus
of N . The difference in error between dimension 10 and 15 is a well known
phenomenon (curse of dimensionality). However, given that we can somehow
obtain the proper bound B for the number of points N used for the integration
the error converges even though f1 (and f1

B) is of unbounded variation.
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Figure 2.5: Functions f1 and f ′1 for dimension 10 and 15 with B = 1000000000,
relative error over N .

Keeping the bound B fixed and again using dimensions 10 and 15 we will
likely experience problems in the integration when we turn to another function.
To illustrate this we used function f2, and an integral preserving transformation
as follows

f ′2 =

s
∏

i=1

1

ln( 1
{5xi}

)0.5
,

shown in Fig. 2.6 left and right hand side respectively. When the bound is
chosen too low the results usually becomes stable quickly with a high error,
stemming again from f̂2

B. In this case the bound was chosen too high, i.e. we
would need to use more points N to get to the region where B is optimal. This
can be seen from the ”overshoots”, usually high error rates at the beginning,
due to points falling near the jump curve, thus early introducing high values,
i.e. close to B, to the estimation. These will usually vanish when the number
of points is high enough to get a fine grained sampling of the unit cube but will
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stay visible a long time. So while the method works, experimentally, even for
functions not in C this poses the problem of estimating a proper B to be used
in the integration.
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Figure 2.6: Functions f s and f ′2 for dimension 10 and 15 with B = 1000000000,
relative error over N .

To illustrate the effect B has on the integration we use a fixed number of
points N = 1000000 and let B vary. The result of this test, again for functions
f1 and f2 in dimensions 10 and 15, is given in Fig. 2.7. What can be seen is that
the bound depends not only on the number of points but also on the dimension,
which is not surprising since it depends on the discrepancy. Also, for f2, there
is an interval of B where the integration holds, while on the other hand we get
an increase in error as we move away from that interval. Also, since the bound
is depending on the discrepancy, which in turn depends on the number of points
and the dimension, the bound is a function of the dimension leading to quite
some error in dimension 15 where the approximation was exact for dimension
10.
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Figure 2.7: Functions f1 and f2 for dimension 10 and 15 with N = 1000000,
relative error over B.
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2.4 Conclusion

We have shown that the proposed method can be used to numerically integrate
over a rich class of functions C(β, γ). The method also works experimentally
on an even bigger class of functions with the problem that some parameters,
i.e. the bound B, can’t be chosen specifically for the function. Furthermore,
no complicated extensions have to be constructed, the bound can be applied
during runtime, and thus the method can be applied to the function directly.
Also, the method is not restricted to singularities on the boundary or in the
corner. Thus this method is extremely easy to implement and apply, even for
non specialists.

However, even if a function is of class C we face the problem that we have
to know the number of points beforehand to choose an optimal B. Also, since
we need β and γ to choose optimal parameters for the numerical integration
the function must be well known. This is theoretically of no importance but
practically can prevent (optimal) integration.

Despite these drawbacks this method will be used in experimental setups
throughout this work, since other methods have even more severe drawbacks.
Specifically, none but two methods can handle singularities in the interior of
the unit interval. For the one method the functions has to be transformed to
a case where singularities occur only in the origin. For the other method an
extension has to be constructed and it is not clear if such an extension can be
found for every function. This together with the fact that the construction of an
extension is hardly possible for a ”user” makes this methods unfit for practical
use.

Also note that Klinger methods has some similarities to Zinterhof’s method.
Klinger removes the nearest point to the origin from the SN but doesn’t reduce
the number of points N used. This is essentially the same as setting the function
in the elemental interval to 0. Though this is a rather special case, only one
singularity in the origin and only one point set to zero, it can still be considered
a special case of Zinterhof’s results.

Another rather interesting family of methods are those which use corner
avoidance properties of sequences. They are even simpler to implement than
Zinterhof’s method since no modification of the function has to be done and
the method can be applied in a straight forward fashion. These methods how-
ever entails a restriction on the point sequences which are used, they have to
have shown corner avoidance properties. This has to be shown for point se-
quences prior to use, then however they can be used nearly directly, only the
first point has to be dropped for some sequences, since the first point often is in
the (0, 0, . . . , 0)-corner. Unfortunately these methods are restricted to functions
with singularities in the corner or to functions which can be reduced to such a
case. It should also be noted that for singularities in the corner, point sequences
with corner avoidance properties and a sufficiently high B Zinterhof’s method
works similarly.



Chapter 3

Parallelization of QMC

Integration Using the GRID

In this chapter we will take a closer look at various point generating sequences
in connection with parallelization techniques. It would be beneficial to research
and test them separately which unfortunately is not always possible, the study
of leaping will make this clear. Also, parametrization requires some special
properties of the used sequences and as such can not be applied to just every
sequence (in essence we will only apply it to the Zinterhof sequence).

Also it is hardly possible to test all point generating sequences, and as such
a couple of sequences which have been repeatedly studied, and are rather well
known have been selected. This is done mainly to be able to compare prior
results of other authors to the grid specific results. Whenever possible we tried
to extend the findings to a general case but again this is often not possible.

3.1 Introduction

GRID environments exhibit challenging properties for numerical integration
techniques. This type of computing facility potentially shows extreme hetero-
geneity in terms of PE speed and network connections, moreover the available
computing resources may change in time even during ongoing computations
(e.g. new machines may become available or others may get lost due to net-
work problems or maintenance shutdowns, other users may start computations
on the same hardware, etc.). Li et al. [29] discuss the use of a GRID service
called Integration Service for solving multivariate integration problems, where
the PARINT package [9] is used as integration engine.

Therefore, it is not only difficult but impossible to predict the amount of
integration nodes required on a single PE under such conditions. Additionally, in
practice it is usually not possible to determine a priori the number of integration
nodes N necessary to meet a given error requirement. As a consequence, it is of
great importance that N may be increased without losing previously calculated
function values. It is clear that techniques for providing integration nodes on
the single PEs need to be very flexible under these circumstances.

25
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3.1.1 QMC Techniques in GRID Environments

GRID environments exhibit a potentially high heterogeneity in terms of net-
work capacity (i.e. bandwidth and latency) and computing speed (memory
capacity, cache sizes, processor speed). In addition to that, these environments
are error prone with respect to broken network links or failing PEs. Moreover,
additional resources may become available during an ongoing simulation which
should be used to optimize resource consumption. As a consequence, the fol-
lowing requirements should be met by a QMC technique employed in a GRID
environment:

• Variety in computing speed requires dynamic load balancing capability.

• Variety in network capacity requires load balancing strategies without
central organization and a minimal number of control messages exchanged
among the computing nodes.

• Failure in hardware resources requires tolerance to lost partial results.

• Additional resources becoming available require a possibility to assign
workload to these resources (i.e. by redistributing or redefining workload).

In addition to that, error bounds and computation results should preferably
carry over from sequential execution. If the QMC point sets differ between se-
quential and parallel execution, the quality of the results needs to be investigated
thoroughly. Reproducibility is as well an important issue to be considered.

So far, two entirely different strategies have been discussed in literature to
employ QMC sequences in parallel and distributed environments.

1. Splitting a given QMC sequence into separately initialized and disjoint
parts which are then used independently on the PEs. This strategy comes
in two flavors:

• Blocking: p disjoint contiguous blocks of maximal length l of the
original sequence are used on the PEs. This is achieved by simply
using a different starting point on each PE (e.g., PEi, i = 0, . . . , p−1,
generates the vectors xil,xil+1,xil+2, . . . ,xil+l−1). In case a large
number of smaller blocks is used index j is assigned dynamically
to PEi which generates the vectors xj ,xj+1, . . . ,xj+l−1 (where j is
incremented in steps of size l to avoid overlap).

• Leaping: interleaved streams of the original sequence are used on
the PEs. Each PE skips those points consumed by other PEs (leap-
frogging) (e. g. employing p PEs, PEi, i = 0, . . . , p− 1, generates the
vectors xi,xi+p,xi+2p, . . .).

2. Using inherently independent sequences on the different PEs (denoted as
“parametrization” which can be realized for example by randomizations
of a given QMC sequences).

Blocking has been suggested in many application focused papers. Mascagni
and Karaivanova [32] propose to use disjoint contiguous blocks from Halton,
Faure, and Sobol’ sequences in the context of solving sparse systems of linear
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algebraic equations. Numerical experiments are carried out on a homogeneous
cluster using static load distribution. In a second paper [31] the same authors
use the suggested techniques for computing extremal eigenvalues, again a QMC
sequence is “neatly broken into same-sized subsequences” by blocking. The au-
thors point out that this simple strategy can not be employed in general for all
types of simulation settings. Alexandrov et al. [1] use scrambled Sobol’ and
Halton sequences to solve certain linear algebra systems. They discuss static
and dynamic load balancing and point out the importance of efficient dynamic
load balancing in GRID environments. Load balancing is done by dynamically
distributing chunks (i.e. blocks) of relatively small size to avoid unevenly sized
chunks. Techniques for efficiently generating non-adjacent chunks an a single
PE are discussed in this paper. Tests are carried out on homogeneous and het-
erogeneous systems; in the latter case MPICH over Globus-2 GRID software
is used. Li and Mascagni [30] propose to extend techniques used in GRID-
based Monte Carlo methods, e.g. the N-out-of-M scheduling strategy, to QMC
sequences by using scrambled quasi random sequences. Furthermore, known
statistical properties of MC carry over to scrambled quasi random sequence and
thus allowing partial result validation and intermediate value checking. Wan
et al. [50] present a parallel strategy for pricing multidimensional American
options. In the first stage, the QMC sequence is generated by independently
computing equally sized blocks on the PEs using static load distribution. For
the second stage two strategies, one being the stochastic mesh method which
involves a backward recursion, for data distribution are compared which both
correspond to distributing the original sequence in blocks of different size in
different manner across the PEs. Tests are conducted on a SGI Onyx machine.
Schürer [44] employs equally sized blocks of (t,m,s)-nets on the PEs when com-
paring QMC integration techniques to adaptive cubature rules. A SGI Power
Challenge is used as a test platform. Schmid et. al.[42] have conducted experi-
ments with blocking Niederreiter (t,s)-sequences where large disjoint blocks are
used on the PEs. Good reliability of the results has been observed in homo-
geneous and (simulations of) heterogeneous environments (tests conducted on
a SGI Power Challenge). They have also provided theoretical evidence for this
good behavior by showing that discrepancy estimates of arbitrary blocks do not
degrade as compared to estimates of entire (t,s)-sequences [43].

