
On the Computer Assisted Diagnosis
of Endoscopic Data with Indication

for Celiac Disease

by
DI Sebastian Hegenbart

Cumulative dissertation submitted to the
Faculty of Natural Sciences, University of Salzburg

in partial fulfillment of the requirements
for the Doctoral Degree.

Thesis Supervisor
Univ.-Prof. Mag. rer. nat. Dr. rer. nat. Andreas Uhl

Department of Computer Sciences
University of Salzburg
Jakob Haringer Str. 2

5020 Salzburg, AUSTRIA

Salzburg, October 2014





Abstract

Celiac disease is a complex autoimmune disorder in genetically predisposed individuals of all
age groups triggered by the introduction of food containing traces of gluten. Associated compli-
cations include osteoporosis, infertility and other autoimmune diseases such as type 1 diabetes,
autoimmune thyroid disease and autoimmune liver disease. Once diagnosed, the only treat-
ment is a strict life-long gluten free diet. A reliable diagnosis is therefore of high interest.

Systems for automated diagnosis are an emerging option for medical intervention and en-
doscopy in particular. Such a system could potentially save costs and manpower while simul-
taneously increasing the safety of the procedure. The research presented in this thesis was
focused towards the development of methods for a computer assisted system for automated
diagnosis of celiac disease.

The intrinsic properties of data recorded during flexible endoscopy suggest the interpretation
of the automated diagnosis of celiac tissue as a texture classification problem. Consequently, a
substantial part of our research was focused on texture classification methods. We established
a solid knowledge base for subsequent work by studying the properties of various different
feature representations, including scale-invariant methods. To accommodate for the nature of
endoscopic data, we subsequently developed a scale- and rotation-adaptive feature represen-
tations based on Local Binary Patterns (LBP), which proved to be highly discriminative and
robust in endoscopic environments.

Towards the development of a system for computer assisted diagnosis, a significant part of
our research was aimed at evaluating characteristic properties of duodenal images and videos.
In particular, techniques for the implicit handling of endoscopic image degradations as well as
varying gastrointestinal regions and camera-scales were studied.

The nature of medical data differs from the characteristics of data used in more classical tex-
ture classification scenarios. As a result of asymmetric patient distributions, medical data sets
are often subject to an intrinsic bias, violating assumptions used in cross-validation protocols.
In order to establish a solid basis for the evaluation of developed methodologies, we studied
the effects of different cross-validation schemes combined with feature optimization on the pre-
dictive accuracy.

Finally, we implemented crowd-sourcing into a medical image classification context, focusing
on the wide spread problem of limited amounts of available data, annotated by domain experts.
By the means of noisy, non-expert labeled data, a classifier was trained which showed to be
competitive as compared to a system based on a limited amount of pristine labels.
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Abstract (German)

Zöliakie ist eine komplexe Autoimmunerkrankung von genetisch prädisponierten Individuen,
welche durch Einnahme glutenhaltiger Nahrungsmittel ausgelöst werden kann. Mit Zöliakie
assoziierte Erkrankungen umfassen Osteoporose, Unfruchtbarkeit sowie andere Autoimmun-
erkrankungen, wie Typ 1 Diabetes, autoimmune Schilddrüsenerkrankungen sowie autoim-
mune Lebererkrankungen. Die einzig bekannte Behandlungsmöglichkeit nach einer Diagnose
besteht aus einer lebenslangen glutenfreien Diät. Eine zuverlässige Diagnose ist daher uner-
lässlich.

Computergestützte Systeme zur automatisierten Diagnose sind eine aufstrebende Option für
medizinische Eingriffe, wie zum Beispiel Endoskopie. Solche Systeme besitzen Potenzial um
Kosten, Zeit als auch Arbeitskraft einzusparen. Gegebenenfalls könnte ein solch assistieren-
des System sogar die Sicherheit der medizinischen Behandlung erhöhen. Der Fokus, der in
dieser Dissertation präsentierten Forschung, ist daher auf die Entwicklung von Methoden für
ein computergestütztes System zur automatisierten Diagnose von Zöliakie gerichtet.

Aufgrund der intrinsischen Eigenschaften endoskopischer Daten, bieten sich Methoden aus
der klassischen Texturklassifikation zur automatisierten Diagnose gastrointestinalen Gewebes
an. Infolgedessen bestand ein substanzieller Teil unserer Forschung aus der Entwicklung und
Validierung von Texturklassifikationsmethoden. Dies beinhaltete eine umfassende Auswertung
der Eigenschaften diverser Verfahren zur Merkmalsextraktion, inklusive skalierungsinvarianter
Methoden, welche als solide Basis für weitere Entwicklungen auf diesem Gebiet diente. Um den
intrinsischen Eigenschaften endoskopischer Daten Rechnung zu tragen, wurden infolgedessen
skalierungs- sowie rotationsinvariante Merkmalsextraktionsverfahren, basierend auf Local Bi-
nary Patterns (LBP), entwickelt, welche sich durch hohe Unterscheidbarkeit und Robustheit in
endoskopischen Szenarien auszeichneten.

Ein weiterer fundamentaler Teil unserer Arbeit hinsichtlich der Entwicklung eines comput-
ergestützten Systems, bezog sich auf die Untersuchung charakteristischer Eigenschaften von
Videos und Bildern aus dem Duodenum. Techniken für den impliziten Umgang mit endoskopis-
chen Bildstörungen sowie variierender gastrointestinaler Regionen und verschiedener Kam-
eradistanzen wurden ebenso untersucht.

Die Eigenschaften medizinischer Daten unterscheiden sich üblicherweise von denen gewöhn-
licher Daten, welche in klassischeren Texturklassifikationsszenarien eingesetzt werden. Auf-
grund der asymmetrischen Verteilung gesunder und erkrankter Patienten sind medizinische
Daten oft einer intrinsischen statistischen Verzerrung ausgesetzt, aufgrund derer Annahmen
von Kreuzvalidierungsverfahren verletzt werden. Hinsichtlich der Schaffung einer fundierten
Grundlage zur Auswertung entwickelter Methoden, wurde der Einfluss verschiedener Kreuz-
validierungsverfahren in Kombination mit Merkmalsoptimierungsverfahren auf die Genauig-
keit der getroffenen Vorhersagen untersucht.

Schlussendlich setzten wir Crowdsourcing in einem medizinischen Bildklassifikationskon-
text ein, um das allgemeine Problem der unausreichenden Menge verfügbarer, annotierter,
medizinischer Daten zu lösen. Mithilfe einer, von nicht-medizinisch-geschulten Personen er-
stellten ungenauen Grundwahrheit, konnte ein Klassifikationssystem mit einer Leistung, ver-
gleichbar zu einem System basierend auf einer kleineren Anzahl an Daten mit exakter Grund-
wahrheit, konstruiert werden.
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1. Introduction

This cumulative dissertation covers my research performed at the University of Salzburg as a
member of the wavelab group lead by Andreas Uhl. My research was focused towards the de-
velopment of methods for a computer assisted system for automated diagnosis of celiac disease
in standard flexible endoscopy. Systems for automated diagnosis are an emerging option for
endoscopic treatments (e.g. [39, 2, 1, 38]) and could potentially be used to save costs, time and
manpower while simultaneously increasing the safety of the procedure. Computer assisted di-
agnosis systems could be used to develop less invasive approaches avoiding biopsy. Studies by
Cammarota et al. [4, 5], investigating such endoscopic techniques, report reliable results.

