
Electronic version of an article published as Parallel Processing Letters 16:3,
pages 285311, 2006.
DOI: 10.1142/S0129626406002654
c⃝World Scientific Publishing Company (http://www.worldscientific.com/
worldscinet/ppl).

1



Parallel Processing Lettersfc World Scientific Publishing Company

QUASI MONTE CARLO INTEGRATION

IN GRID ENVIRONMENTS: FURTHER LEAPING EFFECTS

HEINZ HOFBAUER, ANDREAS UHL, PETER ZINTERHOF∗

Department of Scientific Computing, Salzburg University
Jakob-Haringerstr.2, A-5020 Salzburg, AUSTRIA.

Received November 2005
Revised (revised date)

Communicated by Marian Vajtersic

ABSTRACT

The splitting of Quasi-Monte Carlo (QMC) point sequences into interleaved sub-
streams has been suggested to raise the speed of distributed numerical integration and
to lower the traffic on the network. The usefulness of this approach in GRID environ-
ments is discussed. After specifying requirements for using QMC techniques in GRID
environments in general we review and evaluate the proposals made in literature so
far. In numerical integration experiments we investigate the quality of single leaped
QMC point sequence substreams, comparing the respective properties of Sobol’, Halton,
Faure, Niederreiter-Xing, and Zinterhof sequences in detail. Numerical integration re-
sults obtained on a distributed system show that leaping sensitivity varies tremendously

among the different sequences and we provide examples of deteriorated results caused by
leaping effects, especially in heterogeneous settings which would be expected in GRID
environments.

Keywords: Quasi-Monte Carlo Integration, Grid Computing, Leap-Frog Technique, Sub-
sequences.

1. Introduction

High dimensional numerical integration problems may require a significant amount
of computation power. Therefore, substantial effort has been invested in finding
techniques for performing these computations on all kinds of parallel architectures
(see [1,2,3,4] for an exhaustive overview). In order to minimize the communica-
tion amount within a parallel system, each processing element (PE) requires its
own source of integration nodes. Therefore, the aim is to investigate techniques for
using separately initialized and disjoint sets of integration nodes on a single PE.

Currently, the most efficient numerical techniques for evaluating high-dimensional
integrals are based on Monte Carlo and quasi-Monte Carlo techniques [5]. Whereas
in the Monte Carlo (MC) case the integration nodes are produced by a random num-
ber generator (RNG), low-discrepancy point sets and sequences (e.g. (t,m,s)-nets

∗Corresponding author: Andreas Uhl, e-mail: andreas.uhl@sbg.ac.at



Parallel Processing Letters

or (t,s)-sequences [6]) are employed in quasi-Monte Carlo (QMC) algorithms. QMC
techniques improve the probabilistic error bounds of MC techniques especially in
higher dimensions. Nevertheless, these techniques are related [7] since a full period
random number sequence may be seen as a low-discrepancy point set (e.g. a rank-1
lattice rule in the case of a linear congruential generator) as well.

GRID environments exhibit challenging properties for numerical integration
techniques. This type of computing facility potentially shows extreme heterogeneity
in terms of PE speed and network connections, moreover the available computing
resources may change in time even during ongoing computations (e.g. new machines
may become available or others may get lost due to network problems or mainte-
nance shutdowns, other users may start computations on the same hardware, etc.).
Li et al. [8] discuss the use of a GRID service called Integration Service for solv-
ing multivariate integration problems, where the PARINT package [1] is used as
integration engine.

Therefore, it is not only difficult but impossible to predict the amount of in-
tegration nodes required on a single PE under such conditions. Additionally, in
practice it is usually not possible to determine a priori the number of integration
nodes N necessary to meet a given error requirement. As a consequence, it is of
great importance that N may be increased without losing previously calculated
function values. It is clear that techniques for providing integration nodes on the
single PEs need to be very flexible under these circumstances.

One possibility is to generate separately initialized and disjoint substreams of
a given (sequential) sequence of integration nodes. Among other suggestions made
in literature in this context, we have investigated leaped substream parallelization
techniques for (t,s)-sequences in previous work [9,10,11] and have discovered several
shortcomings and problems when applied in parallel and distributed QMC integra-
tion.

In this work, we extend the focus of our work on leaped substream parallelization
to cover the following issues:

• So far, only the leaping of Sobol’ and Niederreiter (t,s)-sequences has been in-
vestigated. Here we additionally treat Faure, Halton, Weyl, and Niederreiter-
Xing sequences.

• So far, only the quality differences among differently leaped streams have been
investigated systematically. Here we additionally treat the quality differences
among equally leaped but differently initialized substreams and the respective
implications for the use in distributed computations.

• So far, only a moderate amount of hardware heterogeneity has been investi-
gated. Here we reflect potential GRID properties and additionally treat a case
where computing capacity varies by a factor of 103 and compare the result to
more classical environments.

In Section 2 we discuss strategies for using QMC techniques in GRID envi-
ronments. Section 3 shortly reviews the QMC computation of improper integrals
(which is being used as application case). Section 4 is the main part of this work



Quasi-Monte Carlo Integration on GRIDS

where we report and discuss experimental integration results using various QMC
node sets. Section 5 concludes this work and provides outlook to future work in
this direction.

2. QMC Techniques in GRID Environments

GRID environments exhibit a potentially high heterogeneity in terms of network

capacity (i.e. bandwidth and latency) and computing speed (memory capacity,

cache sizes, processor speed). In addition to that, these environments are error

prone with respect to broken network links or failing PEs. Moreover, additional

resources may become available during an ongoing simulation which should be used

to optimize resource consumption. As a consequence, the following requirements

should be met by a QMC technique employed in a GRID environment:

• Variety in computing speed requires dynamic load balancing capability.

• Variety in network capacity requires load balancing strategies without central

organization and a minimal number of control messages exchanged among the

computing nodes.

• Failure in hardware resources requires tolerance to lost partial results.

• Additional resources becoming available require a possibility to assign work-

load to these resources (i.e. by redistributing or redefining workload).

In addition to that, error bounds and computation results should preferably

carry over from sequential execution. If the QMC point sets differ between se-

quential and parallel execution, the quality of the results needs to be investigated

thoroughly. Reproducibility is as well an important issue to be considered.

So far, two entirely different strategies have been discussed in literature to em-

ploy QMC sequences in parallel and distributed environments.

1. Splitting a given QMC sequence into separately initialized and disjoint parts

which are then used independently on the PEs. This strategy comes in two

flavors:

• Blocking: p disjoint contiguous blocks of maximal length l of the original

sequence are used on the PEs. This is achieved by simply using a different

starting point on each PE (e.g., PEi, i = 0, . . . , p−1, generates the vectors

xil,xil+1,xil+2, . . . ,xil+l−1). In case a large number of smaller blocks is

used index j is assigned dynamically to PEi which generates the vectors

xj ,xj+1, . . . ,xj+l−1 (where j is incremented in steps of size l to avoid

overlap).