Leaping has been discussed much more controversial in literature than block-
ing. Bromley [2] describes a leapfrog parallelization technique to break up the
Sobol’ sequence into interleaved substreams in an efficient manner. Schmid et.
al. have generalized this idea to all types of binary digital (t,s)-sequences [43] in
earlier work. Based on these techniques, Li and Mullen [28] use a leapfrog scheme
for (t,m,s)-nets to solve financial derivative problems. However, severe problems
occur with leapfrog parallelization especially in case of processor speed hetero-
geneity which results in QMC point sets which do not correspond to sequential
computation. Initial results showed that single (t,s)-sequence substreams with
leaps of the form 2n lead to extremely poor numerical integration results whereas
this is not the case for leaps of the form 2n+1 [42]. Using leaped substreams
parallelization in a heterogeneous processor speed environment therefore may
lead to severely degraded results as compared to sequential execution when this
form of leaping is employed. Different PEs consume a different number of inte-
gration nodes and so the poor results of using single substreams are propagated
to the parallel results if no synchronization among PEs is performed [12, 42, 43].
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Schmid et. al. have also provided theoretical evidence for the observed effects
by showing the discrepancy estimated of leaped substreams to be significantly
larger as compared to the original sequences [43]. It has also turned out that
not only 2n type substreams are affected by poor quality but these effects occur
for many forms of leaps and are highly unpredictable [12, 43].

Parametrization has been proposed as a QMC parallelization strategy by
two groups independently. DeDoncker et al. [6, 8, 7] propose randomized (Ko-
robov) lattice and Richtmeyr rules (which are a special type of Weyl sequences),
and discuss load distribution strategies for homogeneous and heterogeneous ar-
chitectures [4]. Results are provided for both, homogeneous and heterogeneous
environments, and in both cases result accuracy and execution efficiency was
reported to be very well. Ökten and Srinivasan [37] propose to use Halton and
scrambled Halton sequences with leaped base sequences on different PEs. Ex-
cellent theoretical error estimations are provided and also experimental results
for homogeneous as well as for heterogeneous environments exhibit high qual-
ity. Parametrization is also compared to blocking and leaping in this work and
advantages and disadvantages of the three schemes are analyzed for different ap-
plication scenarios. Srinivasan [49] confirms the findings of the latter paper and
refines the comparison of the three parallelization strategies based on simulation
results for pricing financial derivatives.

Based on the requirements for a QMC technique to be useful in GRID en-
vironments stated before we try to assess the effectiveness of the three parallel
QMC techniques proposed in literature.

Blocking

Two flavors of blocking are discussed. In the first variant, the QMC sequence
is partitioned into small blocks which are dynamically distributed among the
PEs. Whereas this technique uses QMC node sets almost identical to sequential
execution and can handle all types of changing resource scenarios and hetero-
geneity quite well, it requires the frequent exchange of control messages and is
therefore not suited for GRID environments. The validity of this assessment
of course depends on the relation between block size and the communication
possibilities in the actual GRID environment. In the second blocking variant,
one large block is assigned to each PE at the start of the computation. Since
the number of QMC points required on each PE is not known a priori the block
size needs to be chosen large enough to avoid a PE to exceed the number of
available points in its block (exceeding the number would then result in overlap
of the blocks which of course degrades the final result). On the other hand, if the
blocks have been selected much too large, a significant number of points may not
be consumed on slow PEs and the overall point set used exhibits large “gaps”
as compared to the sequential case which potentially threatens result accuracy
(although the results available so far concerning this effect do not seem to be
very severe). Choosing the block size appropriately is therefore a critical issue
in this approach. The same considerations of course apply as well if a PE fails.
In the case where a specific QMC point set with a limited number of points
has been distributed among the available PEs at the start of the computation
(e.g. a (t,m,s)-net), handling additional resources is fairly complicated. On the
other hand, in the case of using infinite sequences only the next large block
in the sequence not being assigned to a PE so far has to be assigned to a PE
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which has become available during the computation. Although some of the po-
tential problematic effects (like significant block overlap or large gaps) have not
been investigated systematically, the currently available results indicate reliable
behavior. The use of large blocks is therefore an interesting option for GRID
environments.

Leaping

Contrasting to the blocking case, there is no need to specify a number of points
required on each PE since each substream may deliver an infinite number of
points in principle. Therefore, there is no danger of running short of points.
Also, substream overlap can not occur. In the case of homogeneous environ-
ments where care is taken that each PE consumes an equal share of QMC points,
a result identical to sequential execution is easily obtained. Note that this is not
the case for blocking due to the problems with choosing a good block size (ex-
cept in case the number of points required is known in advance – which is rarely
the case). The situation changes drastically in heterogeneous environments: in
case of different PEs consuming a different number of QMC points it has been
shown that depending on the type of load imbalance more or less severe degra-
dations in result accuracy are observed. The same considerations (with even
more pronounced effects) of course apply as well if a PE fails. When additional
resources become available the classical leaping scenario can not handle this
situation properly – usually a QMC node set is partitioned into J interleaved
substreams if J PEs are available. There is no additional substream available
in this scenario. A way to handle this situation is to partition a given QMC
point set into I > J substreams in case of J PEs are available. The I − J
substreams are not used by default but kept as additional work share in case
additional PEs become available. However, neither empirical nor theoretical
results are available so far to assess the quality of corresponding results. The
use of leaping in GRID environments may be therefore accompanied with prob-
lematic side effects which endanger a flexible and transparent use. In addition
to that, the most important advantage of leaped substream parallelization as
compared to blocking (i.e. in case of synchronized execution the used point set
corresponds to the sequential case) does not apply in GRID environments due
to the heterogeneity.

Parametrization

The most important difference (and also disadvantage) of parametrization as
compared to blocking and leaping is that the QMC point set used in parallel
or distributed computation does not correspond to a single (sequentially used)
point set. Therefore, the investigation of the results’ quality when using this
technique is of great importance since it is not clear a priori how results from
different point sets will interact in the final result. The findings so far indi-
cate a good quality of the results based on theoretical estimates and empirical
tests. Due to the use of de-facto independent QMC point sets on the PEs load
balancing at low cost comes for free (each PE generates as much points as it
requires locally) and the same is true for reacting to changes with respect to
available resources. Therefore, parametrization is a well suited approach for
GRID environments provided the quality of the results can be guaranteed. A
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disadvantage is that knowledge about the reliability of the results is restricted
so far to Halton sequences and (Korobov) lattice rules. An advantage of us-
ing randomized QMC techniques in general is that error control techniques like
variance reduction are integral parts of this approach. This also holds true for
their use in GRID environments.

3.1.2 QMC Node Sets

For generating the Sobol’, Halton, Faure and Niederreiter-Xing sequences we
use the implementation of the “High-dimensional Integration Library” HIntLib1.
The descriptions of the Sobol’, Faure, and Niederreiter-Xing sequences are taken
from [45].

Sobol’ Sequence

The Sobol’ sequences [47] are digital (ts, s)-sequences over F2, where

ts =

s
∑

i=1

(deg pi − 1), (3.1)

with p1 = x ∈ F2[x] and pi+1 denoting the ith primitive polynomial over F2

ordered by degree.
Sobol’ sequences were the first known constructions yielding (t, s)-sequences

for arbitrary dimensions s. They were introduced long before the theory of
(t, s)-sequences over arbitrary finite fields Fb was established in [34]. However,
they only exist for b = 2, and even in this case, the resulting t parameter is not
optimal for s > 3. For s > 7, even the Niederreiter sequence, which is equally
easy to implement, yields lower t-values.

For s = 1 the Sobol’ sequence (defined by the polynomial p1 = x) is a
(0, 1)-sequence identical to the van der Corput sequence in base 2.

We use the implementation of construction 6 in [33].

Faure Sequence

The Faure sequences are digital (0, s)-sequences over Fb with b denoting a prime
number (original case) or a prime power (general case) greater or equal to s.
The case for b prime was shown by Faure [14], the general result is due to
Niederreiter [34, Theorem 6.2].

The s infinite generator matrices C(1), . . . , C(s) over Fb are defined by C(i) =

(c
(i)
jr )j,r>0 with

c
(i)
jr =

(

r

j

)

αr−j
i , (3.2)

where α1, . . . , αs denote s distinct elements from Fb and the conventions α0 = 1
for all α ∈ Fb and

(

r
j

)

= 0 for j > r are used.
For α = 1, the resulting matrix is the infinite Pascal matrix modulo the

characteristic of Fb; for α = 0, it is the infinite identity matrix. If s = 1 and
α1 = 0, the resulting (0, 1)-sequence is identical to the van der Corput sequence
in the same base.

1Available at: http://www.cosy.sbg.ac.at/˜rschuer/hintlib/
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Sequences with the same parameters can also be obtained using Niederreiter
sequences or Niederreiter-Xing sequences with rational function fields.

We use the implementation of construction 8 in [33].

Halton Sequence

The construction of the Halton sequence was introduced in [15]. For a dimension
s > 0, let b1, . . . , bs be integers ≥ 2. Then the Halton sequence in the bases
sequence b1, . . . , bs is defined as x0, x1, . . . with

xn = (Φb1(n), . . . ,Φbs(n)) ∈ Is, ∀n ≥ 0, (3.3)

where Φb(n) is the radical inverse function. The radical inverse function in base
b is defined as

Φb(n) =

∞
∑

i=0

ai(n)b
−j−1, ∀n ≥ 0, (3.4)

where ai(n) is the ith digit in the digit expansion of n in base b.