This thesis is structured as follows. Section 1.1 will give an overview of celiac disease, its
gastrointestinal manifestations and the clinical routine used in diagnosis. Section 1.2 puts the
presented research into context of related work in the field of automated diagnosis of celiac
disease in endoscopic data. To improve the readability, the presented contributions are arranged
into three categories:

• Methods for Texture Classification (Section 2)

• Characteristic Properties of Duodenal Images and Videos (Section 3)

• Classification and Performance Prediction in Medical Data (Section 4)

Section 5 gives a summarizing conclusion of the research presented in this thesis. The actual
publications can be found in Section 6.

Please note, that a substantial amount of the presented work was a joint effort with other
researchers. I will therefore use the plural form when referring to our research during the text.
A breakdown of the contributions of each author for each publication can be found in the ap-
pendix.

1.1. Celiac Disease and Endoscopy

Celiac disease is a complex autoimmune disorder in genetically predisposed individuals of all
age groups triggered by the introduction of food containing traces of gluten. The gastroin-
testinal manifestations invariably comprise an inflammatory reaction within the mucosa of the

1



Chapter 1. Introduction
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Figure 1.1.: Healthy Mucosal Tissue and Tissue affected by Villous Atrophy.

small intestine caused by a dysregulated immune response. During the course of the disease,
hyperplasia of the enteric crypts occurs and the mucosa eventually loses its absorptive villi thus
leading to a diminished ability to absorb nutrients. The real prevalence of the disease has not
been fully clarified yet. This is due to the fact that most patients with celiac disease suffer from
no or atypical symptoms and only a minority develops the classical form of the disease. Since
several years, prevalence data have continuously been adjusted upwards. Fasano et al. [15] state
that more than 2 million people in the United States, this is about one in 133, have the disease.
People with untreated celiac disease, even if asymptomatic, are at risk for developing various
complications like osteoporosis, infertility and other autoimmune diseases including type 1 di-
abetes, autoimmune thyroid disease and autoimmune liver disease. Figure 1.1 illustrates the
visualized appearance of healthy duodenal mucosa and tissue affected by villous atrophy.

The clinical routine for screening subjects with indications for celiac disease includes serolog-
ical assays using endomysial antibody (EMA) and tissue transglutaminase (tTG) tests, possi-
bly followed by upper endoscopy to perform duodenal biopsy for a histological confirmation.
Guidelines recommend more then four endoscopic duodenal biopsies. Due to the patchy nature
of villous atrophy [3, 36], duodenal biopsies could potentially miss abnormalities (regions af-
fected by the disease). The correct targeting of biopsies is therefore essential for the histological
confirmation of the disease. Computer assisted technology could potentially be used to guide
the targeting of biopsies, consequently improving the accuracy of the diagnosis.

The most common scheme used to assess the severity of celiac disease in duodenal tissue is
the modified Marsh-Oberhuber classification [42]. This histological classification scheme iden-
tifies six classes, ranging from class Marsh-0 (no visible change of villi structure) up to class
Marsh-3C (absent villi). Figure 1.2 illustrates the Marsh staging schematically.

• Marsh 0-2: No visible changes of villi structure

• Marsh 3A: Mild villous atrophy

• Marsh 3B: Marked villous atrophy

• Marsh 3C: Absent villi

Besides standard upper endoscopy, several new endoscopic approaches for diagnosing celiac
disease have been applied [7]. The modified immersion technique [4] is based on the instillation
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Chapter 1. Introduction

Figure 1.2.: Schematic Marsh Staging of Mucosal Tissue Affected by Celiac Disease [52].

of water into the duodenal lumen for better visualization of the villi. Furthermore, magnifying
endoscopy (standard endoscopy with additional magnification) has been investigated [6]. Nar-
row band imaging (NBI [13]) has recently been used to enhance the contrast of vascular patterns
on the mucosal surface. Valitutti et al. [48] recently proposed the use of NBI combined with the
water immersion technique. Confocal endomicroscopy is a novel technology allowing real-time
in vivo microscopy which has been shown to be a promising technique to diagnose celiac dis-
ease in endoscopy by Leong et al. [41].

A drawback of standard upper endoscopy using a flexible endoscope is the limited range. As
a way of inspecting a much larger area of the intestine, wireless capsule endoscopy (WCE [45])
is used. In WCE, a small capsule equipped with a camera is swallowed by the patient. The
capsule records images of the mucosal tissue during its passage through the intestine. In con-
trast to the high resolution of the data provided by fully-fledged flexible endoscopes, images
captured during WCE are usually at significantly lower resolutions due to obvious restrictions
on the hardware’s size. WCE sequences are characterized by slow, monotonic movement. This
is a result of the passive camera movement through the intestine caused by peristalsis. As a
consequence of the nature of WCE, spatio-temporal features are frequently used to analyze the
visualized gastrointestinal tissue.

Data captured during flexible endoscopy on the other hand, is characterized by rapid, non-
monotonic movement. The high resolution of the data combined with unpredictable move-
ment, suggests to approach the automated diagnosis as a classical still image texture classifica-
tion scenario.

Due to the missing guidance of the capsule and the lacking option of performing biopsy, WCE
and flexible endoscopy are quite complementary. As a result of the different characteristics of
the provided data, it is unlikely, that all methods developed for WCE can be applied in flexible
endoscopy and vice versa.

1.2. Related Work

At this point in time, most of the research performed on the automated diagnosis of celiac dis-
ease in endoscopic data is done by two independent research groups. In a complementary fash-
ion, the group around Edward J. Ciaccio has been focusing heavily on WCE imagery, employing
spatio-temporal features as well as using the intestinal motility to assess the degree of villous
atrophy. The group around Andreas Uhl has been working on data from flexible endoscopy,
approaching the problem from a texture classification perspective.

3



Chapter 1. Introduction

Promising spatio-temporal features identified by Ciaccio et al. [8] include the statistics of local
tissue brightness in a temporal context of multiple WCE images. In another work [12], salient
information is computed based on the identification of the dominant period in a series of WCE
images. Celiac tissue is identified using spatial statistics of a series of basis images.

A promising concept is based on the analysis of the motility of the duodenal wall [10]. Based
on this approach areas suspect of being affected by celiac disease could be identified. The effects
of villous atrophy on the visualized periodicity of peristalsis were also used to identify affected
regions [9]. This was done by the means of dominant frequency analysis.

In an approach that was also evaluated in flexible endoscopy, Ciacco et al. assess the degree
of villous atrophy by explicit measurement of the length of mucosal fissures [11]. This approach
however requires a calibration of the surface dimension which is a challenging task in flexible
endoscopy due to varying camera-scales. Finally, shape from shading was explored to analyze
the luminal macro-architecture in a sequence of WCE images [11].

Contributions of the group around Uhl have shown strong empirical evidence in multiple
experimental studies that feature representations used in more classical texture classification
scenarios [51, 50] are feasible in the context of automated diagnosis of celiac disease. To ac-
commodate for the characteristics of flexible endoscopy, scale- and viewpoint-invariant feature
representations have been used [47] and developed in particular for the classification of celiac
disease [18].

The effects of endoscopic lens distortions as well as the benefits of distortion correction have
been extensively studied [25, 16, 23, 26]. The authors identified that interpolation artifacts and
varying camera-scales are the main restriction on distortion correction performance [17]. As
a consequence, distortion adaptive classification [20], distortion compensated features [19] as
well as intrinsic distortion correction [22] have been used. Finally, the effects of endoscopic lens
distortion on the diagnosis accuracy of domain experts have been studied [21].

