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Quasi-Monte Carlo Integration on GRIDS: Using
Blocked Substreams

Heinz Hofbauer∗ and Andreas Uhl† and Peter Zinterhof‡

Abstract. The splitting of Quasi-Monte Carlo (QMC) point sequences into blocks or interleaved
substreams has been suggested to raise the speed of distributed numerical integration and to lower
to traffic on the network. The usefulness of this approach in GRID environments is discussed. After
specifying requirements for using QMC techniques in GRID environments in general we review and
evaluate the proposals made in literature so far. In numerical integration experiments we investigate
the ability of blocking, and to a lower extend leaping, to deal with the special requirements in the
GRID, with regard to the Sobol’, Halton, Faure, Niederreiter-Xing, and Zinterhof sequences.

1. Introduction

High dimensional numerical integration problems may require a significant amount of computations.
Therefore, substantial effort has been invested in finding techniques for performing these computa-
tions on all kinds of parallel architectures (see [4, 11, 12, 24] for an exhaustive overview). In order
to minimize the communication amount within a parallel system, each processing element (PE) re-
quires its own source of integration nodes. Therefore, the aim is to investigate techniques for using
separately initialized and disjoint sets of integration nodes on a single PE.

Currently, the most efficient numerical techniques for evaluating high-dimensional integrals are based
on Monte Carlo and quasi-Monte Carlo techniques [7]. Whereas in the Monte Carlo (MC) case the
integration nodes are produced by a random number generator (RNG), low-discrepancy point sets
and sequences (e.g. (t,m,s)-nets or (t,s)-sequences [18]) are employed in quasi-Monte Carlo (QMC)
algorithms. QMC techniques improve the probabilistic error bounds of MC techniques especially in
higher dimensions. Nevertheless, these techniques are related [5] since a full period random number
sequence may be seen as a low-discrepancy point set (e.g. a rank-1 lattice rule in the case of a linear
congruential generator) as well.

GRID environments exhibit challenging properties for numerical integration techniques. This type
of computing facility potentially shows extreme heterogeneity in terms of PE speed and network
connections, moreover the available computing resources may change in time even during ongoing
computations (e.g. new machines may become available or others may get lost due to network prob-
lems or maintainance shutdowns, other users may start computations on the same hardware, etc.).
Li et al. [14] discuss the use of a GRID service called Integration Service for solving multivariate
integration problems, the PARINT package [4] is used as integration engine.
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Therefore, it is not only difficult but impossible to predict the amount of integration nodes required
on a single PE under such conditions. Additionally, in practice it is usually not possible to deter-
mine a priori the number of integration nodes N necessary to meet a given error requirement. As a
consequence, it is of great importance that N may be increased without losing previously calculated
function values. It is clear that techniques for providing integration nodes on the single PEs need to
be very flexible under these circumstances.

One possibility is to generate separately initialized and disjoint substreams of a given (sequential)
sequence of integration nodes. Among other suggestions made in literature in this context, we have
investigated leaped substream parallelization techniques for (t,s)-sequences in previous work [21, 22,
6] and have discovered several shortcomings and problems when applied in parallel and distributed
QMC integration. In [10] we further investigated the shortcomings of leaped substreams with special
regard to an application in the GRID.

In this work, we extend the focus of our work on parallelization of improper integration in the GRID
by the following points:

• So far, only the quality of using leaping in heterogenous environments (even though extreme
cases) has been investigated. Here we additionally treat how well splitting methods are able to
cope with the special properties of the GRID.

• So far, only leaping has been examined closer. Here we also take into account blocking.

In Section 2 we discuss strategies for using QMC techniques in GRID environments. Section 3
shortly reviews the QMC computation of improper integrals (which is being used as application case).
Section 4 is the main part of this work where we report and discuss experimental integration results
using various QMC node sets. Section 5 concludes this work and provides outlook to future work in
this direction.

2. QMC Techniques in GRID Environments

GRID environments exhibit a potentially high heterogeneity in terms of network capacity (i.e. band-
width and latency) and computing speed (memory capacity, cache sizes, processor speed). In addition
to that, these environments are error prone with respect to broken network links or failing PEs. More-
over, additional resources may become available during an ongoing simulation which should be used
to optimize resource consumption. As a consequence, the following requirements should be met by a
QMC technique employed in a GRID environment:

• Variety in computing speed requires dynamic load balancing capability.

• Variety in network capacity requires load balancing strategies without central organization and
a minimal number of control messages exchanged among the computing nodes.