Niederreiter-Xing Sequence

In [36] and [51] Niederreiter and Xing develop two methods for creating a digital
(t, s)-sequence over Fb based on an algebraic function field with full constant
field Fb, genus t, and containing at least s+1 rational places. Niederreiter-Xing
sequence construction III is constructive, assuming that defining equations for
the function field are given and that s + 1 rational places are known. We use
the implementation of construction 18 in [3].

Weyl Sequence

Weyl sequences are defined by

xn = ({nθ1}, {nθ2}, . . . , {nθs}), n = 1, 2, 3, . . .

where s is the dimension and {x} is the fractional part of x. It is well known
that a Weyl sequence is uniformly distributed if and only if θi are independent
irrational numbers. Weyl sequences are used in different variants in literature.
An important issue with respect to their quality in terms of uniformity of distri-
bution is the amount or degree of irrationality of the employed starting vector
Θ = (θ1, . . . , θs). Whereas DeDoncker et al. [7] investigate Richtmeyr rules
where θi =

√
pi with pi being the i-th prime, we use a special type of Zinterhof

sequences [52] where θi = e1/i:

xn = ({ne1/1}, . . . , {ne1/s}), n = 1, 2, 3, . . . , (3.5)

These sequences have been shown to exhibit excellent distribution behavior
and they excel by their ease of construction and implementation even for non-
specialists.
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3.1.3 Splitting Feasibility

First let us consider the execution efficiency in a distributed environment of the
splitting (leap frogging) and blocking based distribution approach as compared
with a synchronized and centralized technique (denoted client/server). In the
client/server version we have one PE which generates and distributes the QMC
integration points and collects the results (control element CE), and a number
of PEs where the function is calculated. For a high number of PEs this model
becomes a problem since the only source for new points is the server which can
only generate points at a fixed rate. Furthermore, sending the points and results
over a network generates a high amount of traffic, thus it is necessary to shift
the generation of points from the server to the client. The test is conducted on
a heterogenous network consisting of 12 computers (for machine specification
see Section 3.1.5). One machine is always setup as CE while the rest are PEs.
For leaping the leap size was set to 11 (i.e. the number of PEs) and the block
size for the blocking mode was set to 500. The average runtime of five tests
was used to calculate the speedup as shown in Table 3.1. We see that for both
blocking and leaping the speedup as compared to the client/server version is
clearly in a range where splitting can be considered useful.

Table 3.1: Speedup from splitting.

Mode Speedup Average Runtime
(milliseconds)

client/server 1 6092.2
blocking 3.12 1952.6
leaping 3.27 1861.8

The reason for leaping being slightly better than blocking stems from the
fact that in the leaping mode only control messages need to be exchanged while
the blocking variant periodically has to request new blocks of QMC nodes. As
we have discussed earlier, there is also the possibility to bring the blocking mode
closer to leaping by using large blocks.

For the case of parametrization, while not given in the table, we gain the
same speedup as with leaping. In terms of distribution this is the same as
leaping, to each PE a singe point generating sequence is assigned and no further
network messages are necessary for the acquisition of points.

3.1.4 Test Functions

A widely used test function for numerical integration of improper integrals,
which was first used by Sobol’ in 1973 [48], is

t(x) =
1

xα1
1 · · ·xαs

s
, (3.6)

where s is the dimension and 0 < αi < 1, ∀i ∈ 1, . . . , s. We use a slightly less
general version of this test function of the form

f(x) =

s
∏

i=1

1

xαi
, (3.7)
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where s is the dimension and 0 < α < 1. For f(x) clearly
∫

(0,1)s f(x)dx =
(

1
1−α

)s

and the value of α determines the severity of the singularity, i.e. the

gradient of the function (see Fig. 3.1). Additionally to be able to analyze situ-
ations where the singularity is inside the interval, as opposed to the origin, we
can shift the function by a value o > 0 as follows

fo(x) =

s
∏

i=1

1

{x+ o}α , (3.8)

where {x} is the fractional part of x (see Fig. 3.1).
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Figure 3.1: Coordinate function of test function with various values of α and
shift o as given.

Unless specified otherwise, we use dimension s = 10 and no shift in the
test function. We evaluate up to 10000000 = 107 integration nodes and set the
bound B to 1000000.

This test function is used throughout all experimental evaluations, only the
parametrization test use additional functions which are given in Section 3.4.

3.1.5 Test Environment

The hardware platform used in our experiments is a classical heterogeneous
cluster architecture. The machines are specified in Table 3.2.

The table contains information concerning the CPU of the machines, and
in particular their architecture, speed and memory. The entries in column
“stream” is the number of the leaped substream of the QMC sequence used
on this machine. “Root” means that no actual integration is done but that
this machine is the coordinator of the calculations. In a test on eight machines,
machine one is the control node, machine two uses stream 0, machine three uses
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Table 3.2: Specification of machines in the heterogenous network.

CPU(arch) CPU(MHz) Memory (kB) stream machine
AMD Athlon(tm) Processor 1244.719 513852 root 1
AMD Athlon(tm) MP 2800+ 2133.468 2064584 stream0 2
AMD Athlon(tm) XP 2800+ 2083.121 513852 stream1 3
AMD Athlon(tm) XP 2800+ 2083.123 513852 stream2 4
AMD Athlon(tm) XP 2800+ 2083.139 255308 stream3 5
AMD Athlon(tm) XP 2800+ 2083.134 513852 stream4 6
AMD Athlon(tm) XP 2800+ 2083.149 513852 stream5 7
AMD Athlon(tm) XP 2000+ 1666.747 255308 stream6 8
AMD Athlon(tm) XP 2000+ 1659.642 255308 stream7 9
AMD Athlon(tm) XP 2000+ 1659.642 255308 stream8 10
AMD Athlon(tm) XP 2000+ 1659.627 255308 stream9 11
AMD Athlon(tm) Processor 1244.732 513852 stream10 12

stream 1, and so on. When for a test the number of machines is stated this
table gives information on which machines the streams run on and thus with
which relative speed.

In order to simulate a more heterogeneous environment we artificially speed
up or slow down single machines to simulate faster or slower machines con-
tributing to the integration process. Due to the potential heterogeneity of GRID
environments this speedup is greatly exaggerated; the corresponding machine
running faster or slower does so by a factor of 103. Additionally, we also com-
pare this extreme case of speedup to a more modest case, where the affected
machine consumes twice as much (in case of acceleration) or half the amount
(in case of slow down) of QMC points.

3.2 Leaping

As we have seen, with leaping it is possible is to generate separately initialized
and disjoint substreams of a given (sequential) sequence of integration nodes.
However, there are already a number of shortcomings known for leaped sub-
stream parallelization techniques for (t,s)-sequences, e.g. [42, 43, 12].
So here we will cover the following issues:

• So far, only the leaping of Sobol’ and Niederreiter (t,s)-sequences has
been investigated. Here we additionally treat Faure, Halton, Weyl, and
Niederreiter-Xing sequences.

• So far, only the quality differences among differently leaped streams have
been investigated systematically. Here we additionally treat the quality
differences among equally leaped but differently initialized substreams and
the respective implications for the use in distributed computations.

• So far, only a moderate amount of hardware heterogeneity has been inves-
tigated. Here we reflect potential GRID properties and additionally treat
a case where computing capacity varies by a factor of 103 and compare
the result to more classical environments.
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3.2.1 Single Substream Results

In this section we investigate the integration result accuracy when single leaped
substreams are used for generating the integration nodes. The rationale for
this is to assess the quality of these substreams – in case of unbalanced load
substreams generated on faster PEs will contribute more integration nodes to
the overall result than others and consequently their quality will propagate into
the result to some extent.

First we focus onto the Sobol’ sequence. We aim at showing that the behavior
of the Sobol’ sequence as documented by Schmid and Uhl [43] can also be seen
when integrating functions with singularities. Note that for figures the ordinate
gives the absolute value of the error percentage displayed in a logarithmic scale.
We investigate the behavior of leaps of the form 2i (depicted as lines) and 2i+1
(depicted as lines with points), for i = 1, . . . , 6 (additionally leap 11 is shown
for stream 0, see below). For a reference value we display the result of the
original sequence (leap 1) with an offset equal to the stream number. Apart
from using substreams with different leap values starting with the first point of
the sequence (“stream 0”), we also investigate those substreams initialized with
the second and third point, respectively (“stream 1” and “stream 2”).

The general impression of the results for the Sobol’ sequence in Fig. 3.2
confirms the findings of earlier works [42, 43, 12] where stream 0 of Sobol’ and
binary (t,s)-sequences has shown severe integration result degradation when
using leaps of the form 2i and a lower amount of degradation for leaps of the
form 2i+1, while still giving worse results as compared to the original sequence.
However, there are also subtile differences shown in the results. To start with,
in case of stream 2 and large leaps we notice that all results are superior to
the result of the sequential sequence. Leaps of the form 2i + 1 do not only
perform better as compared to those of the form 2i but actually do improve
the results of the original sequence in almost all cases considered (we notice an
even significant improvement in single cases, e.g. stream 0 - leap 5 and leap 33).
These effects (and differences to earlier findings) may be due to the fact that
we use a test function with singularity located in the origin and that leaping in
general reduces the share of points taken from the start of the original sequence
(which is known to be of lower quality [25, 41]). It is also interesting to note that
there are significant differences among the results of the different streams. The
overall trend suggests that result degradations caused by leaping are less severe
for streams initialized at some distance from the start of the original sequence.

Fig. 3.3 shows the results of the identical experimental setup applied to
Halton sequences. A very different behavior is displayed.

Clearly, the observation that leaps of the form 2i + 1 perform better than
leaps of the form 2i, as seen in the Sobol’ sequence, doesn’t hold for the Halton
sequence at all. For streams 0 and 2 the leaps of the form 2i are better, while
for stream 1, with exception of 217 and 265, the streams of the form 2i + 1 are
better. Overall, leaping has a disastrous effect on the integration results which
are severely degraded in almost all cases (only stream 1 - leap 33 and stream 2
- leaps 16,32,64 improve the result of the original sequence). Note that again
the results differ a lot among the different streams, especially for larger leaps.