• Leaping: interleaved streams of the original sequence are used on the

PEs. Each PE skips those points consumed by other PEs (leap-frogging)



Parallel Processing Letters

(e. g. employing p PEs, PEi, i = 0, . . . , p − 1, generates the vectors

xi,xi+p,xi+2p, . . .).

2. Using inherently independent sequences on the different PEs (denoted as

“parametrization” which can be realized for example by randomizations of

a given QMC sequences).

Blocking has been suggested in many application focused papers. Mascagni

and Karaivanova [12] propose to use disjoint contiguous blocks from Halton, Faure,

and Sobol’ sequences in the context of solving sparse systems of linear algebraic

equations. Numerical experiments are carried out on a homogeneous cluster using

static load distribution. In a second paper [13] the same authors use the suggested

techniques for computing extremal eigenvalues, again a QMC sequence is “neatly

broken into same-sized subsequences” by blocking. The authors point out that

this simple strategy can not be employed in general for all types of simulation

settings. Alexandrov et al. [14] use scrambled Sobol’ and Halton sequences to solve

certain linear algebra systems. They discuss static and dynamic load balancing and

point out the importance of efficient dynamic load balancing in GRID environments.

Load balancing is done by dynamically distributing chunks (i.e. blocks) of relatively

small size to avoid unevenly sized chunks. Techniques for efficiently generating non-

adjacent chunks an a single PE are discussed in this paper. Tests are carried out on

homogeneous and heterogeneous systems; in the latter case MPICH over Globus-2

GRID software is used. Li and Mascagni [15] propose to extend techniques used

in GRID-based Monte Carlo methods, e.g. the N-out-of-M scheduling strategy, to

QMC sequences by using scrambled quasi random sequences. Furthermore, known

statistical properties of MC carry over to scrambled quasi random sequence and

thus allowing partial result validation and intermediate value checking. Wan et

al. [16] present a parallel strategy for pricing multidimensional American options.

In the first stage, the QMC sequence is generated by independently computing

equally sized blocks on the PEs using static load distribution. For the second stage

two strategies, one being the stochastic mesh method which involves a backward

recursion, for data distribution are compared which both correspond to distributing

the original sequence in blocks of different size in different manner across the PEs.

Tests are conducted on a SGI Onyx machine. Schürer [17] employs equally sized

blocks of (t,m,s)-nets on the PEs when comparing QMC integration techniques to

adaptive cubature rules. A SGI Power Challenge is used as a test platform. In

previous work [9] we have conducted experiments with blocking Niederreiter (t,s)-

sequences where large disjoint blocks are used on the PEs. Good reliability of

the results has been observed in homogeneous and (simulations of) heterogeneous

environments (tests conducted on a SGI Power Challenge). We have also provided

theoretical evidence for this good behavior by showing that discrepancy estimates of

arbitrary blocks do not degrade as compared to estimates of entire (t,s)-sequences

[10].



Quasi-Monte Carlo Integration on GRIDS

Leaping has been discussed much more controversial in literature than blocking.

Bromley [18] describes a leapfrog parallelization technique to break up the Sobol’

sequence into interleaved substreams in an efficient manner. We have generalized

this idea to all types of binary digital (t,s)-sequences [10] in earlier work. Based

on these techniques, Li and Mullen [19] use a leapfrog scheme for (t,m,s)-nets to

solve financial derivative problems. However, severe problems occur with leapfrog

parallelization especially in case of processor speed heterogeneity which results in

QMC point sets which do not correspond to sequential computation. Initial results

showed that single (t,s)-sequence substreams with leaps of the form 2n lead to

extremely poor numerical integration results whereas this is not the case for leaps

of the form 2n+1 [9]. Using leaped substreams parallelization in a heterogeneous

processor speed environment therefore may lead to severely degraded results as

compared to sequential execution when this form of leaping is employed. Different

PEs consume a different number of integration nodes and so the poor results of

using single substreams are propagated to the parallel results if no synchronization

among PEs is performed [11,9,10]. We have also provided theoretical evidence for

the observed effects by showing the discrepancy estimated of leaped substreams to

be significantly larger as compared to the original sequences [10]. It has also turned

out that not only 2n type substreams are affected by poor quality but these effects

occur for many forms of leaps and are highly unpredictable [11,10].

Parametrization has been proposed as a QMC parallelization strategy by two

groups independently. DeDoncker et al. [20,21,22] propose randomized (Korobov)

lattice and Richtmyer rules (which are a special type of Weyl sequences), and discuss

load distribution strategies for homogeneous and heterogeneous architectures [23].

Results are provided for both, homogeneous and heterogeneous environments, and

in both cases result accuracy and execution efficiency was reported to be very well.

Ökten and Srinivasan [24] propose to use Halton and scrambled Halton sequences

with leaped base sequences on different PEs. Excellent theoretical error estimations

are provided and also experimental results for homogeneous as well as for hetero-

geneous environments exhibit high quality. Parametrization is also compared to

blocking and leaping in this work and advantages and disadvantages of the three

schemes are analyzed for different application scenarios. Srinivasan [25] confirms the

findings of the latter paper and refines the comparison of the three parallelization

strategies based on simulation results for pricing financial derivatives.

Based on the requirements for a QMC technique to be useful in GRID environ-

ments stated before we try to assess the effectiveness of the three parallel QMC

techniques proposed in literature.

• Blocking: Two flavors of blocking are discussed. In the first variant, the

QMC sequence is partitioned into small blocks which are dynamically dis-

tributed among the PEs. Whereas this technique uses QMC node sets almost

identical to sequential execution and can handle all types of changing resource

scenarios and heterogeneity quite well, it requires the frequent exchange of



Parallel Processing Letters

control messages and is therefore not suited for GRID environments. The va-

lidity of this assessment of course depends on the relation between block size

and the communication possibilities in the actual GRID environment. In the

second blocking variant, one large block is assigned to each PE at the start

of the computation. Since the number of QMC points required on each PE is

not known a priori the block size needs to be chosen large enough to avoid a

PE to exceed the number of available points in its block (exceeding the num-

ber would then result in overlap of the blocks which of course degrades the

final result). On the other hand, if the blocks have been selected much too

large, a significant number of points may not be consumed on slow PEs and

the overall point set used exhibits large “gaps” as compared to the sequential

case which potentially threatens result accuracy (although the results avail-

able so far concerning this effect do not seem to be very severe). Choosing

the block size appropriately is therefore a critical issue in this approach. The

same considerations of course apply as well if a PE fails. In the case where a

specific QMC point set with a limited number of points has been distributed

among the available PEs at the start of the computation (e.g. a (t,m,s)-net),

handling additional resources is fairly complicated. On the other hand, in the

case of using infinite sequences only the next large block in the sequence not

being assigned to a PE so far has to be assigned to a PE which has become

available during the computation. Although some of the potential problematic

effects (like significant block overlap or large gaps) have not been investigated

systematically, the currently available results indicate reliable behavior. The

use of large blocks is therefore an interesting option for GRID environments.