• Failure in hardware resources requires tolerance to lost partial results.

• Additional resources becoming available require a possibility to assign workload to these re-
sources (i.e. by redistributing or redefining workload).
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In addition to that, error bounds and computation results should preferably carry over from sequential
execution. If the the QMC point sets differ between sequential and parallel execution, the quality of
the results needs to be investigated thoroughly. Reproducibility is as well an important issue to be
considered.

So far, two entirely different strategies have been discussed in literature to employ QMC sequences
in parallel and distributed environments.

1. Splitting a given QMC sequence into separately initialized and disjoint parts which are then
used independently on the PEs. This strategy comes in two flavors:

• Blocking: p disjoint contiguous blocks of maximal length l of the original sequence are
used on the PEs. This is achieved by simply using a different starting point on each PE
(e.g., PEi, i= 0, . . . , p−1, generates the vectors xil,xil+1,xil+2, . . . ,xil+l−1). In case a large
number of smaller blocks is used index j is assigned dynamically to PEi which generates
the vectors x j,x j+1, . . . ,x j+l−1 (where j is incremented in steps of size l to avoid overlap).

• Leaping: interleaved streams of the original sequence are used on the PEs. Each PE
skips those points consumed by other PEs (leap-frogging) (e. g. employing p PEs, PEi,
i = 0, . . . , p−1, generates the vectors xi,xi+p,xi+2p, . . .).

2. Using inherently independent sequences on the different PEs (denoted as “parametrization”
which can be realized for example by randomization of given QMC sequences). Parametriza-
tion will not be discussed due to the limited scope of the paper.

Blocking has been suggested to be used in many application focused papers. Mascagni and Karaivanova
[16] propose to use disjoint contiguous blocks from Halton, Faure, and Sobol’ sequences in the con-
text of solving sparse systems of linear algebraic equations. Numerical experiments are carried out
on a homogeneous cluster using static load distribution. In a second paper [15] the same authors use
the suggested techniques for computing extremal eigenvalues, again a QMC sequence is “neatly bro-
ken into same-sized subsequences” by blocking. The authors point out that this simple strategy can
not be employed in general for all types of simulation settings. Alexandrov et al. [1] use scrambled
Sobol’ and Halton sequences to solve certain linear algebra systems. They discuss static and dynamic
load balancing and point out the importance of efficient dynamic load balancing in GRID environ-
ments. Load balancing is done by dynamically distributing chunks (i.e. blocks) of relatively small
size to avoid unevenly sized chunks and techniques for efficiently generating non-adjacent chunks an
a single PE are discussed. Tests are carried out on homogeneous and heterogeneous systems, in the
latter case MPICH over Globus-2 GRID software is used. Wan et al. [28] present a parallel strategy
for pricing multidimensional american options. In a first stage, the QMC sequence is generated by
independently computing equally sized blocks on the PEs using static load distribution. For the sec-
ond stage, the stochastic mesh method which involves a backward recursion, two strategies for data
distribution are compared which both correspond to distributing the original sequence in blocks of dif-
ferent size in different manner across the PEs. Test are conducted on a SGI Onyx machine. Schürer
[23] employs equally sized blocks of (t,m,s)-nets on the PEs when comparing QMC integration tech-
niques to adaptive cubature rules. A SGI Power Challenge is used as a test platform. In previous work
[21] we have conducted experiments with blocking Niederreiter (t,s)-sequences where large disjoint
blocks are used on the PEs. Good reliability of the results has been observed in homogeneous and
(simulations of) heterogeneous environments (tests conducted on a SGI Power Challenge). We have
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also provided theoretical evidence for this good behavior by showing that discrepancy estimates of
arbitrary blocks do not degrade as compared to estimates of entire (t,s)-sequences [22].

Leaping has been discussed much more controversial in literature. Bromley [2] describes a leapfrog
parallelization technique to break up the Sobol’ sequence into interleaved substreams in an efficient
manner. We have generalized this idea to all types of binary digital (t,s)-sequences [22] in earlier
work. Based on these techniques, Li and Mullen [13] use a leap frog scheme for (t,m,s)-nets to
solve financial derivative problems. However, severe problems occur with leapfrog parallelization
especially in case of processor speed heterogeneity which results in QMC point sets which do not
correspond to sequential computation. First results showed that single (t,s)-sequence substreams with
leaps of the form 2n lead to extremely poor numerical integration results whereas this is not the case
for leaps of the form 2n+1 [21]. Using leaped substream parallelization in a heterogeneous processor
speed environment therefore may lead to severely degraded results as compared to sequential execu-
tion when this form of leaping is employed. Different PEs consume a different amount of integration
nodes and so the poor results of using single substreams are propagated to the parallel results if no
synchronization among PEs is performed [6, 21, 22]. We have also provided theoretical evidence for
the observed effects by showing the discrepancy estimated of leaped substreams to be significantly
larger as compared to the original sequences [22]. It has also turned out that not only 2n type sub-
streams are affected by poor quality but these effects occur for many forms of leaps and are highly
unpredictable [6, 22].