Recently, Grisan et al. [24] were the first to use confocal endomicroscopy for the automated
diagnosis of celiac disease. In their approach, statistical features and LBP were used on a pyra-
midal decomposition of images.
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2. Contributions: Methods for Texture Classification

Due to the characteristics of flexible endoscopy (rapid motion, motion blur, non-monotonic
transition of the gastrointestinal tract, high resolution of data), it is difficult to employ features
in a temporal context. Consequently, we approached the automated diagnosis from a more
classical texture classification perspective. As a result, a substantial amount of our research was
focused on methods for texture classification.

Initial work towards the development of a computer assisted system for diagnosis of celiac
disease was focused on studying the properties and applicability of various feature representa-
tions used in the field of pattern recognition.

We learned that local texture operators based on Local Binary Patterns (LBP [43]) are very
promising for the classification of celiac disease. Varying camera-scales were identified to sig-
nificantly affect the classification performance. Consequently scale-invariant features represen-
tations were studied.

Finally, a scale- and orientation-adaptive feature representation based on LBP was developed.

Publications (sorted chronologically)

VÉCSEI, A., AMANN, G., HEGENBART, S., LIEDLGRUBER, M., AND UHL, A. Automated
Marsh-like Classification of Celiac Disease in Children using Optimized Local Texture
Operators. Computers in Biology and Medicine 41, 6 (2011), 313 – 325

HEGENBART, S., UHL, A., VÉCSEI, A., AND WIMMER, G. Scale Invariant Texture Descriptors
for Classifying Celiac Disease. Medical Image Analysis 17, 4 (2013), 458 – 474

HEGENBART, S., AND UHL, A. A Scale-Adaptive Extension to Methods based on LBP using
Scale-Normalized Laplacian of Gaussian Extrema in Scale-Space. In Proceedings of the Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP ’14) (2014), pp. 4352
– 4356

HEGENBART, S., AND UHL, A. An Orientation-Adaptive Extension to Scale-Adaptive Local
Binary Patterns. In Proceedings of the 22nd International Conference on Pattern Recognition
(ICPR’14) (2014), pp. 1120 – 1125

HEGENBART, S., UHL, A., AND VÉCSEI, A. A Scale- and Orientation-Adaptive Extension of
Local Binary Patterns. Tech. Rep. 2014-05, Department of Computer Sciences, University
of Salzburg, Austria, 2014. http://uni-salzburg.at/index.php?id=38565; Sub-
mitted to Elsevier Journal on Pattern Recognition (October 2014): Under Review
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Chapter 2. Contributions: Methods for Texture Classification

2.1. Automated Marsh-like Classification of Celiac Disease in Children
using Local Texture Operators

In this initial publication, we were the first to study the automated diagnosis of celiac disease in
flexible endoscopy, based on a reduced 4-class Marsh-like classification system. The main focus
of our work was on the evaluation of various feature representations, in particular local texture
operators based on LBP.

The experimental evaluation indicated, that LBP-based feature representations are highly
competitive in this scenario. We consequently put more emphasize on employing LBP-based
methods for automated classification in subsequent work.

We also proposed two new LBP-based methodologies, particularly optimized for endoscopic
environments. The WT-LBP (Wavelet Transform - LBP) method was designed to combine differ-
ent wavelet subbands with appropriate LBP-based operators, while the ELTP (Extended Local
Ternary Patterns) method combines the benefits of the robust Local Ternary Patterns (LTP [46])
with the highly discriminative Extended Local Binary Patterns (ELBP [37]), using an adaptive
thresholding based on local image statistics.

During experimentation, we gained strong empirical evidence, that the modified Marsh-
Oberhuber scheme poses an ill-suited problem for visual texture classification. This is a conse-
quence of the non-distinct visual appearance of tissue in classes of type Marsh-3A to Marsh-3C
in endoscopic imagery. We concluded, that more simplified, visually focused systems such as
proposed by Ensari [14] may be better suited for automated diagnosis.

Due to the available histological ground-truth following the Marsh-Oberhuber classification
scheme, we subsequently focused on the most clinically-relevant binary categorization between
tissue affected by villous atrophy and healthy mucosa.

6



Chapter 2. Contributions: Methods for Texture Classification

2.2. Scale Invariant Texture Descriptors for Classifying Celiac Disease

As a consequence of the manual guidance, rapid changes of scenery and a high variation of
viewpoint and camera-scale is very common in endoscopic sequences. Earlier work [32] (see
Section 3.2) indicated that varying camera-scales affect the performance of automated diagnosis.
We therefore studied the benefits of scale-invariant feature representations in the context of
celiac disease classification.

A large set of state-of-the art techniques were evaluated with emphasis on multi-scale and
multi-orientation wavelet transform based methods. In the same work, we proposed the com-
putation of an affine-invariant LTP-based feature representation using local texture scale and
shape information employing Laplacian of Gaussian (LoG) maxima and multi-scale second mo-
ment matrices in a scale-space representations of endoscopic images.

We learned that the scale-invariance properties of a large number of feature representations
are based on theoretical concepts and assumptions, which rarely hold in practice. As a con-
sequence, the scale-invariance of such features is questionable. Even more, scale-invariant
feature representations often exhibit a decreased discriminative power as compared to other,
non-invariant feature representations. Consequently, the experimental evaluation showed, that
features specifically designed for scale-invariance performed comparable to non-invariant fea-
tures.

The proposed affine-invariant computation of LTP proved to be highly competitive though
and motivated us to put more effort into combining highly discriminative LBP based features
with a scale- and orientation-adaptive computation in subsequent work.

7



Chapter 2. Contributions: Methods for Texture Classification

2.3. A Scale-Adaptive Extension to Methods based on LBP using
Scale-Normalized Laplacian of Gaussian Extrema in Scale-Space

A main restriction of LBP based features is the sensitivity to affine transformations. This is a
direct consequence of the fixed-scale radius and the fixed sampling area dimension of the pixel
neighborhood. Locally computed patterns implicitly encode the underlying micro structures of
a texture at a scale directly related to the camera-scale of an image. As a result, the LBP feature
representation can not compensate for different camera-scales, a common thing in endoscopy.

Based on the prior observation, that general scale-invariant feature representations exhibit a
decreased discriminative power and that theoretical concepts and assumptions in scale-invariance
rarely hold in practice, we developed a general framework for computation of scale-invariant
LBP, combining highly discriminative LBP based features with a reliable scale-adaptive compu-
tation.

We propose a scale-invariant LBP representation, based on the estimation of the global tex-
ture scale. The distribution of scale-normalized LoG responses in a scale-space representation
is used for scale-estimation. Intrinsic-scale-adaption is performed to compute features inde-
pendent of the intrinsic texture scale, leading to a significantly increased discriminative power
for a large amount of texture classes. The experimental results showed significantly improved
classification accuracies compared to standard LBP-based methods in scenarios with large scale
differences for two publicly available texture databases (KTH-TIPS and Kylberg).

Due to the heavy focus on the methodology in this work, we used publicly available databases
for the experimental evaluation to allow reproducibility in the pattern recognition community.
Although no celiac data was used in this particular publication, the presented methodology was
extended in subsequent work and was successfully used to improve the classification accuracy
of celiac tissue in scenarios with varying scales [33] (see Section 2.5).