• Leaping: Contrasting to the blocking case, there is no need to specify a

number of points required on each PE since each substream may deliver an

infinite number of points in principle. Therefore, there is no danger of run-

ning short of points. Also, substream overlap can not occur. In the case of

homogeneous environments where care is taken that each PE consumes an

equal share of QMC points, a result identical to sequential execution is easily

obtained. Note that this is not the case for blocking due to the problems with

choosing a good block size (except in case the number of points required is

known in advance – which is rarely the case). The situation changes dras-

tically in heterogeneous environments: in case of different PEs consuming a

different number of QMC points it has been shown that depending on the

type of load imbalance more or less severe degradations in result accuracy are

observed. We will discuss further results in this context in Section 4. The

same considerations (with even more pronounced effects) of course apply as

well if a PE fails. When additional resources become available the classical

leaping scenario can not handle this situation properly – usually a QMC node

set is partitioned into J interleaved substreams if J PEs are available. There



Quasi-Monte Carlo Integration on GRIDS

is no additional substream available in this scenario. A way to handle this

situation is to partition a given QMC point set into I > J substreams in case

of J PEs are available. The I − J substreams are not used by default but

kept as additional work share in case additional PEs become available. How-

ever, neither empirical nor theoretical results are available so far to assess the

quality of corresponding results. The use of leaping in GRID environments

may be therefore accompanied with problematic side effects which endanger a

flexible and transparent use. This will be discussed in more detail in Section

4. In addition to that, the most important advantage of leaped substream

parallelization as compared to blocking (i.e. in case of synchronized execution

the used point set corresponds to the sequential case) does not apply in GRID

environments due to the heterogeneity.

• Parametrization: The most important difference (and also disadvantage)

of parametrization as compared to blocking and leaping is that the QMC

point set used in parallel or distributed computation does not correspond to a

single (sequentially used) point set. Therefore, the investigation of the results’

quality when using this technique is of great importance since it is not clear

a priori how results from different point sets will interact in the final result.

The findings so far indicate a good quality of the results based on theoretical

estimates and empirical tests. Due to the use of de-facto independent QMC

point sets on the PEs load balancing at low cost comes for free (each PE

generates as much points as it requires locally) and the same is true for reacting

to changes with respect to available resources. Therefore, parametrization is a

well suited approach for GRID environments provided the quality of the results

can be guaranteed. A disadvantage is that knowledge about the reliability of

the results is restricted so far to Halton sequences and (Korobov) lattice rules.

An advantage of using randomized QMC techniques in general is that error

control techniques like variance reduction are integral parts of this approach.

This also holds true for their use in GRID environments.

3. QMC Computation of Improper Integrals

The basic concept of any method for numerical integration is to approximate

the integral by a finite sum, such that

I(f) :=

∫

Is

f(x)dx ≈ 1

N

N∑

n=1

f(xn) =: I ′N (f) (1)

where xn are suitably chosen integration nodes and Is is the unit interval. To

identify suitable, i.e. uniformly distributed, point sets {xn} the star discrepancy is

defined as



Parallel Processing Letters

D∗
N := D∗

N(x1, . . . , xn) = sup
J∈F

∥∥∥∥
#{x|x ∈ J}

N
− m(J)

∥∥∥∥ (2)

where F is the family of all subintervals of the form J =
∏s

i=1[0, ti) ∈ Is with

volume m(J). The approximation error

EN (f) := |I ′N (f) − I(f)| (3)

depends on D∗
N and the variation V (f) of the function f in the following way

(Koksma-Hlawka inequality [6]):

EN (f) ≤ V (f)D∗
N . (4)

Consequently, point sets exhibiting low discrepancy values are attractive candi-

dates to be used in numerical integration. The QMC approach chooses the point

set {xn} from a low-discrepancy sequence.

QMC techniques have been considered to evaluate improper integrals in recent

years (e.g. [26]) – for numerical integration of such types of integrands we use a

generic method introduced recently by Zinterhof [27] (which can employ any type of

integration nodes in principle but delivers decent error bounds for low-discrepancy

integration node sets). For a given function f(x) and a B > 0, Zinterhof specifies

the functions fB(x) and f̂B(x) as

fB(x) =

{
f(x) |f(x)| ≤ B

0 |f(x)| > B
(5)

f̂B(x) =

{
0 |f(x)| ≤ B

f(x) |f(x)| > B.
(6)

The Class C(β, γ) of s-variate functions f(x1, . . . , xs), 0 ≤ xi ≤ 1, i = 1, . . . , s,

consists of all functions which fulfill

a) I(|f̂B |) = O(B−β) for some β > 0 (7)

b) V (fB) = O(Bγ) for some γ ≥ 1. (8)

It is shown that if f(x) ∈ C(β, γ), x = (x1, . . . , xs), and if the discrepancy of the

set of nodes is D∗
N , then for B = D∗

N
−1/(β+γ) the estimate

I(f) =
1

N

N∑

n=1

fB(xn) + O(D∗
N

β/(β+γ)) (9)

holds, where I(f) = I(fB) + I(f̂B). Finally Zinterhof shows that when the trunca-

tion parameter B takes on the form

B = D∗
N

−1/(β+γ) (10)



Quasi-Monte Carlo Integration on GRIDS

the integration error attains its minimum of

EN ≤ K(f)D∗
N

β/(β+γ) (11)

where K(f) is a constant depending on f . Consequently, the numerical strategy is

to compute 1
N

∑N
n=1 fB(xn) upon selection of a suitable B.

4. Experiments: Leaped Substreams

4.1. QMC Node Sets

For generating the Sobol’, Halton, Faure and Niederreiter-Xing sequences we use

the implementation of the “High-dimensional Integration Library” HIntLib†. The

descriptions of the Sobol’, Faure, and Niederreiter-Xing sequences are taken from

[28].

4.1.1. Sobol’ Sequence

The Sobol’ sequences [29] are digital (ts, s)-sequences over F2, where

ts =

s∑

i=1

(deg pi − 1), (12)

with p1 = x ∈ F2[x] and pi+1 denoting the ith primitive polynomial over F2 ordered

by degree.

Sobol’ sequences were the first known constructions yielding (t, s)-sequences for

arbitrary dimensions s. They were introduced long before the theory of (t, s)-

sequences over arbitrary finite fields Fb was established in [30]. However, they only

exist for b = 2, and even in this case, the resulting t parameter is not optimal

for s > 3. For s > 7, even the Niederreiter sequence, which is equally easy to

implement, yields lower t-values.

For s = 1 the Sobol’ sequence (defined by the polynomial p1 = x) is a (0, 1)-

sequence identical to the van der Corput sequence in base 2.

We use the implementation of construction 6 in [31].

4.1.2. Faure Sequence

The Faure sequences are digital (0, s)-sequences over Fb with b denoting a prime

number (original case) or a prime power (general case) greater or equal to s. The

case for b prime was shown by Faure [32], the general result is due to Niederreiter

[30, Theorem 6.2].