Based on the requirements for a QMC technique to be useful in GRID environments stated before we
try to assess the respective suitedness of the two splitting QMC techniques proposed in literature.

Blocking: Two flavors of blocking are discussed. In the first variant, the QMC sequence is parti-
tioned into small blocks which are dynamically distributed among the PEs. Whereas this technique
uses QMC node sets almost identical to sequential execution and can handle all types of changing
resource scenarios and heterogeneity quite well, it requires the frequent exchange of control mes-
sages and is therefore not suited for GRID environments. The validity of this assessment of course
depends on the relation between block size and the communication possibilities in the actual GRID
environment. In the second blocking variant, one large block is assigned to each PE at the start of
the computation. Since the number of QMC points required on each PE is not known a priori the
block size needs to be chosen large enough to avoid a PE to exceed the number of available points in
its block (exceeding the number would then result in overlap of the blocks which of course degrades
the final result). On the other hand, if the blocks have been selected much too large, a significant
amount of points may not be consumed on slow PEs and the overall point set used exhibits large
“gaps” as compared to the sequential case which potentially threatens result accuracy (although the
results available so far concerning this effect do not seem to be very severe). Choosing the block size
appropriately is therefore a critical issue in this approach.

In addition to that, the possibility of failing nodes or nodes which become available during computa-
tion has to be considered. With both big and small block sizes it is possible to assign blocks to nodes
which become available, in the case of big blocks the new machines get a single big block following
the last block assigned. In the case of small blocks the request for a block is treated like every other
request and the next block is given out to whichever node requests it. When a machine fails, the block
it currently processed will be unfinished leaving a gap in the otherwise continuous point sequence.
With small block sizes this is not a problem since the block can be flagged unfinished and assigned
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in the usual fashion. With big blocks the matter becomes rather more difficult, since the big block
approach is chosen specifically in such a fashion that no reassigning of blocks happens. Thus if a
node fails the block is essentially a gap in the point sequence which can’t be reassigned. Even if
a new node would become available assigning the unused block can be a risky. The block can be
assigned without problem if there are no partial results since the whole block would become available
to the new node, which is of the same size as if a new block would be assigned. However, if there
are partial results and we don’t want to loose these partial results, which would be the same as if no
results are present, it would be possible to use the remaining part of the block. While this seems a
valid approach at first it should be considered that the computation nodes in the GRID do not all have
the same speed, thus the new node could end up needing a whole block and only receiving a partial
block. This would result in an overlapping of blocks which could adversely affect the result.

While using big blocks is clearly more efficient than using small blocks, in terms of network usage
and delay of calculation, the drawbacks, gaps and overlaps, can negatively affect the integration.
When using small blocks, the network efficiency of using big blocks or leaping can’t be achieved.
However, the delay of calculation can be eliminated, or at least reduced by a great amount, by carefully
scheduling the assignment of new blocks. There are two possible ways to deal with this, one is to
assign two block to each node, when a block is finished a new block is requested and the other
assigned block is worked on. This approach would result in block sized gaps towards the end of the
calculation, when each spare block is not processed when the overall calculation stops. The second
approach is to prerequest a block before the current block is finished, this assumes each node keeps
track of it’s speed of computation and the round trip time (rtt) to the root node. Then when it sets
out the request for a new block when the rtt equals the time it needs to process the remaining points
in it’s current block. This would result in the timely arrival of a new block when the current block
is done. While this will likely be off at the beginning of the overall process which results in a block
being assigned to early, and could lead to the same problem as with two blocks being assigned, this
does not pose a problem for a careful chosen size of blocks. When the block size is small enough so
that several blocks will be processed by each node before the overall calculation is finished the nodes
have enough time to adapt the estimated rtt and speed of calculation to prefetch new blocks just in
time, which alleviates the above mentioned problem. However while these methods have nearly the
same speedup as leaping the load on the network will be higher, and this can’t be reduced by a great
amount since the nodes need a number of previous results for rtt to correctly estimate it.