8



Chapter 2. Contributions: Methods for Texture Classification

2.4. An Orientation-Adaptive Extension to Scale-Adaptive Local Binary
Patterns

Rotation of an image is reflected as a circular shift in the individual patterns of LBP, which
affects the distribution of patterns in a non-linear fashion. As a consequence, the standard LBP
feature representation requires either an implicit or explicit alignment of patterns to compensate
for image rotations. This is generally done at the encoding level. A major limitation of such
encoding level based approaches however is the highly limited angular resolution.

Based on our prior work on the scale-adaptive computation of LBP, we solved this limitation
by an explicit alignment of patterns at the extraction level, using a robust estimate of global
texture orientation.

We estimate the global orientation of a texture by computing multi-scale second moment ma-
trices at a dense grid. The orientation at a specific location is determined as the angle between
the major axis of the ellipse represented by the second moment matrix and the vertical axis of
the coordinate system (the axes of the image). We then estimate the global orientation of an im-
age, based on the distribution of local orientations, computed at all coordinates of the sampled
grid.

The experimental evaluation showed significantly improved classification accuracies in sce-
narios with scaling and rotation. Again, publicly available databases were used instead of the
celiac data in favor of reproducibility.
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Chapter 2. Contributions: Methods for Texture Classification

2.5. A Scale- and Orientation-Adaptive Extension of Local Binary
Patterns

In our final work on rotation- and scale-invariant LBP, we proposed a multi-resolution feature
representation, improving the general descriptive power by reducing the required amount of
low-pass filtering for adapting the sampling area and adding the capability of describing un-
derlying micro structures at multiple scales.

We improved the orientation-adaptive representation by applying an error compensation
technique based on the accumulation of LBP distributions at multiple orientations. Exploit-
ing the systematic error introduced by image rotation, this technique allows to compensate
orientation estimation errors of up to 20 degrees.

In a detailed experimental evaluation, the effects of scaling and rotation on the proposed
method are studied in reference to a representative set of scale-invariant features. Experimen-
tation is based on four different data sets, including endoscopic data with indication for celiac
disease.

The proposed method was significantly superior to all evaluated methods in case of large
scale differences. The proposed multi-resolution feature representation was more than compet-
itive in scenarios with tiny scale differences. Experimentation based on the noisy CURET data
and the endoscopic data with indication for celiac disease showed, that the proposed method-
ology provides discriminative and reliable features in such difficult scenarios.

Experimental evidence indicates, that the proposed methodology is current state-of-the art in
classifying celiac disease in scenarios with varying camera-scales.
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3. Contributions: Characteristic Properties of Duodenal
Images and Videos

Endoscopic sequences provide a challenging scenario for automated diagnosis. Image degrada-
tions such as blur, bubbles, specular reflections and noise are common in such data. Due to the
manual guidance by a clinician, rapid, non-monotonic movement of the camera is common dur-
ing flexible endoscopy. Additionally, the camera-scale and viewpoint towards the tissue shows
a significant variation. As a consequence, the visualized appearance of the intestine varies in an
unpredictable manner.

We approached the challenging endoscopic scenario using a one-class support vector ma-
chine (SVM) to implicitly handle the most common endoscopic image degradations. We further
evaluated that approach in the context of multiple-gastrointestinal regions and camera-scales.

Finally, we studied the effects of interlaced scanning and evaluated the benefits of suited
de-interlacing techniques on the performance of automated diagnosis.

Publications (sorted chronologically)

HEGENBART, S., UHL, A., AND VÉCSEI, A. Impact of Endoscopic Image Degradations on
LBP based Features using One-Class SVM for Classification of Celiac Disease. In Proceed-
ings of the 7th International Symposium on Image and Signal Processing and Analysis (ISPA’11)
(Dubrovnik, Croatia, 2011), pp. 715 – 720

HEGENBART, S., UHL, A., AND VÉCSEI, A. On the Implicit Handling of Varying Distances
and Gastrointestinal Regions in Endoscopic Video Sequences with Indication for Celiac
Disease. In Proceedings of the IEEE International Symposium on Computer-Based Medical Sys-
tems (CBMS’12) (2012), pp. 1 – 6

HEGENBART, S., UHL, A., VÉCSEI, A., AND WIMMER, G. On the Effects of De-Interlacing
on the Classification Accuracy of Interlaced Endoscopic Videos with Indication for Celiac
Disease. In Proceedings of the 26th IEEE International Symposium on Computer-Based Medical
Systems (CBMS’13) (2013), pp. 137 – 142
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Chapter 3. Contributions: Characteristic Properties of Duodenal Images and Videos

3.1. Impact of Endoscopic Image Degradations on LBP based Features
using One-Class SVM for Classification of Celiac Disease

Endoscopic image degradations such as blur, bubbles, noise and specular reflections are a com-
mon nuisance in endoscopic data. Although it is safe to assume that this sort of degradations
has a negative impact on automated diagnosis, it is generally unclear to what degree the classi-
fication accuracy is affected.

An explicit approach to handle such degradations is based on informative frame identifica-
tion, possibly in combination with some sort of segmentation technique. Consequently, the
performance of a system based on such an approach is highly affected by the reliability of this
pre-processing step. As an alternative to informative frame identification and segmentation,
we investigated the implicit handling of such image degradations, employing a one-class SVM
classifier trained specifically on tissue affected by villous atrophy.

In an experimental evaluation using LBP-based methods for feature extraction, the most com-
mon image degradations were simulated to allow a fine grained analysis of the individual ef-
fects on the classification accuracy. The results give evidence, that certain types of image degra-
dations, such as bubbles and reflections, only affect a subset of LBP-based methods and can
actually be compensated using the proposed approach. Blur and noise had the most impact on
LBP-based features.

We concluded, that unconstrained classification of celiac disease based on LBP using a one-
class SVM is feasible to some degree. Extreme cases of image distortions might require an addi-
tional step of informative frame identification however. By relaxing the needs for informative
frame identification to extreme cases, the general reliability of a fully automated system could
possibly be increased.
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Chapter 3. Contributions: Characteristic Properties of Duodenal Images and Videos

3.2. On the Implicit Handling of Varying Distances and Gastrointestinal
Regions in Endoscopic Video Sequences with Indication for Celiac
Disease

Sequences in flexible endoscopy are commonly non-monotonic in terms of the passage through
gastrointestinal regions. As a consequence of the visual appearance of esophageal and gastric
tissue in endoscopic data, it is possible that the missing villi structures in these regions are
misinterpreted as celiac disease by an automated system.

Additionally, inappropriate camera-scales either lead to a blurred visualization of the mucosa
(close distance) or to a missing visualization of small spatial structures (far distance) and could
consequently be unsuited for visual classification. We therefore evaluated the impact of varying
camera distances and gastrointestinal regions on the classification pipeline (employing a one-
class SVM) proposed previously.

The experiments indicated, that the visualization of mucosal tissue at close and far distances
is unsuited for classification with LBP-based methods. Even more, the missing villi structures in
the stomach and esophagus were misinterpreted as celiac disease by our classification system.
It is clear that the scaling-affected LBP-based methods are unsuited for feature extraction in
these extreme scenarios. As a consequence, we focused on scale-invariant and scale-adaptive
feature representations (as presented in Section 2) in subsequent work.

In order to handle the non-monotonic visualization of multiple gastrointestinal regions in
a fully automated system, an additional mechanism for tracking the endoscope’s location or
identification of the intestinal region is required.
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Chapter 3. Contributions: Characteristic Properties of Duodenal Images and Videos

3.3. On the Effects of De-Interlacing on the Classification Accuracy of
Interlaced Endoscopic Videos with Indication for Celiac Disease

Interlaced scanning is a technique that has been widely used to double the perceived frame rate
without increasing the required bandwidth. This technique is still in use by endoscopic video
hardware today. Various specialized de-interlacing techniques have been developed over the
last decades to re-construct full frames from two interlaced half-frames.