The s infinite generator matrices C(1), . . . , C(s) over Fb are defined by C(i) =

(c
(i)
jr )j,r>0 with

†Available at: http://www.cosy.sbg.ac.at/˜rschuer/hintlib/



Parallel Processing Letters

c
(i)
jr =

(
r

j

)
αr−j

i , (13)

where α1, . . . , αs denote s distinct elements from Fb and the conventions α0 = 1 for

all α ∈ Fb and
(
r
j

)
= 0 for j > r are used.

For α = 1, the resulting matrix is the infinite Pascal matrix modulo the char-

acteristic of Fb; for α = 0, it is the infinite identity matrix. If s = 1 and α1 = 0,

the resulting (0, 1)-sequence is identical to the van der Corput sequence in the same

base.

Sequences with the same parameters can also be obtained using Niederreiter

sequences or Niederreiter-Xing sequences with rational function fields.

We use the implementation of construction 8 in [31].

4.1.3. Halton Sequence

The construction of the Halton sequence was introduced in [33]. For a dimension

s > 0, let b1, . . . , bs be integers ≥ 2. Then the Halton sequence in the bases sequence

b1, . . . , bs is defined as x0, x1, . . . with

xn = (Φb1(n), . . . , Φbs(n)) ∈ Is, ∀n ≥ 0, (14)

where Φb(n) is the radical inverse function. The radical inverse function in base b

is defined as

Φb(n) =
∞∑

i=0

ai(n)b−j−1, ∀n ≥ 0, (15)

where ai(n) is the ith digit in the digit expansion of n in base b.

4.1.4. Niederreiter-Xing Sequence

In [34] and [35] Niederreiter and Xing develop two methods for creating a digital

(t, s)-sequence over Fb based on an algebraic function field with full constant field

Fb, genus t, and containing at least s+1 rational places. Niederreiter-Xing sequence

construction III is constructive, assuming that defining equations for the function

field are given and that s+1 rational places are known. We use the implementation

of construction 18 in [36].

4.1.5. Weyl Sequence

Weyl sequences are defined by

xn = ({nθ1}, {nθ2}, . . . , {nθs}), n = 1, 2, 3, . . .

where s is the dimension and {x} is the fractional part of x. It is well known that

a Weyl sequence is uniformly distributed iff θi are independent irrational numbers.

Weyl sequences are used in different variants in literature. An important issue



Quasi-Monte Carlo Integration on GRIDS

with respect to their quality in terms of uniformity of distribution is the amount or

degree of irrationality of the employed starting vector Θ = (θ1, . . . , θs). Whereas

deDoncker et al. [22] investigate Richtmyer rules where θi =
√

pi with pi being the

i-th prime, we use a special type of Zinterhof sequences [37] where θi = e1/i:

xn = ({ne1/1}, . . . , {ne1/s}), n = 1, 2, 3, . . . , (16)

These sequences have been shown to exhibit excellent distribution behavior and

they excel by their ease of construction and implementation even for non-specialists.

4.2. Test Functions

A widely used test function for numerical integration of improper integrals,

which was first used by Sobol’ in 1973 [38], is

t(x) =
1

xα1
1 · · · xαs

s
, (17)

where s is the dimension and 0 < αi < 1, ∀i ∈ 1, . . . , s. We use a slightly less

general version of this test function of the form

f(x) =

s∏

i=1

1

xα
i

, (18)

where s is the dimension and 0 < α < 1. For f(x) clearly
∫
(0,1)s

f(x)dx =
(

1
1−α

)s

and the value of α determines the severity of the singularity, i.e. the gradient of

the function (see Fig. 1). Additionally to be able to analyze situations where the

singularity is inside the interval, as opposed to the origin, we can shift the function

by a value o > 0 as follows

fo(x) =

s∏

i=1

1

{x + o}α
, (19)

where {x} is the fractional part of x (see Fig. 1).

Unless specified otherwise, we use dimension s = 10 and no shift in the test

function. We evaluate up to 10000000 = 107 integration nodes and set the bound

B to 1000000.

4.3. Test Environment

The hardware platform used in our experiments is a classical heterogeneous

cluster architecture. The machines are specified in Table 1.

The table contains information concerning the CPU of the machines, and in

particular their architecture, speed and memory. The entries in column “stream”

is the number of the leaped substream of the QMC sequence used on this machine.



Parallel Processing Letters

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

PSfrag replacements

α = 0.5
α = 0.2
α = 0.7

α = 0.5, o = 0.5

Fig. 1. Coordinate function of test function with various values of α and shift o as given.

Table 1. Specification of machines in the heterogenous network.

CPU(arch) CPU(MHz) Memory (kB) stream machine
AMD Athlon(tm) Processor 1244.719 513852 root 1
AMD Athlon(tm) MP 2800+ 2133.468 2064584 stream0 2
AMD Athlon(tm) XP 2800+ 2083.121 513852 stream1 3
AMD Athlon(tm) XP 2800+ 2083.123 513852 stream2 4
AMD Athlon(tm) XP 2800+ 2083.139 255308 stream3 5
AMD Athlon(tm) XP 2800+ 2083.134 513852 stream4 6
AMD Athlon(tm) XP 2800+ 2083.149 513852 stream5 7
AMD Athlon(tm) XP 2000+ 1666.747 255308 stream6 8
AMD Athlon(tm) XP 2000+ 1659.642 255308 stream7 9
AMD Athlon(tm) XP 2000+ 1659.642 255308 stream8 10
AMD Athlon(tm) XP 2000+ 1659.627 255308 stream9 11
AMD Athlon(tm) Processor 1244.732 513852 stream10 12



Quasi-Monte Carlo Integration on GRIDS

“Root” means that no actual integration is done but that this machine is the coor-

dinator of the calculations. In a test on eight machines, machine one is the control

node, machine two uses stream 0, machine three uses stream 1, and so on. When

for a test the number of machines is stated this table gives information on which

machines the streams run on and thus with which relative speed.

In order to simulate a more heterogeneous environment we artificially speed up

or slow down single machines to simulate faster or slower machines contributing to

the integration process. Due to the potential heterogeneity of GRID environments

this speedup is greatly exaggerated; the corresponding machine running faster or

slower does so by a factor of 103. Additionally, we also compare this extreme case

of speedup to a more modest case, where the affected machine consumes twice as

much (in case of acceleration) or half the amount (in case of slow down) of QMC

points.

4.4. Single Substream Results

In this section we investigate the integration result accuracy when single leaped

substreams are used for generating the integration nodes. The rationale for this is

to assess the quality of these substreams – in case of unbalanced load substreams

generated on faster PEs will contribute more integration nodes to the overall result

than others and consequently their quality will propagate into the result to some

extent.

First we focus onto the Sobol’ sequence. We aim at showing that the behavior

of the Sobol’ sequence as documented by Schmid and Uhl [10] can also be seen

when integrating functions with singularities. Note that for figures the ordinate

gives the absolute value of the error percentage displayed in a logarithmic scale.