This will be discussed in more details in the context of the results in Section 4.

Leaping: Contrasting to the blocking case, there is no need to specify a number of points required
on each PE since each substream may deliver an infinite number of points in principle. Therefore,
there is no danger of running short of points. Also, substream overlap can not occur. In the case of
homogeneous environments where care is taken that each PE consumes an equal share of QMC points,
a result identical to sequential execution is easily obtained. Note that this is not the case for blocking
due to the problems with choosing a good block size (except in case the number of points required
is known in advance – which is rarely the case). The situation changes drastically in heterogeneous
environments: in case of different PEs consuming a different amount of QMC points it has been shown
that depending on the type of load imbalance more or less severe degradations in result accuracy are
observed. The same considerations (with even more pronounced effects) of course apply as well if a
PE fails. Also the failing of a PE can’t be alleviated since the stream can’t be redistributed to other
nodes, the only possibility would be to assign the stream, from where it broke off, to a node which
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becomes available at a later time. However, even when a node becomes available and the stream is
continued the stream would be short by an amount of points equivalent to the time it was unused,
leading to imbalance between the streams. When additional resources become available the classical
leaping scenario can not handle this situation properly – usually a QMC node set is partitioned into J
interleaved substreams if J PEs are available. The is no additional substream available in this scenario.
A way to handle this situation is to partition a given QMC point set into I > J substreams in case of
J PEs are available. The I −J substreams are not used by default but kept as additional work share in
case additional PEs become available. However, neither empirical nor theoretical results are available
so far to assess the quality of corresponding results. The use of leaping in GRID environments may be
therefore accompanied with problematic side effects which endanger a flexible and transparent use.
This will be discussed in more details in the context of the results in Section 4. In addition to that, the
most important advantage of leaped substream parallelization as compared to blocking (i.e. in case of
synchronized execution the used point set correspond to the sequential case) does not apply in GRID
environments due to the heterogeneity.

3. QMC Computation of Improper Integrals

The basic concept of any method for numerical integration is to approximate the integral by a finite
sum, such that

I( f ) :=
∫

Is
f (x)dx ≈ 1

N

N

∑
n=1

f (xn) =: I′
N( f ) (1)

where xn are suitably chosen and Is is the unit interval. To identify suitable, i.e. uniformly distributed,
point sets xn the star discrepancy is defined as

D∗
N := D∗

N(x1, . . . ,xn) = sup
J∈F

∥∥∥∥
#{x|x ∈ J}

N
−m(J)

∥∥∥∥ (2)

where F is the family of all subintervals of the form J = ∏s
i=1[0, ti) ∈ Is with volume m(J). The

approximation error

EN( f ) := |I′
N( f )− I( f )| (3)

depends on D∗
N and the variation V ( f ) of the function f in the following way (Koksma-Hlawka

inequality [18]):

EN( f ) ≤ V ( f )D∗
N (4)

Consequently, point sets exhibiting low discrepancy values are attractive candidates to be used in
numerical integration. Using low discrepancy sequences as point set xn is denoted QMC approach.

QMC techniques have been considered to evaluate improper integrals in the last years only – for
numerical integration of such types of integrands we use a generic method introduced recently by
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Zinterhof [31] (which can employ any type of integration nodes in principle but delivers decent error
bounds for low-discrepancy integration node sets). Zinterhof specifies for a function f (x) and a B > 0
the functions fB(x) and f̂B(x) as

fB(x) =

{
f (x) | f (x)| ≤ B
0 | f (x)| > B

(5)

f̂B(x) =

{
0 | f (x)| ≤ B
f (x) | f (x)| > B.

(6)

The Class C(β,γ) of s-variate functions f (x1, . . . ,xs), 0 ≤ xi ≤ 1, i = 1, . . . ,s, consists of all functions
which fulfill

a) I(| f̂B|) = O(B−β) for some β > 0 (7)
b) V ( fB) = O(Bγ) for some γ ≥ 1. (8)

It is shown that if f (x) ∈ C(β,γ), x = (x1, . . . ,xs), and if the discrepancy of the set of nodes is D∗
N ,

then for B = D∗
N

−1/(β+γ) the estimate

I( f ) =
1
N

N

∑
n=1

fB(xn)+O(D∗
N

β/(β+γ)) (9)

holds, where I( f ) = I( fB)+ I( f̂B). Finally Zinterhof shows that when the truncation parameter B
takes on the form

B = D∗
N

−1/(β+γ) (10)

the integration error attains its minimum of

EN ≤ K( f )D∗
N

β/(β+γ) (11)

where K( f ) is a constant depending on f . Consequently, the numerical strategy is to compute
1
N ∑N

n=1 fB(xn) upon selection of a suitable B.