The impact of interlaced scanning and the benefits of suited de-interlacing techniques on the
classification accuracy of automated diagnosis was studied in this work.

We learned, that de-interlacing does not have a significant positive effect on the classifica-
tion accuracy of endoscopic data with indication for celiac disease. The benefits of applying
de-interlacing were comparable to the effects of Gaussian filtering. We were unable to iden-
tify a difference between simple and more complex de-interlacing techniques considering the
classification accuracy.

As a consequence, we concluded that a system for automated diagnosis can operate on inter-
laced data without significant loss of accuracy.
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4. Contributions: Classification and Performance Prediction
in Medical Data

The nature of medical data differs from the characteristics of data used in more classical texture
classification scenarios. As a consequence of the limited amount of available data and the asym-
metric distributions of healthy and unhealthy patients, data sets in medical image classification
often contain an unavoidable intrinsic bias.

Hence, assumptions used in cross-validation protocols, used for predicting how well devel-
oped methodologies will generalize on independent data, are violated and the predicted per-
formance is subject to bias and error.

Typically, a substantial amount of correctly labeled medical data is required to construct sys-
tems for automated diagnosis. The limited amount of expert labeled medical data is therefore
another actual problem in the field of research.

Our contributions in this section are focused on these issues of medical image classification.
We studied the effects of data-bias and feature optimization on the predictive accuracy of dif-
ferent cross-validation techniques. This was specifically done in the context of classification of
celiac disease but should apply to a variety of scenarios in medical image classification.

We finally evaluated the practical use of crowd-sourced annotations of medical data by non-
experts to construct systems for automated diagnosis.

Publications (sorted chronologically)

HEGENBART, S., UHL, A., AND VÉCSEI, A. Impact of Histogram Subset Selection on Clas-
sification using Multiscale LBP. In Proceedings of Bildverarbeitung für die Medizin 2011
(BVM’11) (Lübeck, Germany, 2011), Informatik aktuell, pp. 359 – 363

HEGENBART, S., UHL, A., AND VÉCSEI, A. Systematic Assessment of Performance Predic-
tion Techniques in Medical Image Classification - A Case Study on Celiac Disease. In
Proceedings of the 22nd International Conference on Information Processing in Medical Imaging
(IPMI’11) (Monastery Irsee, Germany, 2011), pp. 498 – 508

KWITT, R., HEGENBART, S., RASIWASIA, N., VÉCSEI, A., AND UHL, A. Do we Need Anno-
tation Experts? A Case Study in Celiac Disease Classification. In Proceedings of the Inter-
national Conference on Medical Image Computing and Computer Assisted Intervention (MIC-
CAI’14) (2014), pp. 454 – 461
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Chapter 4. Contributions: Classification and Performance Prediction in Medical Data

4.1. Impact of Histogram Subset Selection on Classification using
Multiscale LBP

Multiscale-LBP [44] is used to describe underlying micro structures of an image at multiple
scales, possibly improving the descriptive power of the features. The feature representation is
constructed by concatenation of multiple LBP-histograms, each computed at a separate fixed
LBP-radius.

In combination with different color channels, this leads to a high number of possibly indis-
criminate LBP-histograms. It is likely that not all scales and color channels are well suited for
the classification of celiac disease.

Consequently, we studied the use of feature subset selection for identification of suitable and
discriminative features in a multiscale-LBP feature representation

The experiments provided empirical evidence, that feature subset selection improves the clas-
sification accuracy in the context of automated diagnosis of celiac disease. Over-fitting was an
issue however and cross-validation protocols should be chosen with care.

Following the experimental results, we decided to study the effects of cross-validation and
feature optimization in a medical texture classification context in more detail in subsequent
work (see Section 4.2).
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Chapter 4. Contributions: Classification and Performance Prediction in Medical Data

4.2. Systematic Assessment of Performance Prediction Techniques in
Medical Image Classification - A Case Study on Celiac Disease

Cross-validation protocols are used in scenarios with a limited amount of available data for
evaluation. As a consequence of the small number of patients, multiple samples are often used
per patient to build data sets. This results in an intrinsic bias of the data set and violates certain
assumptions of cross-validation protocols.

To gain more insight and to establish a solid basis for evaluation, we specifically assessed the
predictive accuracy of cross-validation techniques as well as the effects of feature optimization
in the classification of celiac disease.

The experiments indicated, that cross-validation can lead to highly biased predictions in med-
ical image classification. Inappropriate validation protocols can result in a significant extent of
over-fitting, providing inaccurate predictions and mislead research.

The best predictive accuracy was achieved by nested cross-validations, using a data partition-
ing based on a patient basis instead of an image basis. Although the computational complexity
of this scheme is significantly higher as compared to running a single cross-validation, the pre-
dicted accuracies are much more realistic in this evaluation methodology.
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Chapter 4. Contributions: Classification and Performance Prediction in Medical Data

4.3. Do we Need Annotation Experts? A Case Study in Celiac Disease
Classification

The general lack of medical data annotated by domain experts is a major problem in the field of
research. It is unclear how methods developed and evaluated on such small datasets generalize.

Typically, a substantial amount of data is required to find well generalizing decision bound-
aries for classification. As a consequence, the small amount of expert labeled medical data often
holds back research progress.

In this work, we proposed the use of medical data labeled by non-experts, to train classifica-
tion boundaries in a celiac disease classification scenario. Following the idea of crowd-sourcing,
our data was re-labeled by non-experts after a small amount of training. The noisy class labels
were then used to construct a classification system.

Experimentation showed evidence, that label noise can be compensated by a sufficiently large
corpus of training data, annotated by non-experts. In contrary to the explicit handling of label
noise, no change in the classification architecture is required by such an approach. In scenarios
where data acquisition is not the limiting factor, this could substantially broaden the use of
computer aided diagnosis.
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5. Conclusion

During the course of my work, we were able to build a solid foundation towards the devel-
opment of a system for automated diagnosis of celiac disease. The systematic assessment of
prediction errors in cross-validation protocols was essential for the subsequent development of
methods in a medical context. We have shown that an intrinsic bias in medical data leads to vi-
olated assumptions in cross-validation methods. As a consequence, the predicted performance
of classification systems can be subject to error. We suggest to use cross-validation partitions
on a patient basis instead of an image basis to reduce this sort of bias. Feature optimization
in combination with cross-validation and small data sets has to be performed with care. We
propose to use a nested cross-validation scheme to avoid over-fitting effects.

We identified LBP based methods to be a very promising feature representation for auto-
mated diagnosis of celiac disease. Motivated by the characteristics of endoscopic images, we
proposed two highly competitive LBP-based methods. The WT-LBP method combines multiple
subbands of the wavelet transformation with appropriate LBP-operators. We also introduced a
combination of LTP with ELBP using an adaptive thresholding based on local image informa-
tion (ELTP).

Highly varying camera-scales, as a natural characteristic of flexible endoscopy, were identi-
fied to have a significant impact on the accuracy of automated diagnosis. As a consequence,
scale-invariant feature representations were extensively studied in the context of classifying
celiac disease. Experimental evidence was given, that scale-invariant features do not pose a
significant benefit in this context due to the generally lower discriminative power of such fea-
tures. Consequently, a scale- and orientation-adaptive feature representation based on highly
discriminative LBP was developed. We were able to show, that the proposed methodology is
current state-of-the art in classifying celiac disease in scenarios with varying camera-scales.