We investigate the behavior of leaps of the form 2i (depicted as lines) and 2i + 1

(depicted as lines with points), for i = 1, . . . , 6 (additionally leap 11 is shown for

stream 0, see below). For a reference value we display the result of the original

sequence (leap 1) with an offset equal to the stream number. Apart from using

substreams with different leap values starting with the first point of the sequence

(“stream 0”), we also investigate those substreams initialized with the second and

third point, respectively (“stream 1” and “stream 2”).

The general impression of the results for the Sobol’ sequence in Fig. 2 confirms

the findings of earlier work [9,10,11] where stream 0 of Sobol’ and binary (t,s)-

sequences has shown severe integration result degradation when using leaps of the

form 2i and a lower amount of degradation for leaps of the form 2i + 1, while still

giving worse results as compared to the original sequence. However, there are also

subtile differences shown in the results. To start with, in case of stream 2 and large

leaps we notice that all results are superior to the result of the sequential sequence.

Leaps of the form 2i + 1 do not only perform better as compared to those of the

form 2i but actually do improve the results of the original sequence in almost all

cases considered (we notice an even significant improvement in single cases, e.g.



Parallel Processing Letters

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 2
leap 3
leap 4
leap 5
leap 8
leap 9
leap 11

 0.001

 0.01

 0.1

 1

 10

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 16
leap 17
leap 32
leap 33
leap 64
leap 65

Stream 0, leaps 2–9 and 11 Stream 0, leaps 16–65

 0.01

 0.1

 1

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 2
leap 3
leap 4
leap 5
leap 8
leap 9

 0.01

 0.1

 1

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 16
leap 17
leap 32
leap 33
leap 64
leap 65

Stream 1, leaps 2–9 Stream 1, leaps 16–65

 0.01

 0.1

 1

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 2
leap 3
leap 4
leap 5
leap 8
leap 9

 0.001

 0.01

 0.1

 1

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 16
leap 17
leap 32
leap 33
leap 64
leap 65

Stream 2, leaps 2–9 Stream 2, leaps 16–65

Fig. 2. Stream behavior for the Sobol’ Sequence, streams zero to two.



Quasi-Monte Carlo Integration on GRIDS

stream 0 - leap 5 and leap 33). These effects (and differences to earlier findings)

may be due to the fact that we use a test function with singularity located in the

origin and that leaping in general reduces the share of points taken from the start

of the original sequence (which is known to be of lower quality [39,40]). It is also

interesting to note that there are significant differences among the results of the

different streams. The overall trend suggests that result degradations caused by

leaping are less severe for streams initialized at some distance from the start of the

original sequence.

Fig. 3 shows the results of the identical experimental setup applied to Halton

sequences. A very different behavior is displayed.

Clearly, the observation that leaps of the form 2i + 1 perform better than leaps

of the form 2i, as seen in the Sobol’ sequence, doesn’t hold for the Halton sequence

at all. For streams 0 and 2 the leaps of the form 2i are better, while for stream 1,

with exception of 217 and 265, the streams of the form 2i + 1 are better. Overall,

leaping has a disastrous effect on the integration results which are severely degraded

in almost all cases (only stream 1 - leap 33 and stream 2 - leaps 16,32,64 improve

the result of the original sequence). Note that again the results differ a lot among

the different streams, especially for larger leaps.

Fig. 4 applies the test scenario to the Niederreiter-Xing sequence. Again, signif-

icantly different behavior with respect to splitting sensitivity may be observed.

An almost opposite behavior to the Halton sequence is found for the Niederreiter-

Xing sequence. All leap forms considered improve the results of the original sequence

and for larger leaps the improvement is seen to a higher extent. There is no clear

relation between leaps of the form 2i and 2i+1 as seen for Sobol’ or Halton sequences.

For Faure and Zinterhof sequences we restrict our investigations to stream 0.

Fig. 5 shows that also for the Faure sequence result degradation occurs but less

frequent and on an irregular basis (only leaps 5 and 32 exhibit worse results as

compared to the original sequence); in most cases we note a moderate improvement.

This is somewhat surprising since the Faure sequence is a very specialized form

of Niederreiter-Xing sequences and was expected to behave similarly. This result

suggests that also the Niederreiter-Xing sequences might exhibit degraded results

under leaping for some specifically selected parameters.

Finally Fig. 6 shows the results of leaping applied to the Zinterhof sequence.

Similar to Niederreiter-Xing sequences, we do not find result degradations but im-

provements as a result of leaping and there is no systematic and significant difference

among leaps of different form.

We have seen that the different types of QMC sequences react differently to the

use of single substreams. Whereas Niederreiter-Xing and Zinterhof sequences turn

out to be very stable and give even slightly better results than the original sequences,

Sobol’, Halton, and Faure sequences show degraded integration results for some

settings. Whereas the effects are somewhat structured and occur frequently in the

case of the Sobol’ sequence, the contrary is true for the Faure sequence. The Halton



Parallel Processing Letters

 0.01

 0.1

 1

 10

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 2
leap 3
leap 4
leap 5
leap 8
leap 9
leap 11

 0.01

 0.1

 1

 10

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 16
leap 17
leap 32
leap 33
leap 64
leap 65

Stream 0, leaps 2–9 and 11 Stream 0, leaps 16–65

 0.01

 0.1

 1

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 2
leap 3
leap 4
leap 5
leap 8
leap 9

 0.01

 0.1

 1

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 16
leap 17
leap 32
leap 33
leap 64
leap 65

Stream 1, leaps 2–9 Stream 1, leaps 16–65

 0.01

 0.1

 1

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 2
leap 3
leap 4
leap 5
leap 8
leap 9

 0.01

 0.1

 1

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 16
leap 17
leap 32
leap 33
leap 64
leap 65

Stream 2, leaps 2–9 Stream 2, leaps 16–65

Fig. 3. Stream behavior for the Halton Sequence, streams zero to two.



Quasi-Monte Carlo Integration on GRIDS

 0.01

 0.1

 1

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 2
leap 3
leap 4
leap 5
leap 8
leap 9

leap 11

 0.01

 0.1

 1

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 16
leap 17
leap 32
leap 33
leap 64
leap 65

Stream 0, leaps 2–9 and 11 Stream 0, leaps 16–65

 0.01

 0.1

 1

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 2
leap 3
leap 4
leap 5
leap 8
leap 9

 0.01

 0.1

 1

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 16
leap 17
leap 32
leap 33
leap 64
leap 65

Stream 1, leaps 2–9 Stream 1, leaps 16–65

 0.01

 0.1

 1

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 2
leap 3
leap 4
leap 5
leap 8
leap 9

 0.01

 0.1

 1

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 16
leap 17
leap 32
leap 33
leap 64
leap 65

Stream 2, leaps 2–9 Stream 2, leaps 16–65

Fig. 4. Stream behavior for the Niederreiter-Xing Sequence, streams zero to two.