Fig. 3.4 applies the test scenario to the Niederreiter-Xing sequence. Again,
significantly different behavior with respect to splitting sensitivity may be ob-
served.
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Figure 3.2: Stream behavior for the Sobol’ Sequence, streams zero to two.
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Figure 3.3: Stream behavior for the Halton Sequence, streams zero to two.
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Figure 3.4: Stream behavior for the Niederreiter-Xing Sequence, streams zero
to two.
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An almost opposite behavior to the Halton sequence is found for the Niederreiter-
Xing sequence. All leap forms considered improve the results of the original
sequence and for larger leaps the improvement is seen to a higher extent. There
is no clear relation between leaps of the form 2i and 2i +1 as seen for Sobol’ or
Halton sequences.

For Faure and Zinterhof sequences we restrict our investigations to stream
0. Fig. 3.5 shows that for the Faure sequence result degradation also occurs
but less frequent and on an irregular basis (only leaps 5 and 32 exhibit worse
results as compared to the original sequence); in most cases we note a moderate
improvement. This is somewhat surprising since the Faure sequence is a very
specialized form of Niederreiter-Xing sequences and was expected to behave
similarly. This result suggests that also the Niederreiter-Xing sequences might
exhibit degraded results under leaping for some specifically selected parameters.
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Figure 3.5: Stream zero behavior for the Faure Sequence.

Finally Fig. 3.6 shows the results of leaping applied to the Zinterhof sequence.
Similar to Niederreiter-Xing sequences, we do not find result degradations but
improvements as a result of leaping and there is no systematic and significant
difference among leaps of different form.
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Figure 3.6: Stream zero behavior for the Zinterhof sequence.

We have seen that the different types of QMC sequences react differently
to the use of single substreams. Whereas Niederreiter-Xing and Zinterhof se-
quences turn out to be very stable and give even slightly better results than the
original sequences, Sobol’, Halton, and Faure sequences show degraded integra-
tion results for some settings. Whereas the effects are somewhat structured and
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occur frequently in the case of the Sobol’ sequence, the contrary is true for the
Faure sequence. The Halton sequence is least suited for leaping and delivers
almost consistently significantly worse results as compared to the original. We
have also observed that different initialization (different streams) but equal leap
form also may lead to significantly different behavior.

Furthermore the behavior of the leaped substreams when used for integrating
improper integrals depends also on the position of the singularity. When shifting
the singularity from the origin into the unit interval (e.g. in the following
example a shift of 0.5 – see Fig. 3.1), the results differ significantly to the
original case. Fig. 3.7 shows the results for stream 2 and large leaps of the
Halton sequence (see lower right graph of Fig. 3.3 for the original test function).
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Figure 3.7: Stream two, leaps one and 16–65 of the Halton sequence using the
function f0.5(x).

Whereas 2i leaps improve the Halton sequence results for the original test
function, all forms of leaps degrade the results for the shifted version. A possible
explanation of this effect is that most QMC sequences avoid the origin in an
L-shaped or hyperbolic shaped region [16, 38]. Therefore we are dealing with
the more benevolent case when the singularity is situated in the origin. Thus
in the general case one can expect further deterioration of the stream when the
singularity is moved into the interval.

In the following section, we will investigate the possible impact of the behav-
ior of single substreams on integration results when leaping based QMC point
set distribution is used in GRID environments.

3.2.2 Multiple Substream Results

Now we turn to results concerning integration accuracy when using the whole
point sequence with leaping as opposed to single streams. To start we again
use 11 PEs and consequently a leap factor of 11. Fig. 3.8 displays the results
for the Sobol’ sequence. The client/server integration result in the figure serves
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as the reference value for all subsequent tests as well. For leaping, we use a
standard non-synchronized leaping approach (denoted as “leap” in the plots)
and the labels “one-fast” and “one-slow” denote the leaping scenarios with one
artificially slowed or speed up PE by a factor of 103 (applied to stream 0 in
either case).
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Figure 3.8: Comparison of leaping for the Sobol’ sequence utilizing 12 machines.

We see that slowing down one PE significantly and employing leaping with-
out precautions on systems with moderate heterogeneity does not change the
integration result in this case. However, when speeding up one PE the inte-
gration result is improved. This result corresponds well to the results of single
substream investigations where stream 0 of leap 11 also shows better behavior as
compared to the original sequence (compare Fig. 3.2 top left graph). Note that
speeding up one node by a factor of 103 means that the 10 slower nodes only
contribute 1% of all QMC integration nodes which explains the propagation
of the single substream behavior into the final result. Slowing down one node
by the same amount (which in fact means that one stream is missing almost
entirely) on the other hand obviously does not affect the result at all.

Fig. 3.9 (left plot) shows the results of the same setting applied to the Halton
sequence. We again observe a significant deviation from the client/server result
only in case of speeding up one PE, and the deviation is quite severe. This
behavior relates to the single substream behavior which shows the same for the
single stream 0 (compare Fig. 3.3 top left graph).

Also in the case of the Niederreiter-Xing sequence the single substream be-
havior of stream 0 of leap 11 (see Fig. 3.4 top left graph) is propagated into the
result of the distributed execution with one faster PE (one-fast case) whereas
the two other leaping variants are not affected (Fig. 3.9 (right plot)).

As a consequence of these results, changing the leap factor is expected to
potentially change the overall result significantly. This is confirmed in Fig. 3.10
where we use 8 PEs (resulting in a leap factor 8) and the Sobol’ sequence. Again
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Figure 3.9: Comparison of leaping for the Halton and Niederreiter-Xing se-
quences utilizing 12 machines.

in perfect accordance to the results seen before speeding up stream 0 affects the
integration result, in this case a severe degradation is observed (as it is expected
from a single substream behavior). However, when speeding up stream 0 by a
factor of 2 only (denoted as “leap-one fast-double”) the integration result is
even improved as compared to the client/server reference which does not at
all correspond to the former result. Slowing down one PE by a factor of 103

results in some degradation in this setting which is also true (but with minor
significance) for slowing down by a factor of 2.
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Figure 3.10: Influence of artificial speedup on the results in the case of the
Sobol’ sequence using nine machines.

When we change the number of machines employed to 10 machines (9 PEs,
resulting in leap factor 9), we note in Fig. 3.11 that both types of speeding up
stream zero improve the result. Whereas this is to be expected in principle based
on the single substream results, the amount of improvement when speeding up
by a factor of 103 exceeds the improvement of single substream execution.
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Figure 3.11: Influence of artificial speedup on the results in the case of the
Sobol’ sequence using ten machines.

Finally we investigate the influence of which stream is affected by a slow
down or speed up in distributed execution. Using again 8 PEs but speeding up
stream 8 in this case (as opposed to stream 0 as shown in Fig. 3.10) is shown to
deliver degraded results as well in the case of the Sobol’ sequence (Fig. 3.12),
however, the degradation is much less severe in this case. The Niederreiter-
Xing sequence does exhibit result improvement again. Note also that for the
client/server result the Sobol’ sequence is superior to the Niederreiter-Xing se-
quence.

The results of leaping applied in our experimental setting may be summa-
rized and interpreted as follows:

• Properties of the single substreams are propagated to integration results
using multiple substreams in distributed execution to some extent.

• Systems exhibiting moderate heterogeneity or systems with a single failing
PE are not severely affected by this phenomenon.

• Systems with a large variety in processing speed may produce very un-
reliable and poor results when leaping is applied. In most cases these
effects can be predicted by analyzing single substream behavior, but not
all numerical effects may be explained in this manner sufficiently.

When turning to GRID environments this means that due to the potentially
extreme heterogeneity leaping can not be used without extreme care in such
environments. While leaping turns out to be able to handle single failing PEs
well (the case of “one-slow” in the results), the sensitivity towards different
processing speeds is of course a significant problem when QMC node sets with
low quality leaped substreams are used. In this case only investigation of single
substream behavior and corresponding parameter selection (e.g. choosing leap
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Figure 3.12: Comparison of leaping for the Sobol’ and Niederreiter-Xing se-
quences utilizing nine machines and modifying stream 8.

factors not equal to the number of participating PEs) or synchronization among
PEs helps out. Since both approaches do not really contribute to facilitate the
use of leaping in an efficient and transparent way, other strategies should be
used under such conditions.

3.3 Blocking

The distribution of points via blocking entails a network overhead, this overhead
can be reduced by using bigger blocks. The basic idea is to use blocks so big
that no PE has to request another block. The first test was conducted under
the assumption that only one block is used per PE, this can lead to the case
where gaps, i.e.: the blocks were chosen too big, or overlaps, i.e.: the blocks
were chosen to small, can occur. This is more or less a test of the big block
scheme under set conditions in order to understand the influence of gaps and
overlaps.
Additionally, we try to ascertain the influence of spare streams when using a
leaping point distribution. Spare streams are kept to be able to utilize PEs
which become available during computation.

For each of the point sets the following test where executed:
Gap: For this test big blocks were used which were laid out such that there is
an unused gap between the blocks. The gap is 20% the size of a block.
Overlap: For the overlap test big blocks are used with a size set to generate
less than the overall number of points and no acquisition of new blocks. This
resulted in an overlap where about 30% of one block overlaps the following
block.
Streamsave: For this test small blocks were used with a point size of 75 and
between blocks there is a gap with size 25. This test can also be interpreted
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as using synchronized streams (leaping) where the last 25 of the 100 overall
streams are reserved for nodes which become available during computation. The
synchronization of the streams was used to get a better grasp of the influence
of missing streams, this is somewhat artificial since leaping performs somewhat
erratic in a heterogenous environment as we have seen earlier.
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Figure 3.13: Comparison of the Faure sequence regarding overlap, gaps and
stream save.