We learned, that the most common image degradations in endoscopy such as bubbles, spec-
ular reflections, blur and noise can be handled implicitly, to a certain degree, using a one-class
SVM with LBP-based features. The missing villous structures in esophageal and gastric mucosa
however is misclassified as celiac disease. As a consequence, a methodology for identification
of gastrointestinal regions will be required by a fully automated system based on this approach.
We also found, that interlaced scanning used in endoscopic hardware does not significantly
affect the performance of automated diagnosis and can potentially be handled without using
complex de-interlacing techniques.

The limited amount of expert labeled data in medical imaging is an actual problem in the
field of research. We presented empirical evidence that a large corpus of non-expert labeled
training data can be used to build a classification system that performs comparable to a system
trained solely on a limited number of pristine labels. Implementing crowd-sourcing in medical
image classification, this could potentially broaden the use of computer aided diagnosis if data
acquisition is not the limiting factor.
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Abstract

Automated classification of duodenal texture patches with histological ground
truth in case of pediatric celiac disease is proposed. The classical focus of
classification in this context is a two-class problem: mucosa affected by celiac
disease and unaffected duodenal tissue. We extend this focus and apply clas-
sification according to a modified Marsh scheme into four classes. In addition
to other techniques used previously for classification of endoscopic imagery,
we apply Local Binary Patterns (LBP) operators and propose two new oper-
ator types, one of which adapts to the different properties of Wavelet trans-
form subbands. The achieved results are promising in that operators based
on LBP turn out to achieve better results compared to many other texture
classification techniques as used in earlier work. Specifically, the proposed
wavelet-based LBP scheme achieved the best overall accuracy of all feature
extraction techniques considered in the two-class case and was among the
best in the four-class scheme. Results also show that a classification into
four classes is feasible in principle, however, when compared to the two-class
case we note that there is still room for improvement due to various reasons
discussed.

Keywords: celiac disease, computer-aided classification, endoscopy, LBP,
Marsh classification, children

1. Introduction

Celiac disease is a complex autoimmune disorder in genetically predisposed
individuals of all age groups after introduction of gluten containing food.
Commonly known as gluten intolerance, this disease has several other names
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in literature, including cœliac disease, c(o)eliac sprue, non-tropical sprue,
endemic sprue, gluten enteropathy or gluten-sensitive enteropathy. The gas-
trointestinal manifestations invariably comprise an inflammatory reaction
within the mucosa of the small intestine caused by a dysregulated immune
response triggered by ingested gluten proteins of certain cereals (wheat, rye,
and barley), especially against gliadine. During the course of the disease,
hyperplasia of the enteric crypts occurs and the mucosa eventually looses its
absorptive villi thus leading to a diminished ability to absorb nutrients. The
real prevalence of the disease has not been fully clarified yet. This is due
to the fact that most patients with celiac disease suffer from no or atypical
symptoms and only a minority develops the classical form of the disease.
Since several years, prevalence data have been continuously adjusted up-
wards. Fasano et al. (2003) state that more than 2 million people in the
United States, this is about one in 133, have the disease. People with un-
treated celiac disease, even if asymptomatic, are at risk for developing various
complications like osteoporosis, infertility and other autoimmune diseases in-
cluding type 1 diabetes, autoimmune thyroid disease and autoimmune liver
disease.

Endoscopy with biopsy is currently considered the gold standard for the
diagnosis of celiac disease. Besides standard upper endoscopy, several new en-
doscopic approaches for diagnosing celiac disease have been applied (Chand
and Mihas, 2006). The modified immersion technique described in Cam-
marota et al. (2006) is based on the instillation of water into the duodenal lu-
men for better visualization of the villi. Furthermore, magnifying endoscopy
(standard endoscopy with additional magnification) has been investigated
(Cammarota et al., 2004). For conducting capsule endoscopy (see Petroniene
et al. (2005)) the patient swallows a small capsule equipped with a camera
that takes images of the duodenal mucosa during its passage through the
intestine. All these techniques aim to detect total or partial villous atrophy
and other specific markers that show a high specificity for celiac disease in
patients. These markers include scalloping of the small bowel folds, reduction
in the number or loss of Kerkring’s folds, mosaic patterns and visualization
of the underlying blood vessels (Niveloni et al., 1998). During endoscopy
at least four duodenal biopsies are taken. Microscopic changes within these
specimen are classified by a histological analysis according to a classification
scheme by Oberhuber et al. (1999) which is based on Marsh (1992).

Automated classification as a support tool is an emerging option for endo-
scopic diagnosis and treatments (e.g. Karkanis (2003); Ameling et al. (2009);

2

Automated Marsh-like Classification of Celiac Disease in Children using Local Texture
Operators.



Alexandre et al. (2008); Iakovidis et al. (2006); Liedlgruber and Uhl (2009)).
Systems are being developed that support physicians during surgery or high-
light malignant areas during endoscopy for further inspection. Such systems
could also be used for training purposes. In the context of celiac disease, an
automated system identifying duodenal areas affected by the disease would
offer the following benefits (among other):

• Methods that help indicating specific areas for biopsy might improve
the reliability of celiac disease diagnosis. As biopsying is invasive and
the number of biopsy samples should be kept small, optimal targeting
is desirable. This targeting can be supported by an automated system
for identification of areas affected by celiac disease.

• The whole diagnostic work-up of celiac disease, including duodenoscopy
with biopsies, is time-consuming and cost-intensive. To save costs,
time, and manpower and simultaneously increase the safety of the pro-
cedure it would be desirable to develop a less invasive approach avoiding
biopsies. Recent studies by Cammarota et al. (2006, 2007) investigat-
ing such endoscopic techniques report reliable results. These could be
further improved by analysis of the acquired visual data (digital images
and video sequences) with the assistance of computers.

• The (human) interpretation of the video material captured during cap-
sule endoscopy (Petroniene et al., 2005) is an extremely time consum-
ing process. Automated identification of suspicious areas in the video
would significantly enhance the applicability and reduce the costs of
this technique for the diagnosis of celiac disease.

In a prior study, Vécsei et al. (2008) suggest using histogram-based and
Wavelet-based features for classification. Subsequent work (Vécsei et al.,
2009) optimizes Fourier features used for classification by applying an evo-
lutionary process already delivering competitive classification results. In re-
cent work (Hegenbart et al., 2009), we have systematically compared the
classification performance of two different image capturing techniques (i.e.
conventional imaging vs. the modified immersion technique) and various
pre-processing schemes using a set of different feature extraction and classi-
fication methods.

Ciaccio et al. (2010) measure the mean and standard deviation in bright-
ness over 10× 10 pixel subimages to identify areas affected by celiac disease
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in capsule endoscopy, and also apply spectral analysis over sequential images
to identify abnormal bowel motility.

Contributions In this work, we describe for the first time a system aimed
at performing automated classification of duodenal texture patches according
to a reduced 4-class Marsh-like classification system. Corresponding results
are requested for a staging of the observed mucosa defects with impact on
clinical practice regarding treatment. Local Binary Patterns (LBP) based
feature extraction is applied to the problem of automated celiac disease di-
agnosis for the first time and turns out to outperform techniques previously
applied. In particular, we propose two new operator types, one of which
adapts to the different properties of Wavelet transform subbands and results
in the best overall classification accuracy in the two-class scheme of all fea-
ture extraction schemes considered. In the four-class scheme the proposed
method was still among the best methods. Moreover, we contribute in pro-
viding explicit strategies for threshold selection and quantization in operators
proposed in earlier work.