4. Experiments: Parallelization Effects on Integration

4.1. QMC Node Sets

For generating the Sobol’, Halton, Faure and Niederreiter-Xing sequences we use the implementation
of the “High-dimensional Integration Library” HIntLib1. The descriptions of the Sobol’, Faure, and
Niederreiter-Xing sequences are taken from [25].

1Available at: http://www.cosy.sbg.ac.at/˜rschuer/hintlib/
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4.1.1. Sobol’ Sequence

The Sobol’ sequences [27] are digital (ts,s)-sequences over F2, where

ts =
s

∑
i=1

(deg pi −1), (12)

with p1 = x ∈ F2[x] and pi+1 denoting the ith primitive polynomial over F2 ordered by degree.

Sobol’ sequences were the first known constructions yielding (t,s)-sequences for arbitrary dimensions
s. They were introduced long before the theory of (t,s)-sequences over arbitrary finite fields Fb was
established in [19]. However, they only exist for b = 2, and even in this case, the resulting t parameter
is not optimal for s> 3. For s> 7, even the Niederreiter sequence, which is equally easy to implement,
yields lower t-values.

For s = 1 the Sobol’ sequence (defined by the polynomial p1 = x) is a (0,1)-sequence identical to the
van der Corput sequence in base 2.

We use the implementation of construction 6 in [17].

4.1.2. Faure Sequence

The Faure sequences are digital (0,s)-sequences over Fb with b denoting a prime number (original
case) or a prime power (general case) greater or equal to s. The case for b prime was shown by Faure
[8], the general result is due to Niederreiter [19, Theorem 6.2].

The s infinite generator matrices C(1), . . . ,C(s) over Fb are defined by C(i) = (c(i)jr ) j,r>0 with

c(i)jr =

(
r
j

)
αr− j

i , (13)

where α1, . . . ,αs denote s distinct elements from Fb and the conventions α0 = 1 for all α ∈ Fb and(r
j

)
= 0 for j > r are used.

For α = 1, the resulting matrix is the infinite Pascal matrix modulo the characteristic of Fb; for α = 0,
it is the infinite identity matrix. If s = 1 and α1 = 0, the resulting (0,1)-sequence is identical to the
van der Corput sequence in the same base.

Sequences with the same parameters can also be obtained using Niederreiter sequences or Niederreiter-
Xing sequences with rational function fields.

We use the implementation of construction 8 in [17].

4.1.3. Halton Sequence

The construction of the Halton sequence was introduced in [9]. For a dimension s > 0, let b1, . . . ,bs
be integers ≥ 2. Then the Halton sequence in the bases sequence b1, . . . ,bs is defined as x0,x1, . . . with

xn = (Φb1(n), . . . ,Φbs(n)) ∈ Is ∀n ≥ 0, (14)
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where Φb(n) is the radical inverse function. The radical inverse function in base b is defined as

Φb(n) =
∞

∑
i=0

ai(n)b− j−1 ∀n ≥ 0, (15)

where ai(n) is the ith digit in the digit expansion of n in base b.

4.1.4. Niederreiter-Xing Sequence

In [20] and [29] Niederreiter and Xing develop two methods for creating a digital (t,s)-sequence
over Fb based on an algebraic function field with full constant field Fb, genus t, and containing at
least s+1 rational places. Niederreiter-Xing sequence construction III is constructive, assuming that
defining equations for the function field are given and that s+ 1 rational places are known. We use
the implementation of construction 18 in [3].

4.1.5. Zinterhof Sequence

Zinterhof sequences ([30]) are a special case of Weyl sequences. Weyl sequences are defined by

xn = ({nθ1},{nθ2}, . . . ,{nθs}) n = 1,2,3, . . .

where s is the dimension and {x} is the fractional part of x. It is well known that a Weyl sequence
is uniformly distributed iff θi are independent irrational numbers. An important issue with respect to
their quality in terms of uniformity of distribution is the amount or degree of irrationality of the em-
ployed starting vector Θ = (θ1, . . . ,θs). For the Zinterhof sequence we set θi = e1/i and consequently:

xn = ({ne1/1}, . . . ,{ne1/s}) n = 1,2,3, . . . . (16)

The Zinterhof sequence has been shown to exhibit excellent distribution behavior and they excel by
their ease of construction and implementation even for non-specialists.