Additionally, a baseline run, calculation of exactly N contiguous points,
is given for comparison. The results from the tests are given in Fig. 3.13 to
Fig. 3.17, the range of x axis is the same for all graphics but the range of the
y axis is chosen so as to discern the effects of a single graph instead of keeping
the same range for comparison.

Overall for these test all point sets except Halton behave well, meaning
toward higher N they are smooth and differences between the other cases and
baseline become negligible and the streamsave case does exceptionally well, even
with Halton.

However, apart form the overall poor performance of Halton for gaps and
overlaps another effect can be discerned. All sequences, even the otherwise well
behaved Niederreiter/Xing sequence show some fluctuation of the results. When
comparing this to the baseline run for each sequence we see that Niederreiter/Xing-
, Zinterhof- and Faure sequences behave basically the same as the baseline for
high N while showing a bit of fluctuation for lower values of N . On the other
hand, the Sobol function shows this behavior for all but the highest values of
N where it finally becomes smooth like the baseline.

These erratic behavior can become problematic during actual integration,
since in an application case the fluctuation of the result would be used as a
stop criterion, i.e. if the result stabilizes the calculation is considered finished.
The fluctuation as exhibited by the Sobol sequence can lead to an calculation
of more points than are necessary, and thus more time consumption.

From these results big blocks should only be used when no gaps or overlaps
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Figure 3.14: Comparison of the Halton sequence regarding overlap, gaps and
stream save.
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Figure 3.15: Comparison of the Sobol’ sequence regarding overlap, gaps and
stream save.
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Figure 3.16: Comparison of the Niederreiter/Xing sequence regarding overlap,
gaps and stream save.
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Figure 3.17: Comparison of the Zinterhof sequence regarding overlap, gaps and
stream save.
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occur or when there is a certainty that a high number of points N has to be
used. Also even when there is a certainty for high N a knowledge of the point
set is necessary to prevent usage of point sets which show effects like Halton for
our test function.

We have dealt with big blocks under rather specific conditions, now we will
look at a comparison of big blocks and small blocks. In oder to not simply repeat
the above big block cases we will, as suggested in literature, set the block size
for big blocks to a high number (in this case equal to N). This will result in the
case where each machine uses up about 10% of it’s assigned points. In contrast
to this we will use a block size of 500 for the small block case. While both are
rather extreme they merely serve to get a notion of each end of the spectrum of
possible block sizes. The results are given in Fig. 3.18 through Fig. 3.22, again
the scale of the x axis is kept constant and the y axis is scaled to give a good
view of the results.

The first thing which becomes immediately evident is that parallelization
with small blocks is virtually the same as the baseline run, which is a sequential
execution of the integration, a result in the next chapter will give a mathematical
explanation of this result.

With big blocks two effects are noteworthy. First, different from the above
experiments all point sequences generate better results with big blocks, compare
Fig. 3.14 and Fig. 3.19. This emphasizes the problem that we do not have
knowledge about how the sequences behave under blocking with big blocks,
furthermore, we can not infer from one experiment how a given sequence will
perform for a different experiment. Second, for all results concerning big blocks
the results is dissimilar to the baseline, e.g. sequential run. Thus, we can infer
from a sequential run no more information as from a different execution of the
big block mode.

Adding this to the findings from the previous experiment, blocking with big
blocks should be discouraged if the behavior of the point sequence regarding big
blocks is unknown.
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Figure 3.18: Comparison of the Faure sequence regarding big and small block
sizes.
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Figure 3.19: Comparison of the Halton sequence regarding big and small block
sizes.
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Figure 3.20: Comparison of the Sobol’ sequence regarding big and small block
sizes.
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Figure 3.21: Comparison of the Niederreiter/Xing sequence regarding big and
small block sizes.
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Figure 3.22: Comparison of the Zinterhof sequence regarding big and small
block sizes.
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3.4 Parametrization

For parametrization we need a number of independent point generating se-
quences, one per PE. There is a method to utilize the Zinterhof sequence for
parametrization which we use. While this method is discussed in a bit more de-
tail in the next chapter it is important to anticipate some results here in order
to see if the theoretic results are reflected in the experimental evaluation.

Recall that for the Zinterhof sequence we set θi = e1/i and consequently:

xn = ({ne1/1}, . . . , {ne1/s}) n = 1, 2, 3, . . . . (3.9)

For a parametrization approach however we need P s-dimensional sequences
which are independent. This can be achieved by splitting a Ps-dimensional
Zinterhof sequence into P s-dimensional sequences by splitting the generator ~θ.
Let ~θ = (e1/1, . . . , e1/s, . . . , e1/(P−1)s+1, . . . , e1/Ps) be the generator of the
Ps-dimensional sequence than we can obtain the P s-dimensional generators
~θ1, . . . , ~θP as follows

~θ1 = (e1/1, . . . , e1/s),

...

~θP = (e1/(P−1)s+1, . . . , e1/Ps).

Let f1 = ({nθ1}, . . . , {nθs}), . . ., fP = ({nθP−1s + 1}, . . . , {nθPs}), n =
1, . . . , N and let IP be the P × P unit matrix with entries eii = 1 and ejk = 0
for j 6= k and i, j, k = 1, . . . , P . Let DPs

N denote the discrepancy for the Ps-
dimensional sequence ({nθ1}, . . . , {nθs}, . . . , {nθP−1s + 1}, . . . , {nθPs}), n =
1, . . . , N . Then the covariance and correlation matrix for the sequences f1, . . . , fP
can be given as

cov(f1, . . . , fP ) =
s

12
· IP +O(DPs

N )

cor(f1, . . . , fP ) = IP +O(DPs
N ).

And for almost all Weyl sequences we can write

cov(f1, . . . , fP ) =
s

12
· IP +O(N ǫ−1),

and
cor(f1, . . . , fP ) = IP +O(N ǫ−1), (3.10)

where the estimation holds especially for generators of the type ~θ = (er1 , . . . , erPs)
where ri ∈ Q and rj 6= rk for j ≤ k with i, j, k = 1, . . . , P s.

This gives us an unlimited number of sequences which can be used for
parametrization and a notion of the correlation. What we do not yet have
is a estimation of the error. Since parametrization does not conform to a single
well known point generating sequence we do not have a discrepancy estimate.

There is however a result concerning convergence rate by Ökten, et.al. [37]
as follows.

For P PEs the estimation of the integral is

I ′N (f) =
1

N

N
∑

n=1

f(xn) =

P
∑

i=1

ci
N

1

ci

ci
∑

n=1

f(x(i)n ) =

P
∑

i=1

ci
N
I ′(i)(f),
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where N = c1+ · · ·+cP and the ith sequence contributes the points x
(i)
1 , . . . , x

(i)
ci

to the overall sequence xi, . . . , xN . Now if the sequences are independent I ′N (f)
becomes an unbiased estimator for the integral I(f) with

Var [I ′N (f)− I(f)] = E |I ′N (f)− I(f)|2 =

=

P
∑

i=1

( ci
N

)2

E
∣

∣

∣
I ′(i)(f)− I(f)

∣

∣

∣

2

≤

≤ (V (f))2
P
∑

i=1

( ci
N

)2

(D∗
ci)

2,

which for equal speeds simplifies to

Var [I ′N (f)− I(f)] = (D∗
N/P )

2(V (f))2/P. (3.11)

This gives us enough knowledge about the Zinterhof sequence under parametriza-
tion that we can go over to the experimental evaluation.

Two things are apparently of interest, one this the handling of GRID specific
problems, e.g. failing machines. The other is the effect on the integration if a
higher number of PEs is used. This second problem stems from equation (3.11)
where on the one hand the variance is reduced when the number P of PEs rises,
and on the other hand the discrepancy, upon which the variance also depends,
is increased since the discrepancy is a function of N and an increasing P means
a decreasing number of points per PE. Furthermore, we can see from equation
(3.10) that for an increasing number of PEs the correlation raises, where low
correlation means independent sequences.

To conduct these experiments we use the following functions, all given for
dimension s, unless noted otherwise s = 10:

fc1 : f(~x) =

s
∏

i=1

1

x0.5i

,

fc2 : f(~x) =

s
∏

i=1

ln(
1

xi
)0.5−1,

mult : f(~x) = x1x2 · · ·xs,

gus : f(~x) =

√

45

4s

(

s
∑

i=1

x2i −
s

3

)

,

hus : f(~x) =

s
∏

i=i

(

x3i −
1

4
+ 1

)

.

Note that fc1 is the same function we used with leaping and blocking, it is only
repeated here to give a complete overview.

In Fig. 3.23 and Fig. 3.24 we study the influence of failing nodes under
parametrization. As reference we use the baseline of sequential Zinterhof se-
quence of dimension 10. The parametrization as such has no baseline so it’s
useful to compare it to a similar baseline to estimate the overall performance.
The parametrization plot is the normal uninfluenced parametrization in a het-
erogeneous environment. The case of one-fast means that one PE did nearly
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Figure 3.23: Comparison of function fc1 under parametrization in dimension
s = 10.

all the work, i.e. it was 103 times faster than the other PEs, this can happen
if a lot of PEs fail along the way of if the come available only later during the
calculation. The case one-slow is the other end of the spectrum, here one ma-
chine fails or becomes available only close to the end of the calculation. Overall
we used 12 PEs for both tests with dimension 10, the number of points used is
given at the x-axis and the percentage of the error in relation to the exact value
of the integral is given at the y-axis.

What can clearly be seen is that the parametrization performs comparable
to regular sequential integration, sometimes worse (Fig. 3.24) and sometimes
better (Fig. 3.23), but in any case it generates an error of the same magnitude.
In the plots it can also be seen that the influence of failing nodes, be it one or
many, is negligible. While for a low N it could become problematic, e.g. one-fast
in Fig. 3.23, since the error is unduly high, but as soon as a moderate number
of points is used this behavior vanishes. The same results show for the bounded
functions mult (Fig.3.25), gus (Fig.3.26) and hus (Fig.3.27) for dimensions 10,
15 and 20 respectively. All tests show that the usually problematic case of failing
machines has little influence in the overall result.