Parallel Processing Letters

 0.001

 0.01

 0.1

 1

 10

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 2
leap 3
leap 4
leap 5
leap 8
leap 9

 0.001

 0.01

 0.1

 1

 10

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 16
leap 17
leap 32
leap 33
leap 64
leap 65

Stream 0, leaps 2–9 Stream 0, leaps 16–65

Fig. 5. Stream zero behavior for the Faure Sequence.

 1e-04

 0.001

 0.01

 0.1

 1

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 2
leap 3
leap 4
leap 5
leap 8
leap 9

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 16
leap 17
leap 32
leap 33
leap 64
leap 65

Stream 0, leaps 2–9 Stream 0, leaps 16–65

Fig. 6. Stream zero behavior for the Zinterhof sequence.



Quasi-Monte Carlo Integration on GRIDS

sequence is least suited for leaping and delivers almost consistently significantly

worse results as compared to the original. We have also observed that different

initialization (different streams) but equal leap form also may lead to significantly

different behavior.

Furthermore the behavior of the leaped substreams when used for integrating

improper integrals depends also on the position of the singularity. When shifting

the singularity from the origin into the unit interval (e.g. in the following example

a shift of 0.5 – see Fig. 1), the results differ significantly to the original case. Fig. 7

shows the results for stream 2 and large leaps of the Halton sequence (see lower

right graph of Fig. 3 for the original test function).

 0.01

 0.1

 1

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+07

| e
rr

or
 %

 |

N

leap 1
leap 16
leap 17
leap 32
leap 33
leap 64
leap 65

Fig. 7. Stream two, leaps one and 16–65 of the Halton sequence using the function f0.5(x).

Whereas 2i leaps improve the Halton sequence results for the original test func-

tion, all forms of leaps degrade the results for the shifted version. A possible expla-

nation of this effect is that most QMC sequences avoid the origin in an L-shaped

or hyperbolic shaped region [41,42]. Therefore we are dealing with the more benev-

olent case when the singularity is situated in the origin. Thus in the general case

one can expect further deterioration of the stream when the singularity is moved

into the interval.

In the following section, we will investigate the possible impact of the behav-

ior of single substreams on integration results when leaping based QMC point set

distribution is used in GRID environments.



Parallel Processing Letters

4.5. Multiple Substream Results

First let us consider the execution efficiency in a distributed environment of

the splitting (leap frogging) and blocking based distribution approach as com-

pared with a synchronized and centralized technique (denoted client/server). In

the client/server version we have one PE which generates and distributes the QMC

integration points and collects the results (control element CE), and a number of

PEs where f(x) is calculated. For a high number of PEs this model becomes a

problem since the only source for new points is the server which can only generate

points at a fixed rate. Furthermore, sending the points and results over a network

generates a high amount of traffic, thus it is necessary to shift the generation of

points from the server to the client. The test is conducted on a heterogenous net-

work consisting of 12 computers (for machine specification see Section 4.3). One

machine is always setup as CE while the rest are PEs. For leaping the leap size

was set to 11 (i.e. the number of PEs) and the block size for the blocking mode

was set to 500. The average runtime of five tests was used to calculate the speedup

as shown in Table 2. We see that for both blocking and leaping the speedup as

compared to the client/server version is clearly in a range where splitting can be

considered useful.

Table 2. Speedup from splitting.

Mode Speedup Average Runtime
(milliseconds)

client/server 1 6092.2
blocking 3.12 1952.6
splitting 3.27 1861.8

The reason for leaping being slightly better than blocking stems from the fact

that in the leaping mode only control messages need to be exchanged while the

blocking variant periodically has to request new blocks of QMC nodes. As we have

discussed earlier, there is also the possibility to bring the blocking mode closer to

leaping by using large blocks.

Now we turn to results concerning integration accuracy. To start we again use

11 PEs and consequently a leap factor of 11. Fig. 8 displays the results for the

Sobol’ sequence. The client/server integration result in the figure serves as the

reference value for all subsequent tests as well. For leaping, we use a standard

non-synchronized leaping approach (denoted as “leap” in the plots) and the labels

“one-fast” and “one-slow” denote the leaping scenarios with one artificially slowed

or speed up PE by a factor of 103 as described in Section 4.3 (applied to stream 0

in either case).

We see that slowing down one PE significantly and employing leaping without

precautions on systems with moderate heterogeneity does not change the integra-

tion result in this case. However, when speeding up one PE the integration result

is improved. This result corresponds well to the results of single substream inves-

tigations where stream 0 of leap 11 also shows better behavior as compared to the



Quasi-Monte Carlo Integration on GRIDS

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2e+06  4e+06  6e+06  8e+06  1e+07

| e
rr

or
 %

 |

N

client/server
leap

leap - one fast
leap - one slow

Fig. 8. Comparison of leaping for the Sobol’ sequence utilizing 12 machines.

original sequence (compare Fig. 2 top left graph). Note that speeding up one node

by a factor of 103 means that the 10 slower nodes only contribute 1% of all QMC

integration nodes which explains the propagation of the single substream behavior

into the final result. Slowing down one node by the same amount (which in fact

means that one stream is missing almost entirely) on the other hand obviously does

not affect the result at all.

Fig. 9 (left plot) shows the results of the same setting applied to the Halton

sequence. We again observe a significant deviation from the client/server result

only in case of speeding up one PE, and the deviation is quite severe. This behavior

relates to the single substream behavior which shows the same for the single stream

0 (compare Fig. 3 top left graph).

Also in the case of the Niederreiter-Xing sequence the single substream behavior

of stream 0 of leap 11 (see Fig. 4 top left graph) is propagated into the result of the

distributed execution with one speed up PE whereas the two other leaping variants

are not affected (Fig. 9 (right plot)).

As a consequence of these results, changing the leap factor is expected to poten-

tially change the overall result significantly. This is confirmed in Fig. 10 where we

use 8 PEs (resulting in a leap factor 8) and the Sobol’ sequence. Again in perfect

accordance to the results seen before speeding up stream 0 affects the integration

result, in this case a severe degradation is observed (as it is expected from a single



Parallel Processing Letters

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2e+06  4e+06  6e+06  8e+06  1e+07

| e
rr

or
 %

 |

N

client/server
leap

leap - one fast
leap - one slow

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 2e+06  4e+06  6e+06  8e+06  1e+07

| e
rr

or
 %

 |

N

client/server
leap

leap - one fast
leap - one slow

Halton Niederreiter-Xing

Fig. 9. Comparison of leaping for the Halton and Niederreiter-Xing sequences utilizing 12 machines.

substream behavior). However, when speeding up stream 0 by a factor of 2 only

(denoted as “leap-one fast-double”) the integration result is even improved as com-

pared to the client/server reference which does not at all correspond to the former

result. Slowing down one PE by a factor of 103 results in some degradation in this

setting which is also true (but with minor significance) for slowing down by a factor

of 2.