4.2. Test Functions

A widely used test function for numerical integration of improper integrals, which was first used by
Sobol’ in 1973 [26], is

t(x) =
1

xα1
1 · · ·xαs

s
, (17)

where s is the dimension and 0 < αi < 1 ∀i ∈ 1, . . . ,s. We use a slightly less general version of this
test function of the form

f (x) =
s

∏
i=1

1
xα

i
(18)

where s is the dimension and 0 < α < 1. For f (x) clearly
∫ 1

0 f (x)dx =
(

1
1−α

s
)

and the value of α
determines the severity of the singularity.
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4.3. Results

For each of the above point sets the following test where executed:
Gap: For this test big blocks were used which were laid out such that there is an unused gap between
the blocks. The gap is 20% the size of a block.
Overlap: For the overlap test big blocks are used with a size set to generate less than the overall
number of points and no acquisition of new blocks. This resulted in an overlap where about 30% of
one block overlaps the following block.
Streamsave: For this test small blocks were used with a point size of 75 and between block there is a
gap with size 25. This test can also be interpreted as using synchronized streams (leaping) where the
last 25 of the 100 overall streams are reserved for nodes which become available during computation.
The synchronization of the streams was used to get a better grasp of the influence of missing streams,
this is somewhat artificial since leaping performs somewhat erratic in a heterogenous environment
(see [10]).
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Figure 1. Comparison of overlap, gaps and stream save.

Additionally, a baseline run, calculation of exactly N contiguous points, is given for comparison. The
results from the test is given in Fig. 1 to Fig. 5, the range of x axis is the same for all graphics but the
range of the y axis is chosen so as to discern the effects of a single graph instead of keeping the same
range for comparison.

Overall for these test all point sets except Halton behave well, meaning toward higher N they are
smooth and difference between the other cases and baseline become negligible and the streamsave
case does exceptionally well, even with Halton.

However, apart form the overall poor performance of Halton for gaps and overlaps another effect
can be discerned. All functions, even the otherwise well behaved Niederreiter/Xing sequence show
some fluctuation of the results. When comparing this to the baseline run for each function we see
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Figure 2. Comparison of Halton sequence regarding overlap, gaps and stream save.
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Figure 3. Comparison of Sobol’ sequence regarding overlap, gaps and stream save.
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Figure 4. Comparison of Niederreiter/Xing sequence regarding overlap, gaps and stream save.
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Figure 5. Comparison of Zinterhof sequence regarding overlap, gaps and stream save.
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that Niederreiter/Xing-, Zinterhof- and Faure sequences behave basically the same as the baseline
for high N while showing a bit of fluctuation for lower values of N. On the other hand, the Sobol
function shows this behavior for all but the highest values of N where it finally becomes smooth like
the baseline.

These erratic behavior can become problematic during actual integration, since in an application case
the fluctuation of the result would be used as a stop criterion, i.e. if the result stabilizes the calculation
is considered finished. The fluctuation as exhibited by the Sobol sequence can lead to an calculation
of more points than are necessary, and thus more time consumption.

From these results big blocks should only be used when no gaps or overlaps occur or when there is a
certainty that a high number of points N has to be used. Also even when there is a certainty for high
N a knowledge of the point set is necessary to prevent usage of point sets which show effects like
Halton for our test function.

5. Conclusion and Future Work

Small block sizes can achieve the same speedup as leaping when disregarding network load. Big
blocks on the other hand have the potential of the same speedup and low network use as leaping.
However, big blocks can lead to a higher number of processed points when the block size is not chosen
carefully. In fact a good choice of block size for big block is nearly impossible since the amount of
points N used for the integration is not known a priori, and even if it is known the acquisition of new
nodes during runtime can result in gaps.

In the, rather fictional, case of synchronized streams for leaping the possibility of saving an amount
of streams for the acquisition of new nodes is given.

Overall the usage of small blocks with a proper method of preventing delay due to a lack of points
while requesting a new block is preferable, unless the streams for leaping are synchronized or the
behavior of the point set concerning gaps or overlaps is known. When the properties of the se-
quences concerning gaps and overlaps are known to behave well, the Zinterhof and Niederreiter/Xing
sequences seem to qualify, the authors would suggest that big blocks are the preferred method of
parallelization. Additionally, blocking can inherently deal with the possibility for faulty or newly
available machines during computation.
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