However, the convergence rate can be reduced under parametrization, Fig. 3.26
is an extreme example. While it is clear that for higher dimensions the conver-
gence rate is reduced, the difference between the baseline and the parametriza-
tion results in this case is quite huge.

We also want to look at the behavior of the integration when we use more
PEs. For this test we used PEs with equal speeds so that we can concentrate on
the effects of the changing number of PEs rather than the heterogeneity of the
network. Even though we used PEs with similar speed we did not synchronize so
a slight discrepancy of points calculated per PE is given, however the deviation
was small. We kept the number of points N set to 5000000 and 10000000 and
dimension s = 10 for functions fc1 and fc2 (Fig. 3.28) and mult, hus and gus
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Figure 3.24: Comparison of function fc2 under parametrization in dimension
s = 10.
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Figure 3.25: Comparison of function mult under parametrization in dimension
s = 10.
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Figure 3.26: Comparison of function gus under parametrization in dimension
s = 15.
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Figure 3.27: Comparison of function hus under parametrization in dimension
s = 20.
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Figure 3.28: Comparing the integration error of functions fc1 and fc2 when the
number of PEs is increased under parametrization for a fixed N .

-0.004

-0.002

 0

 0.002

 0.004

 20  30  40  50  60  70

er
ro

r

PE

gus
mult
hus

-0.004

-0.002

 0

 0.002

 0.004

 20  30  40  50  60  70

er
ro

r

PE

gus
mult
hus

N = 5000000 N = 10000000

Figure 3.29: Comparing the integration error of functions hus, gus and mult
when the number of PEs is increased under parametrization for a fixed N .

(Fig. 3.29). Please note that in Fig. 3.29 the value of mult is a relative error
rather than an absolute error, it was still included in this figure for reasons of
ordinate scale. The number of machines used was in the range of 12–72, one
machine was used as a root element, so the actual number of PEs went from 11
to 71, which is given on the abscissa. On the ordinate the error is displayed, for
the functions gus and hus this is the absolute error, since the integral of these
functions is 0 and we can not give a relative error. For the functions mult, fc1
and fc2 the errors are given as a percentage of the integral value of the function.

Overall what we see is that the error either stays roughly the same in most
cases. However, in the case of fc1 it even decreases and in the case of mult for
N=10000000 it increases. Furthermore, a higher number of PEs can possibly
degrade the result, and since it can not be predicted for which functions this
will happen this is a severe drawback.

3.5 Conclusion

We have studied leaping, blocking and parametrization in some detail as well as
various point generating sequences, the following list summarizes the findings.
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• Leaping

Leaped substreams of different types of QMC point sets have turned out
to behave quite differently. Whereas Sobol’, Halton, and Faure sequences
exhibit single leaped substreams with extremely low quality, Niederreiter-
Xing and Zinterhof sequences are shown to behave very stable under leap-
ing in our experiments.

On systems with a large amount of heterogeneity in terms of processing
speed, the properties of single substreams may be reflected in the final
result (which is of course a problem in case of substreams with extremely
low quality like Halton, Sobol’, and Faure sequences). This effect does not
occur in systems with moderate heterogeneity and in systems with single
failing PEs.

Consequently, using leaped substreams of QMC sequences on single PEs as
a general strategy in GRID environments can not be recommended. Our
results however indicate that certain types of sequences may be employed
in this scenario without taking specific precautions (Niederreiter-Xing and
Zinterhof sequences) and we have demonstrated that a moderate amount
of heterogeneity does not lead to severe result degradation, even in sce-
narios where low quality substreams are used.

• Blocking

Small block sizes can nearly achieve the same speedup as leaping when
disregarding network load. Big blocks on the other hand have the potential
of the same speedup and low network use as leaping. However, big blocks
can lead to a higher number of processed points when the block size is
not chosen carefully. In fact a good choice of block size for big block is
nearly impossible since the amount of points N used for the integration is
not known a priori, and even if it is known the acquisition of new nodes
during runtime can result in gaps.

Overall the usage of small blocks with a proper method of preventing delay
due to a lack of points while requesting a new block is preferable, unless
the streams for leaping are synchronized or the behavior of the point set
concerning gaps or overlaps is known.

• Parametrization

We discussed the properties of parametrization with regard to the GRID,
and made a point that of all parallelization schemes it can handle the
GRID environment best. Additionally, since the Zinterhof sequence is
computationally efficient (and extraordinarily simple to implement) we
are able to utilize the GRID to it’s maximum extent for a given task with-
out further overhead. We showed, theoretically and experimentally, that
the proposed parametrization scheme for the Zinterhof sequence is sound.
However, the experiments and the error estimation, i.e. a probabilistic
error bound instead of a discrete, show that the convergence rate of the
numerical problem can decrease. Additionally, an increase in the number
of PEs can lead to a increase in the integration error. This is a serious
drawback since computational power in the GRID is primarily derived
from the utilization of a huge number of machines.
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Even though leaping and parametrization have distinct advantages blocking
is overall the best method. And under the assumption of blocking we have seen
that while small block sizes work well for all point sequences this is not the
case with big blocks. Furthermore, several point sequences show defects that
make them inapt for the application in the GRID. From all point sequences only
Niederreiter/Xing and Zinterhof sequences have shown persistent fitness. Only
these two should be used, at least from the sequences which were considered here.
The Niederreiter/Xing showed at times a better behavior regarding fluctuation
of the results, the Zinterhof sequence on the other hand is faster to calculate
and easier to implement, so either is a fair choice.





Chapter 4

Theoretic Results for

Zinterhof Sequences in the

GRID

We have seen that when comparing this sequence to others they have either the
drawback of being computationally expensive (e.g. Niederreiter/Xing sequence)
or have some kind of problematic defect (e.g. Sobol’ sequence). In contrast,
the Zinterhof sequence behaves well and is computationally inexpensive. What
remains is to look at it theoretically instead of experimentally, which we will do
in this chapter.

4.1 Fundamentals

This chapter deals mainly with the Zinterhof sequence which was defined in
Section 3.1.2. In the following a slightly different view on numerical integration
will be presented. We will use a Fourier series expansion because this makes it
easier to compute a comparison. The rational why we only look at a comparison
is to give a difference in error as compared to the original sequence as opposed
to calculating the discrepancy for blocking or leaping, which is rather difficult.

4.1.1 A Different View on Numerical Integration

Consider for dimension s the Fourier series expansion of the function f(~x) to be
numerically integrated

f(~x) =

∞
∑

m1,...,ms=−∞

C(~m)e2πi(m1x1+···+msxs), (4.1)

with the integration error

RN (~θ) =
1

N

N
∑

n=1

f(n~θ)−
∫ 1

0

· · ·
∫ 1

0

f(~x)dx1, . . . , dxs (4.2)

where ~x = (x1, . . . , xs), ~m = (m1, . . . ,ms) and ~θ = (θ1, . . . , θs).
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For absolute convergent Fourier series the error is

RN (~θ) =
∞
∑

m1,...,ms=−∞
~m 6=0

C(~m)
1

N

N
∑

n=1

e2πi(θ1m1+···+θsms)n =
∑

~m 6=~0

C(~m)SN (~θ) .

Thus to determine the quality of the integration method we have to estimate
SN (~θ). Clearly θ1, . . . , θs must be rational independent unless θ1m1 + · · · +
θsms ∈ Z and thus SN (~θ) = 1. Furthermore, by using Weyl’s criterion, we

know that for independent irrational numbers ~θ it holds that

lim
N→∞

SN(~θ) → 0 ∀~m ∈ Zs\{0}.

Since SN (~θ) is a geometric series we can write

SN (~θ) =
1

N
e2πi(m1θ1+···+ms) 1− e2πi(m1θ1+···+ms)N

1− e2πi(m1θ1+···+ms)
.

For the rational independent θ1, . . . , θs with the equality eix = cos(x) +
i sin(x) and the basic approximation | sin(πx)| ≥ 2 ≪ x≫, where ≪ x≫ is the
distance of x to the nearest integer, we can approximate

|SN(~θ)| ≤ 1/N
1

2 ≪ m1θ1 + · · ·+msθs ≫
.

Consider for α > 1 the class Es
α(C) = {f(~x) : |C(~m)| ≤ C

||~m||α } then

|RN (~θ)| ≤ 1/N
∑

~m 6=~0

C

||~m||α
1

2 ≪ m1θ1 + · · ·+msθs ≫

where ||~m|| =∏s
i=1 max(1, |mi|).

Now for θ1 = er1 , . . . , θs = ers , ri 6= rj for i 6= j, ri ∈ Q the subsequent
result follows from an approximation by A. Baker (c.f. [23]):

≪ m1θ1 + . . .+msθs ≫≥ C(~θ)

||~m||ψ(~m)
,

where ψ(~m) weakly converges towards ∞ for ||~m|| → ∞.

Since there is no irrational vector ~θ such that for all ~m≪ m1θ1+· · ·+msθs ≫
≥ C(~θ)

||~m|| holds, we obtain the final error approximation for α > 2 (Zinterhof

provides the same error magnitude even for α > 1 [52])

|RN (~θ)| ≤ 1/N
∑

~m 6=~0

C||~m||
||~m||α

ψ(~m)

2C(~θ)
.

4.2 Leaping

For estimating the integration error resulting from using leaped Zinterhof se-
quences, we replace ~θ in equation (4.2) by Lθ1, . . . , Lθs for leap size L ∈ N.

Then instead of SN (~θ) we have

SN (L~θ) =
1

N

N
∑

n=1

e2πi(Lm1θ1+···+Lmsθs)n.
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By analogy to the general case we can approximate the integration error,
however this approximation is worse since instead of ~m we now have L~m in all
formulas. Thus with ||L~m|| =∏s

i=1 max(1, |Lmi|) ≤ Ls||~m|| and ψ(L~m) instead
of ψ(~m) we get

|RN (L~θ)| ≤ 1/N
∑

~m 6=~0

LsC||~m||
||~m||α

ψ(L~m)

2C(~θ)
.