When we change the number of machines employed to 10 machines (9 PEs,

resulting in leap factor 9), we note in Fig. 11 that both types of speeding up stream

zero improve the result. Whereas this is to be expected in principle based on the

single substream results, the amount of improvement when speeding up by a factor

of 103 exceeds the improvement of single substream execution.

Finally we investigate the influence of which stream is affected by a slow down or

speed up in distributed execution. Using again 8 PEs but speeding up stream 8 in

this case (as opposed to stream 0 as shown in Fig. 10) is shown to deliver degraded

results as well in the case of the Sobol’ sequence (Fig. 12), however, the degradation

is much less severe in this case. The Niederreiter-Xing sequence does exhibit result

improvement again. Note also that for the client/server result the Sobol’ sequence

is superior to the Niederreiter-Xing sequence.

The results of leaping applied in our experimental setting may be summarized

and interpreted as follows:

• Properties of the single substreams are propagated to integration results using

multiple substreams in distributed execution to some extent.

• Systems exhibiting moderate heterogeneity or systems with a single failing

PE are not severely affected by this phenomenon.

• Systems with a large variety in processing speed may produce very unreliable



Quasi-Monte Carlo Integration on GRIDS

 0

 0.5

 1

 1.5

 2

 2e+06  4e+06  6e+06  8e+06  1e+07

| e
rr

or
 %

 |

N

client/server
leap - one fast

leap - one slow
leap - one fast - double

leap - one slow - double

Fig. 10. Influence of artificial speedup on the results in the case of the Sobol’ sequence using nine
machines.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2e+06  4e+06  6e+06  8e+06  1e+07

| e
rr

or
 %

 |

N

client/server
leap - one fast

leap - one slow
leap - one fast - double

leap - one slow - double

Fig. 11. Influence of artificial speedup on the results in the case of the Sobol’ sequence using ten
machines.



Parallel Processing Letters

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2e+06  4e+06  6e+06  8e+06  1e+07

| e
rr

or
 %

 |

N

Sobol’ client/server
NX client/server

NX - leap 8 - one fast
Sobol’ - leap 8 - one fast

Fig. 12. Comparison of leaping for the Sobol’ and Niederreiter-Xing sequences utilizing nine
machines and modifying stream 8.

and poor results when leaping is applied. In most cases these effects can be

predicted by analyzing single substream behavior, but not all numerical effects

may be explained in this manner sufficiently.

When turning to GRID environments this means that due to the potential ex-

treme heterogeneity leaping can not be used without extreme care in such environ-

ments. While leaping turns out to be able to handle single failing PEs well (the case

of “one-slow” in the results), the sensitivity towards different processing speeds is

of course a significant problem when QMC node sets with low quality leaped sub-

streams are used. In this case only investigation of single substream behavior and

corresponding parameter selection (e.g. choosing leap factors not equal to the num-

ber of participating PEs) or synchronization among PEs helps out. Since both

approaches do not really contribute to facilitate the use of leaping in an efficient

and transparent way, other strategies should be used under such conditions.

5. Conclusion and Future Work

Leaped substreams of different types of QMC point sets have turned out to

behave quite differently. Whereas Sobol’, Halton, and Faure sequences exhibit sin-

gle leaped substreams with extremely low quality, Niederreiter-Xing and Zinterhof

sequences are shown to behave very stable under splitting in our experiments.



Quasi-Monte Carlo Integration on GRIDS

On systems with a large amount of heterogeneity in terms of processing speed,

the properties of single substreams may be reflected in the final result (which is

of course a problem in case of substreams with extremely low quality like Halton,

Sobol’, and Faure sequences). This effect does not occur in systems with moderate

heterogeneity and in systems with single failing PEs.

Consequently, using leaped substreams of QMC sequences on single PEs as a

general strategy in GRID environments can not be recommended. Our results

however indicate that certain types of sequences may be employed in this scenario

without taking specific precautions (Niederreiter-Xing and Zinterhof sequences) and

we have demonstrated that a moderate amount of heterogeneity does not lead to

severe result degradation, even in scenarios where low quality substreams are used.

In future work we will focus on theoretical results backing up the experimental

findings, especially with respect to the extreme differences in splitting sensitivity

among the different QMC point sets. Additionally we will investigate a leaped

substream scenario being able to handle additional computing resources, using leap

factors larger as the number of PEs starting the computation thereby allowing PEs

to be added.

Acknowledgments

The work described in this paper is partially supported by the Austrian Grid

Project, funded by the Austrian BMBWK (Federal Ministry for Education, Science

and Culture) under contract GZ 4003/2-VI/4c/2004.

References

[1] E. deDoncker, R. Zanny, and K. Kaugars. Distributed numerical integration algorithms
and applications. In Proceedings of the 4th World Multiconference on Systemics,
Cybernetics, and Informatics (SCI’00), pages 244–249, 2000.

[2] A.R. Krommer and C.W. Überhuber. Numerical Integration on Advanced Computer
Systems, volume 848 of Lecture Notes in Computer Science. Springer, Berlin, 1994.

[3] A.R. Krommer and C.W. Überhuber. Computational integration. SIAM, Philadel-
phia, 1998.

[4] R. Schürer and A. Uhl. An evaluation of adaptive numerical integration algorithms on
parallel systems. Parallel Algorithms and Applications, 18(1–2):13–26, 2003.

[5] G. Evans. Practical numerical integration. Wiley, Chichester, 1993.
[6] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods.

Number 63 in CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia, 1992.
[7] K. Entacher, P. Hellekalek, and P. L’Ecuyer. Quasi-Monte Carlo node sets from linear

congruential generators. In H. Niederreiter and J. Spanier, editors, Monte Carlo and
Quasi-Monte Carlo Methods 1998, pages 188–198. Springer, 2000.

[8] S. Li, K. Kaugars, and E. deDoncker. Grid-based numerical integration and visualiza-
tion. In Sixth International Conference on Computational Intelligence and Mul-
timedia Applications (ICCIMA’05), pages 260–265. IEEE Computer Society Press,
2005.

[9] W. Ch. Schmid and A. Uhl. Parallel quasi-Monte Carlo integration using (t,s)-



Parallel Processing Letters

sequences. In P. Zinterhof, M. Vajtersic, and A. Uhl, editors, Parallel Computation.
Proceedings of ACPC’99, volume 1557 of Lecture Notes on Computer Science,
pages 96–106. Springer-Verlag, 1999.

[10] W. Ch. Schmid and A. Uhl. Techniques for parallel quasi-Monte Carlo integration
with digital sequences and associated problems. Mathematics and Computers in
Simulation, 55:249–257, 2001.

[11] K. Entacher, T. Schell, W. Ch. Schmid, and A. Uhl. Defects in parallel Monte Carlo
and quasi-Monte Carlo integration using the leap-frog technique. Parallel Algorithms
and Applications, 18(1–2):27–47, 2003.

[12] M. Mascagni and A. Karaivanova. A parallel quasi-Monte Carlo method for solving
systems of linear equations. In P. Sloot et al., editors, The 2002 International Con-
ference on Computational Science - ICCS 2002, volume 2330 of Lecture Notes in
Computer Science, pages 598–608. Springer Verlag, Berlin, Germany, May 2002.