Structure In section 2, we describe image acquisition and the estab-
lishment of ground truth information according to a modified Marsh clas-
sification. Section 3 covers LBP operators where we also propose two new
operator types, among them a new Wavelet-based operator that combines
two LBP-based operators to adapt to Wavelet subband properties. In sec-
tion 4 we present experimental results where we compare the classification
results of the proposed methods to techniques applied previously to classify
endoscopic image material. Section 5 concludes the paper.

2. Image Acquisition and Marsh Classification

The image test set used, contains images taken during duodenoscopies at the
St.Anna Children’s Hospital using pediatric gastroscopes without magnifica-
tion (GIF-Q165 and GIF-N180, Olympus, Hamburg). The main indications
for endoscopy were the diagnostic evaluation of dyspeptic symptoms, posi-
tive celiac serology, anemia, malabsorption syndromes, inflammatory bowel
disease, and gastrointestinal bleeding. Images were recorded by using the
modified immersion technique, which is based on the instillation of water
into the duodenal lumen for better visibility of the villi. The tip of the
gastroscope is inserted into the water and images of interesting areas are
taken. Gasbarrini et al. (2003) show that the visualization of villi with the
immersion technique has a higher positive predictive value. Previous work by
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Hegenbart et al. (2009) also found that the modified immersion technique is
more suitable for automated classification purposes as compared to the clas-
sical image capturing technique. Images from a single patient were recorded
during a single endoscopic session.

Our study population comprised only children suffering from signs and
symptoms making upper endoscopy necessary. Therefore, the prevalence of
celiac disease within this group was definitely higher than in the general pop-
ulation. Furthermore, there was a higher number of girls than boys (1.43:1)
among the study group patients. Both findings, the higher prevalence of
celiac disease and the female preponderance, should not bias the classification
accuracy. Since endoscopy is an invasive procedure, a study like ours cannot
be performed in a randomly selected sample from the general population due
to ethical reasons since the medical indications for such an intervention are
lacking. However, we consider our study group to be representative for the
children needing endoscopic evaluation.

A fully automated system (as it is the final target of our project) would
apply segmentation to decide which parts of an image are subject to feature
extraction. However, as a first stage towards full automation we need to
establish a database of image data, for which reliable texture classification
can be developed and systematically optimized. For this purpose we have
manually created a set of textured image patches with optimal quality to
assess if the required classification is feasible under “idealistic” conditions and
to establish reliable data. Thus, the captured data was inspected and filtered
by several qualitative factors (sharpness, lack of distortions like specular
reflections, visibility of features, etc.). To ensure the quality of extracted
regions in terms of visibility of features the extraction was performed in
accordance with a physician involved in this project.

There are two duodenal regions considered for extracting biopsy speci-
men. Those two regions (the duodenal Bulb and the Pars Descendens) have
different geometrical properties (Hegenbart et al., 2009). There are no dif-
ferences in the visual markers we use for classification among both regions
however. In order to built an image database comprising enough images to
be able to construct disjoint sets for training and evaluation of the specific
classification methods, texture patches from both regions were combined.
By restricting the images from the Pars Descendens to a frontal camera per-
spective (which make up the majority of images), inhomogeneities among the
visual celiac markers are avoided.
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Characteristic Mucosal Changes
Marsh 0-2 No visible changes of villi structure
Marsh 3A Mild villous atrophy
Marsh 3B Marked villous atrophy
Marsh 3C Absent villi

Table 1: Characteristic Changes of Mucosal Tissue caused by Celiac Disease.

In order to generate the ground truth for the texture patches used in exper-
imentation, the condition of the mucosal areas covered by the images was
determined by histological examination of biopsies from the corresponding
regions. Severity of villous atrophy was classified according to the modified
Marsh classification in Oberhuber et al. (1999). Two pathology residents and
one senior pediatric pathologist examined the slides prepared from the sub-
mitted duodenal tissue samples. A final assessment of the grade of alteration
of the mucosal architecture was performed by the supervising pathologist in
every case. In cases of disagreement among the pathologists, only occurring
in terms of subclassification of Marsh class 3 lesions, a final diagnosis was
obtained from a consensual review of the slides on a multiheaded microscope.

This histological classification scheme identifies six classes of severity of
celiac disease, ranging from class Marsh-0 (no visible change of villi structure)
up to class Marsh 3C (absent villi). A visible change of the villous structure
can be observed at Marsh 3A to Marsh 3C only.

We distinguish between Marsh classes Marsh-0 to Marsh-2 (not possible
to diagnose mucosal damage via image analysis) and Marsh classes Marsh-
3A to Marsh-3C. Therefore, images exhibiting underlying histological Marsh
class Marsh-1 and Marsh-2 are not targeted by our system and were excluded
from the analysis. In the following, we aim at two different classification
problems: a four-class problem with classes Marsh-0, Marsh-3A, Marsh-3B,
and Marsh-3C, and a two-class problem with the classes Marsh-0 and Marsh-3
(consisting of images of the latter three classes). Note that previous work has
been entirely restricted to the two-class problem. Table 2 shows the number
of texture patches and patients available per considered Marsh-class. As can
be seen, for the two-class problem the number of images is well balanced,
while for the four-class problem the Marsh-3 classes contain less images as
compared with Marsh-0. Figures 1 shows examples for each considered class.

6

Automated Marsh-like Classification of Celiac Disease in Children using Local Texture
Operators.



Please note that we manually enhanced the image contrast to improve the
visibility of celiac markers for the reader.

(a) Marsh 0 (b) Marsh 3A (c) Marsh 3B (d) Marsh 3C

Figure 1: Celiac Images showing Examples of the considered Marsh Classes.

As can be seen, the visible differences between the specific Marsh-classes are
rather small and can often be masked by either a bad image quality (blur
or distortions) or a suboptimal perspective towards the mucosal plane. This
could make accurate classification in the four-class case hard to achieve.

2.1. Image Database Construction

The constructed image database originates from 171 patients (131 control
patients and 40 patients with diagnosed celiac disease). Texture patches
with a fixed size of 128× 128 pixels were extracted from the full sized frames
(which are of size 768×576 pixels in case of the GIF-Q165 and 528×522 pixels
in case of the GIF-N180 endoscope). In some cases multiple non-overlapping
texture patches were extracted from a single full sized frame in order to build
an image set of reasonable size. The patch size of 128×128 pixels turned out
to be optimally suited in previous experiments (Hegenbart et al., 2009). The
applied algorithms were not dependant on the specific endoscopic camera
used.

In total 753 texture patches met the required qualitative properties. Based
on this set of texture patches two distinct sets for training and evaluation
were created. The construction was done in an automated way such that the
number of images is balanced between the non-celiac class Marsh-0 and the
celiac classes Marsh-3A to Marsh-3C. While creating the two distinct sets,
care was taken that the number of patches per patient is as evenly balanced
as possible. Also, no images from a single patient are within both image
sets. The actual construction was done using a pseudo random number gen-
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erator based on a Gaussian distribution to avoid any bias within the data
sets. Table 2 shows the distribution of images and patients per class.

0 3A 3B 3C Total
Texture Patches

Training Set 155 50 56 51 312
Evaluation Set 151 45 58 46 300

Patients
Training Set 66 6 7 8 87
Evaluation Set 65 5 6 8 84

Table 2: Distribution of the Texture Patches and Patients in the Image Database.