Considering that ψ(~m) grows only logarithmically for ~θ = (θr11 , . . . , θ
rs
s ) and

likewise for ψ(L~m) the difference of ψ(~m) to ψ(L~m) plays hardly any role.
Thus the error approximation for leaping with leap size L is worse by the factor
Ls than the error approximation for the unleaped sequence. This indicates a
potentially significant deterioration of the results independent of the specific
leap value, as opposed to leaped (t,s)-sequences where only substreams of leap
size 2n have been shown to have poor discrepancy [43].

4.3 Blocking

Again, consider the Fourier series given in Equation (4.1) and the error given
in Equation (4.2) with the same parameters.

Then we have for f ∈ Es
α(C) with α > 3/2 and x1, . . . , xN ∈ Is := [0, 1]s

the approximation ([10, Theorem 1.35])

∣

∣

∣

∣

∣

1

N

N
∑

n=1

f(xn)−
∫

Is

f(~x)dx1, . . . , dxs

∣

∣

∣

∣

∣

≤ C

(

4α− 4

2α− 3

)s/2

FN (xn) (4.3)

where FN (xn) is the diaphony of x1, . . . , xN .

It is known [53] that for the Zinterhof sequence the estimation of the di-
aphony

FN (n~θ) = O(1/N1−ǫ), (4.4)

for ǫ > 0 holds, since ~θ is of the form θ1 = er1 , . . . , θs = ers where the ri ∈
Q ∀i = 1, . . . , s are rationally independent.

The definition of the diaphony FN for a general s-dimensional sequence
~x1, . . . , ~xN is

F 2
N ( ~xn) =

1

N

N
∑

i,j=1

H2(~xi − ~xj), (4.5)

with

H2(~x) =

s
∏

i=1

h2(xi)− 1,

and h2 being the normed Bernoulli polynomial of degree 2,

h2 = 1 + 2π2

(

{x}2 − {x}+ 1

6

)

,

where {x} is the fractional part of x.
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Figure 4.1: Growth of subsequences with small blocks.

The diaphony FN of the sequence x1, . . . , xN is translation invariant, which
follows directly from Equation (4.5) where we get H2((a + ~xi) − (a + ~xj)) =
H2(~xi − ~xj), thus for any a = (a1, . . . , as)

FN (xn) = FN (a+ xn)

holds.
For the Zinterhof sequence we can choose a = xB = (Bθ1, . . . , Bθs) such

that we obtain
FN (xn) = FN (xB + xn) = FN (xB+n)

where n = 1, . . . , N .
Thus when using the error approximation (4.3) we see that we can use an

arbitrary block of length N instead of the first N points without deterioration
of the integration error. Note that this corresponds well to an earlier result
on (t,s)-sequences where it was shown that discrepancy estimates of arbitrary
blocks do not degrade as compared to estimates of entire (t,s)-sequences [43].

Now, similar to [37], let us consider the general case of blocking with block
size b where new blocks are handed out as requested (“small blocks”). The
classical blocking scheme, which we call “big blocks”, is essentially a subset of
this general case. When using p PEs we have always p continuous subsets, each
subset of points ends where a block is still unfinished. So we have p sequences
each generating an approximation of the integral I

I ′i =
1

ci

∑

λ(ci)

f(xi)

where i = 1, . . . , p, ci is the number of vectors in sequence i and λ(c1) is the set
of indices of vectors of the original Zinterhof sequence which generates sequence
i and the numbering be such that cp ≤ cp−1 ≤ · · · ≤ c1 holds. Figure 4.1
illustrates this for three PEs, when an PE finishes with block 3 the former c1
and c2 collapse to form the new c1. Also when one block is finished another
block is assigned and an PE starts to work on it, this forms a new sequence c3.

Now with N the total number of points, we get

I ′N =
1

N

∑

λ(N)

f(xi) =

p
∑

i=1

ci
N

1

ci

∑

λ(ci)

f(xi) =

p
∑

i=1

ci
N
I ′i,
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which gives us the overall estimate from the estimates of the individual se-
quences.

We can consider the error

EN (f) = |I ′N − I(f)| ≤
p
∑

i=1

ci
N

|I ′i − I(f)| ≤
p
∑

i=1

ci
N
D∗

ciV (f).

When looking at blocking with a small block size, i.e. not the big block sce-
nario, it is clear that the first sequence grows continuously as more intermediate
blocks are finished and likewise new sequences are introduced at the end with a
very small cp. From the above error estimate we see that the weighted average
of the discrepancies is used, but since c1 continually grows for N → ∞ we get
ci/c1 → 0 for 1 < i ≤ p. Since cp ≤ ci ≤ c2 for i = 3, . . . , p− 1, we get

EN (f) ≤ V (f)(
c1
N
D∗

c1 +
(p− 1)c2

N
D∗

cp).

For very big N the error estimation thus becomes approximately

EN (f) ≤ V (f)D∗
c1

where c1 ≈ N .
Clearly, the smaller the blocks are, the faster they become insignificant and

the faster the first sequence grows. For big blocks we have a problem since unlike
blocking with small blocks no sequence becomes insignificant and for the error
we can only get the general error estimate. Given a homogenous environment
where c1 = · · · = cp we get only

EN (f) ≤ V (f)D∗
N/p

which shows no advantage over using a single machine.

4.4 Parameterization

We already know the definition of the Zinterhof sequence, for a parameterization
approach however we need P s-dimensional sequences which are independent.
This can be achieved by splitting a Ps-dimensional Zinterhof sequence into P
s-dimensional sequences by splitting the generator ~θ. Let ~θ = (e1/1, . . . , e1/s,
. . . , e1/(P−1)s+1, . . . , e1/Ps) be the generator of the Ps-dimensional sequence

than we can obtain the P s-dimensional generators ~θ1, . . . , ~θP as follows

~θ1 = (e1/1, . . . , e1/s),

...

~θP = (e1/(P−1)s+1, . . . , e1/Ps).

What we now need is assurance that the ~θ1, . . . , ~θP are independent and that
the independence is enough to grant a higher convergence rate that just using
a single s-dimensional sequence.
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Concerning the convergence rate, Ökten, et.al. [37] has given the following.
For P PEs the estimation of the integral is

I ′N (f) =
1

N

N
∑

n=1

f(xn) =

P
∑

i=1

ci
N

1

ci

ci
∑

n=1

f(x(i)n ) =

P
∑

i=1

ci
N
I ′(i)(f),

where N = c1+ · · ·+cP and the ith sequence contributes the points x
(i)
1 , . . . , x

(i)
ci

to the overall sequence xi, . . . , xN . Now if the sequences are independent I ′N (f)
becomes an unbiased estimator for the integral I(f) with

Var [I ′N (f)− I(f)] = E |I ′N (f)− I(f)|2 =

=

P
∑

i=1

( ci
N

)2

E
∣

∣

∣
I ′(i)(f)− I(f)

∣

∣

∣

2

≤

≤ (V (f))2
P
∑

i=1

( ci
N

)2

(D∗
ci)

2,

which for equal speeds simplifies to

Var [I ′N (f)− I(f)] = (D∗
N/P )

2(V (f))2/P.

The only thing left to do is to assure the independence of this parameteri-
zation approach.

It is well known [53] that the Weyl sequence

n(θ1, . . . , θs, θs+1, . . . , θ2s, . . . , θ(P−1)s+1, . . . , θPs)

fulfills the sequential test DN = O(1/N1−ǫ) and a diaphony test of FN =

O(1/N1−ǫ) for almost all choices ~θ = (θ1, . . . , θPs) and especially for ~θ with θi
of the form θi = eri where ri ∈ Q,ri 6= rj 6= 0,1 ≤ i, j ≤ Ps.

Independence of events is usually defined as follows: Let (Ω, α, P ) be a
probability space over the set Ω with the σ-algebra α of events with probability
P . The events E,F ∈ α are independent if

P (E ∩ F ) = P (E) · P (F ).

Now let E ⊑ [0, 1)2s,F ⊑ [0, 1)2s such that

E = {(x1, . . . , x2s)|αi ≤ xi < βi, i = 1, . . . , s, 0 ≤ xj < 1, j = s+ 1, . . . , 2s},

F = {(x1, . . . , x2s)|0 ≤ xi < 1, i = 1, . . . , s, αj ≤ xj < βj , j = s+ 1, . . . , 2s}

and

E∩F = {(x1, . . . , x2s)|αi ≤ xi < βi, i = 1, . . . , s, αj ≤ xj < βj , j = s+1, . . . , 2s}.

Thus, for the Lebesgue measure P = λ being the natural probability on
I2s := [0, 1)2s,

P (E ∩ F ) = P (E) · P (F )
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holds. So the events E and F are independent in the sense of the Lebesgue mea-
sure. On the other hand holds for almost all Weyl sequences n~θ and especially
for those Weyl sequences with non zero different rational logarithms

DN = sup
J

∣

∣

∣

∣

AN (J)

N
− λ(I)

∣

∣

∣

∣

= O(1/N1−ǫ).

So we get

P (E) =
AN (E)

N
+O(N ǫ−1),

P (F ) =
AN (F )

N
+O(N ǫ−1)

and

P (E ∩ F ) = AN (E ∩ F )
N

+O(N ǫ−1),

with generally different O-constants and ǫ > 0.
Consequently, we get

AN (E)

N
· AN (F )

N
=
AN (E ∩ F )

N
+O(N ǫ−1),

which means that the arbitrary intervals E,F ∈ Is are independent up to an
error O(N ǫ−1) with relative frequencies AN (.)/N .

It is well known that the independence properties of events are hard to
prove, thus we will turn to another measure of independence, covariance and
correlation. The covariance and correlation for two (pseudo-) random variables
x, y are given as follows

cov(x, y) = E(X − E(x)) · (Y − E(y))

and
cor(x, y) =

cov x, y

(cov x, x · cov y, y)1/2 .