[13] M. Mascagni and A. Karaivanova. A parallel quasi-Monte Carlo method for com-
puting extremal eigenvalues. In K. T. Fang, F. J. Hickernell, and H. Niederreiter, edi-
tors, Monte Carlo and Quasi-Monte Carlo Methods 2000, pages 369–380. Springer-
Verlag, 2002.

[14] V. Alexandrov, E. Atanassov, and I. Dimov. Parallel quasi Monte Carlo methods for
linear algebra problems. Monte Carlo Methods and Applications, 10(3-4):213–219,
2004.

[15] Yaohang Li and Michael Mascagni. Grid-based Quasi-Monte Carlo applications. Monte
Carlo Methods and Appl., 11(1):39–55, 2005.

[16] J.W.L. Wan, K. Lai, A.W. Kolkiewicz, and K.S. Tan. A parallel quasi Monte Carlo
approach to pricing multidimensional americal options. International Journal of High
Performance Computing and Networking, 2006. To appear.

[17] R. Schürer. Parallel high-dimensional integration: quasi-Monte Carlo versus adaptive
cubature rules. In V. N. Alexandrov, J. J. Dongarra, B. A. Juliano, R. S. Renner,
and C. J. K. Tan, editors, The 2001 International Conference on Computational
Science - ICCS 2001, volume 2073 of Lecture Notes in Computer Science, pages
1262–1271, San Francisco, CA, USA, May 2001. Springer Verlag, Berlin, Germany.

[18] B.C. Bromley. Quasirandom number generators for parallel Monte Carlo algorithms.
Journal of Parallel and Distributed Computing, 38:101–104, 1996.

[19] J.X. Li and G.L. Mullen. Parallel computing of a quasi-Monte Carlo algorithm for
valuing derivatives. Parallel Computing, 26(5):641–653, 2000.

[20] E. deDoncker, A. Genz, and M. Ciobanu. Parallel compuation of multivariate normal
probabilities. Computing Science and Statistics, 30, 1999.

[21] E. deDoncker, R. Zanny, M. Ciobanu, and Y. Guan. Distributed quasi-Monte Carlo
methods in a heterogeneous environment. In Proceedings of the Heterogeneous Com-
puting Workshop 2000 (HCW’2000), pages 200–206. IEEE Computer Society Press,
2000.

[22] E. deDoncker, R. Zanny, M. Ciobanu, and Y. Guan. Asynchronous quasi-Monte Carlo
methods. In Proceedings of the High Performance Computing Symposium 2000
(HPC’00), pages 130–135, 2000.

[23] L. Cucos and E. deDoncker. Distributed QMC algorithms: new strategies for and
performance evaluation. In Proceedings of the High Performance Computing Sym-
posium 2002 (HPC’02)/Advanced Simulation Techniques Conference, pages 155–
159, 2002.

[24] G. Ökten and A. Srivivasan. Parallel quasi-Monte Carlo methods on a heterogeneous
cluster. In K. T. Fang, F. J. Hickernell, and H. Niederreiter, editors, Monte Carlo
and Quasi-Monte Carlo Methods 2000, pages 406–421. Springer-Verlag, 2002.



Quasi-Monte Carlo Integration on GRIDS

[25] A. Srinivasan. Parallel and distributed computing issues in pricing financial deriva-
tives through quasi-Monte Carlo. In Proceedings of the International Parallel &
Distributed Processing Symposium 2002 (IPDPS’02), Fort Lauderdale, FL, USA,
April 2002. IEEE Computer Society Press.

[26] E. deDoncker and Y. Guan. Error bounds for the integration of singular functions
using equidistributed sequences. Journal of Complexity, 19:259–271, 2003.

[27] Peter Zinterhof. High dimensional improper integration procedures. In Civil Engi-
neering Faculty Technical University of Košice, editor, Proceedings of Contributions
of the 7th International Scientific Conference, pages 109–115, Hroncova 5, 04001
Košice, SLOVAKIA, May 2002. TULIP.

[28] Rudolf Schürer and Wolfgang Ch. Schmid. Mint - the database of optimal (t,m,s)-net
parameters. online: http://mint.sbg.ac.at/.

[29] Ilya M. Sobol. On the distribution of points in a cube and the approximate evaluation
of integrals. U.S.S.R. Computational Mathematics and Mathematical Physics,
7(4):86–112, 1967.

[30] Harald Niederreiter. Point sets and sequences with small discrepancy. Monatshefte
für Mathematik, 104:273–337, 1987.

[31] Gary L. Mullen, Arijit Mahalanabis, and Harald Niederreiter. Tables of (t, m, s)-net
and (t, s)-sequence parameters. In Harald Niederreiter and P. J.-S. Shiue, editors,
Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, volume
Lecture Notes in Statistics of 106, pages 58–86. Springer-Verlag, 1995.

[32] Henry Faure. Discrépance de suites associées à un système de numération (en dimension
s). Acta Arithmetica, 41:337–351, 1982.

[33] J. H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating
multi-dimension integrals. Numer. Math., 2:84–90, 1960. Berichtigung, ibid., (1960),
p. 196.

[34] Harald Niederreiter and Chaoping Xing. Low-discrepancy sequences and global func-
tion fields with many rational places. Finite Fields and Their Applications, 2:241–
273, 1996.

[35] Chaoping Xing and Harald Niederreiter. A construction of low-discrepancy sequences
using global function fields. Acta Arithmetica, 71(1):87–102, 1995.

[36] Andrew T. Clayman, K. Mark Lawrence, Gary L. Mullen, Harald Niederreiter, and
N. J. A. Sloane. Updated tables of parameters of (t, m, s)-nets. Journal of Combi-
natorial Designs, 7:381–393, 1999.

[37] Peter Zinterhof. Einige zahlentheoretische methoden zur numerischen Quadratur

und Interpolation. Sitzungsberichte der Österreichischen Akademie der Wis-
senschaften, math.-nat.wiss. Klasse Abt. II, 177:51–77, 1969.

[38] I.M. Sobol’. Calculation of improper integrals using uniformly distributed sequences.
Soviet Math Dokl., 14(3):734–738, July 1973.

[39] L. Kocis and W.J. Whiten. Computational investigations of low-discrepancy sequences.
ACM Transactions on Mathematical Software, 23(2):266–294, 1997.

[40] I. Radović, I.M. Sobol, and R.F. Tichy. Quasi-monte carlo methods for numerical
integration: Comparison of different low discrepancy sequences. Monte Carlo Methods
and Appl., 2(1):1–14, 1996.

[41] Jürgen Hartinger, Reinhold Kaindorfer, and Volker Ziegler. On the corner avoidance
properties of various low-discrepancy sequences. 2004. submitted.

[42] Art B. Owen. Halton sequences avoid the origin. Technical report, Stanford University,
2004.