Now for two (pseudo-) random sequences (xn)n≥1, (yn)n≥1, xn, yn ∈ Is we
consider the empirical correlation and covariance as

cov((xn)
N
n=1, (yn)

N
n=1) :=

1

N

N
∑

i=1

xi · yi −
(

1

N

N
∑

i=1

xi

)

·
(

1

N

N
∑

i=1

yi

)

,

cor((xn)
N
n=1, (yn)

N
n=1) :=

cov((xn)
N
n=1, (yn)

N
n=1)

[cov((xn)Nn=1, (xn)
N
n=1) · cov((yn)Nn=1, (yn)

N
n=1)]

1/2
,

where xn ·yn, denotes in a natural way the scalar product of the vectors xn and
yn.

We considered only the pairwise independence of events E, F and of two
Weyl sequences respectively. We give now some theoretical results concerning
the covariance and correlation coefficient (and the correlation matrix respec-
tively) of multidimensional sequences of nodes.

Let us start with a 2s-dimensional sequence xk := (xk1 , . . . , x
k
s , x

k
x+1, . . . , x

k
2s),

k = 1, . . . , N . We split this 2s-dimensional sequence into two s-dimensional
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sequences x′k := (xk1 , . . . , x
k
s ) and x′′k := (xkx+1, . . . , x

k
2s), k = 1, . . . , N . We are

interested in the covariance and correlation behavior of these sequences. The
mathematical expectation of a function f(x) 7→ y, I2s → R,C is

E(f) =

∫

I2s

f(x)dx =

∫ 1

0

· · ·
∫ 1

0

f(x1, . . . , x2s)dx1 . . . dx2s.

If f, g are independent functions then E(f ·g) = E(f)·E(g) holds and clearly
cov(f, g) = E(f · g)− (E(f) ·E(g)) = 0.

Let

σ2(f) = E(|f |2)− |E(f)|2,

σ2(g) = E(|g|2)− |E(g)|2,
then for σ2(f) 6= σ2(g) 6= 0 the correlation coefficient of f and g can be given
as

cor(f, g) =
cov(f, g)

σ(f) · σ(g) .

Given a finite collection of functions f1, . . . , fP , the (hermitian) covariance
and correlation matrices are defined by the entries cij = cov(fi, fj) and rij =
cor(fi, fj) respectively.

Now we consider the random vector (x1, . . . , xs, xs+1, . . . , x2s) and split it
up into x′ = (x1, . . . , xs) and x′′ = (xs+1, . . . , x2s). So we get the important
special case

covx′, x′′ = E(x1xs+1 + · · ·xsx2s)− E(x′) · E(x′′).

We can easily calculate these values as

E(x1xs+1 + · · ·xsx2s) =
∫ 1

0

· · ·
∫ 1

0

(x1xs+1 + · · ·xsx2s)dx1 . . . x2s =
s

4
,

E(x1, . . . , xs) = E(xs+1, . . . , x2s) = (
1

2
, . . . ,

1

2
)

and consequently

cov(x′, x′′) =
s

4
− (

1

2
, . . . ,

1

2
) · (1

2
, . . . ,

1

2
) = 0.

For the variances σ2(x′) and σ2(x′′) we get

σ2(x′) = E(x21 + · · ·+ x2s)− E(x1, . . . , xs)
2 =

s

3
− s

4
=

s

12
,

and likewise σ2(x′′) = s/12. So the random points x′ and x′′ are non constant
uncorrelated random variables because

cor(x′, x′′) =
cov(x′, x′′)

σ(x′) · σ(x′′) = 0.

We consider now the covariance and the correlation of sequences (xk1 , . . .
, xks , x

k
s+1, . . . , x

k
2s), k = 1, . . . , N where x′ = (xk1 , . . . , x

k
s ) ∈ Is and x′′ =
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(xks+1, . . . , x
k
2s) ∈ Is. When we replace the expectation E by the mean of the N

values we get

cov(x′, x′′) =
1

N

N
∑

k=1

(xk1x
k
x+1 + · · ·+ xksx

k
2s)−

−
(

1

N

N
∑

k=1

(xk1 , . . . , x
k
s )

)

·
(

1

N

N
∑

k=1

(xks+1, . . . , x
k
2s)

)

.

We continue by applying number theoretical methods to this problem. It is
clear that the covariance contains sums of the types

1

N

N
∑

k=1

xki x
k
s+i

and

1

N

N
∑

k=1

xki .

The variation in the sense of Hardy and Krause of the functions xy and x itself
is easily computed as V2(x · y) = 1, V1(x) = 1. The expectations E(xy) and
E(x) are easily computed as

E(xy) =

∫ 1

0

∫ 1

0

xy dxdy =
1

4

and

E(x) =
1

2
.

By the Koksma-Hlawka inequality we get

1

N

N
∑

k=1

xki x
k
s+i =

1

4
+RN (i, 2), i = 1, . . . , s

and

1

N

N
∑

k=1

xki =
1

4
+RN (i, 1), i = 1, . . . , s

where for the errors RN (i, 1) and RN (i, 2) the approximation

|RN (i, 1)| = O(DN )

and

|RN (i, 2)| = O(DN )

holds.
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Consequently, for the covariance we get

cov(x′, x′′) =
s

4
+

s
∑

i=1

RN (i, 2)−
[(

1

2
, . . .

1

2

)

+ (RN (1, 1), . . . , RN(s, 1))

]

·

·
[(

1

2
, . . .

1

2

)

+ (RN (s+ 1, 1), . . . , RN (2s, 1))

]

=

=
s

4
+

s
∑

i=1

RN (i, 2)− s

4
+

1

2

(

s
∑

i=1

(RN (i, 1) +RN (s+ i, 1))

)

+

+

s
∑

i=1

RN (i, 1) ·RN (s+ i, 1).

And finally we get the estimation

| cov(x′, x′′)| = O(DN +D2
N ),

where the O-constant is depending only on the dimension s of the sequences
x′, x′′, k = 1, . . . , N . So in essence the covariance of the two sequences only de-
pends on the distribution of the sequences and on the dimension. Consequently,
the better distributed the 2s-dimensional sequence is the less correlated the two
resulting s-dimensional sequences will be.

Since we have now an estimation of the covariance we can proceed to the
correlation

cor(x′, x′′) =
cov(x′, x′′)

σ(x′) · σ(x′′) ,

it remains only to compute the variances σ.
We will only look at σ2(x′), since the same results will hold for σ2(x′′),

σ2(x′) =
1

N

N
∑

k=1

((xk1)
2 + · · ·+ (xks )

2)−
(

1

N

N
∑

k=1

(xki , . . . , x
k
s )

)2

.

Because of E(x2) = 1/3 and E(x) = 1/2 we get

1

N

N
∑

k=1

(xki )
2 =

1

3
+ S(i), i = 1, . . . , s

and
1

N

N
∑

k=1

xki =
1

2
+ T (i), i = 1, . . . , s.

The Koksma-Hlawka inequality leads to an estimation of the remainder
terms |S(i)| ≤ O(DN ) and |T (i)| ≤ O(DN ) and thus to the result

σ2(x′) =
s

12

s
∑

i=1

(S(i)− T (i)− T (i)2) =
s

12
+ O(DN ),

where for both σ2(x′) and σ2(x′′) the O-constant only depends on the dimension
s. Combining these results we get

cor(x′, x′′) = O(DN ),
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where the O-constant depends only on the dimension s.
Skipping the other calculations for pairwise comparisons for P > 2 (since

they consist only of an almost word for word repetition of the previous argu-
ments) we can state the following.

Let f1 = ({nθ1}, . . . , {nθs}), . . ., fP = ({nθ(P−1)s+1}, . . . , {nθPs}), n =
1, . . . , N and let IP be the P × P unit matrix with entries eii = 1 and ejk = 0
for j 6= k and i, j, k = 1, . . . , P . Let DPs

N denote the discrepancy for the Ps-
dimensional sequence ({nθ1}, . . . , {nθs}, . . . , {nθ(P−1)s+1}, . . . , {nθPs}), n = 1, . . . , N .
Then the covariance and correlation matrix for the sequences f1, . . . , fP can be
given as

cov(f1, . . . , fP ) =
s

12
· IP +O(DPs

N )

cor(f1, . . . , fP ) = IP +O(DPs
N ).

And for almost all Weyl sequences we can write

cov(f1, . . . , fP ) =
s

12
· IP +O(N ǫ−1),

and
cor(f1, . . . , fP ) = IP +O(N ǫ−1),

where the estimation holds especially for generators of the type ~θ = (er1 , . . . , erPs)
where ri ∈ Q and rj 6= rk for j ≤ k with i, j, k = 1, . . . , P s.

We can clearly see that the Zinterhof sequences fulfill the later requirements
and thus the estimation holds.

4.5 Conclusion

Overall, we have shown that Zinterhof sequences are well suited for numerical
integration in GRID environments. Whereas the error estimation for leaped
substreams suggests worse integration errors as compared to sequential usage,
experimental results do not indicate this.

For the case of using contiguous blocks for integration the theoretical pre-
diction suggesting behavior equal to the sequential case is supported by exper-
imental results. Also note that the results concerning blocking was not specific
for the Zinterhof sequence, a behavior close to the original sequence can be ex-
pected of all sequences when blocking with small block sizes is used, under the
assumption that we can compute the discrepancy of an arbitrary block.

While the suggested parametrization scheme works in principle, we have
already seen that in application it seems to do not as well as blocking and
leaping, especially when it comes to utilizing a high number of PEs.

In summary we have shown that the Zinterhof sequence can be used for
parameterization but care has to be taken. For blocking with small block sizes
all sequences, in the above sense, can be used and results which parallel a
sequential execution can be expected. For leaping we have shown a difference in
the error which is not reflected in the experiments. While experiments can only
be used to ascertain that an error is indeed minimal but never (except when all
possibilities are taken into account) that the given error rate is to high, it is a
strong suggestion that we have not obtained the minimal error.
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