3. Feature Extraction based on Local Binary Pattern Operators

The basic Local Binary Pattern (LBP) operator was introduced to the com-
munity by Ojala et al. (1996). This method belongs to the class of geometric
parametrization algorithms. Šajn and Kononenko (2008) use multiresolution
image parametrization for improving texture classification using association
rules to extract a set of features. Malik et al. (1999) extended the Texton
model to gray scale textures. Their method includes Gabor filtering and
hence includes calculating the weighted mean of pixel values in a small neigh-
borhood. The LBP operator considers each pixel in a neighborhood sepa-
rately. Hence the LBP could be considered as a micro-texton. The operator
is used to model a pixel neighborhood in terms of pixel intensity differences.
This means that several common structures within a texture are represented
by a binary label. The joint distributions of these binary labels are then used
to characterize a texture. The operator is parametrized by a corresponding
value for the used radius from the center (r) and the number of considered
neighbors (p). The LBP operator is then defined as

LBPr,p(x, y) =

p−1∑
k=0

2k s(Ik − Ic), (1)

with Ik being the value of neighbor number k and Ic being the value of the
corresponding center pixel. The neighbor pixels are positioned at equidistant
positions on a circle around the center pixel with radius r using bilinear
interpolation. The actual ordering of neighbor pixels is not relevant to the
extracted information. The s function acts as sign function, mapping to 1
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if the difference is smaller or equal to 0 and mapping to 0 else. The LBP
histogram with i intervals computed for an image I using p LBP neighbors
is formally defined as

HI(i) =
∑
x,y

(LBPr,p(x, y) = i) i = 0, · · · , 2p − 1. (2)

The basic operator uses an eight-neighborhood with a 1-pixel radius. To
overcome this limitation, the notion of scale is used as discussed by Ojala
et al. (2002) by applying averaging filters to the image data before the op-
erators are applied. Thus, information about neighboring pixels is implicitly
encoded by the operator. The appropriate filter sizes for a certain scale is
calculated as described by Mäenpää (2003).

To compute the distance (or similarity) of two different histograms we
apply the histogram intersection metric. This metric is later interpreted
as distance by a k-nearest neighbors (k-nn) classifier. For two histograms
(H1, H2) with N intervals and interval number i being referenced to as H(i),
the similarity measure is defined as

H(H1, H2) =
N∑
i=1

min(H1(i), H2(i)). (3)

3.1. Extended Local Ternary Patterns with adaptive Threshold

As the LBP operator is sensitive to noise, the Local Ternary Pattern oper-
ator (LTP) was introduced by Tan and Triggs (2007). The modification is
based on a thresholding mechanism which implicitly improves the robustness
against noise. In our scenario endoscopic images are used which usually are
noisy as a result of the endoscopic procedure. The bowel is illuminated by
a point source located at the tip of the endoscope. The camera has a fixed
focus, hence some areas that are either too close or too far away from the
position of the camera are blurred. Additionally, the three dimensional na-
ture of the bowel leads to uneven illumination leading to noisy regions within
the captured images. The LTP operator is used to ensure that pixel regions
that are influenced by these kind of distortions do not contribute to the com-
puted histograms. The LTP approach is similar to the Peripheral Ternary
Sign Correlation (PTESC) as used in Yokoi (2007). The PTESC operator
however, was not used in the context of texture classification. The basic idea
of LTP is to introduce a threshold for calculating the patterns:
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s(x) =


1, if x ≥ Th

0, if |x| < Th

−1, if x ≤ −Th.
(4)

The ternary decision leads to two separate histograms, one representing the
distribution of the patterns resulting in a −1, the other representing the
distribution of the patterns resulting in a 1.

HI,lower(i) =
∑
x,y

(LBPr,p(x, y) = −i) i = 0, · · · , 2p − 1

HI,upper(i) =
∑
x,y

(LBPr,p(x, y) = i) i = 0, · · · , 2p − 1.

(5)

The neighbor information of pixels that lie within the threshold is encoded
implicitly by this splitting. A problem is that not the joint distribution of
lower and upper patterns is considered but the marginal distributions. An
alternative is to encode the patterns as trinary numbers. Nevertheless this
approach creates rather huge and therefore sparse histograms (38-intervals
instead of 28). This can result in instable results of the histogram similarity
measures. All tests show inferior results of this trinary encoding, therefore
the experiments were conducted using the concatenation of both histograms.
The two computed histograms are concatenated and then treated like a single
histogram.

The actual optimal values to use for thresholding are unknown a priori.
Tan and Triggs (2007) use a fixed threshold that was found empirically and
is beneficial for their input data. In case of endoscopic images however it is
not safe to make assumptions about the average image quality. By applying
an adaptive threshold based on the spatial image statistics we make sure that
noisy regions do not contribute to the computed histograms while information
present within high quality regions are not lost due to a threshold that was
chosen too high. When calculating an adaptive threshold care has to be taken
to avoid that visible texture-distortions (such as visible duodenal folds) affect
the calculation of the threshold too heavily. The calculation is therefore based
on an expected value for the standard deviation of the image (β). This value
was found based on the specific training data used during experimentation
and represents the average standard deviation of pixel intensity values within
all texture patches in the training set. The value α is used as a weighting
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factor combined with the actual pixel standard deviation of the considered
image (σ) and is used to adapt the threshold to match the considered image
characteristics. The value for α was found empirically in the context of this
work and was set to 0.1.

Th =

{
β

1
2 + ασ, if σ > β

1
2

β
1
2 − ασ, if σ ≤ β

1
2 .

(6)

Information extracted by the LBP-based operators from the intensity func-
tion of a digital image can only reflect first derivative information. This
might not be optimal, therefore Huang et al. (2004) suggest using a gradient
filtering before feature extraction. By doing this the velocity of local varia-
tion is described by the pixel neighborhoods. The naming conventions of this
extension are not consistent within literature. We will therefore stick to the
naming of Huang et al. (2004) (extended LBP, or ELBP). The extended LTP
(ELTP) operator is consequently introduced in perfect analogy to the ELBP
operator. ELTP is based on the LTP operator instead of the LBP operator
to suppress unwanted noise in the gradient filtered data. Of course, the ac-
tual manner how to compute the gradient information has to be defined for
a specific operator.

3.2. Local Binary Patterns with Contrast Measure and its Quantization

As the LBP operator is invariant in terms of monotonic grayscale changes, the
strength of a pattern can not be represented. Texture however, can be seen as
a combination of the spatial structures (patterns) and the strength of these
structures (contrast). Therefore Ojala et al. (1996) introduce the LBP/C
operator to combine both properties. The contrast and the local binary
patterns supplement each other in a very useful way. The LBP are sensitive
to rotational changes but invariant to monotonic grayscale variations where
the contrast measure is rotation invariant but sensitive to grayscale changes.
The rotation invariant local contrast measure for a pattern calculated at
center (x, y) with a radius r considering p neighbors is calculated as

Cr,p(x, y) =
1

p

(
p∑

k=1

(Ik − µr,p(x, y))
2

)
, (7)

with

µr,p(x, y) =
1

p

(
p∑

k=1

Ik

)
. (8)
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Cr,p is the variance within the support area of the operator (among all neigh-
bors of a specific center pixel) and is interpreted as the strength of a pattern.
The histogram is extended to two dimensions using the contrast measure as
index in one dimension, modeling the joint distribution of both random vari-
ables. Usually the contrast values (c) are quantized to reduce the numbers
of indices into the histogram. The best number of quantization intervals is
unclear a priori. A small number leads to bad discrimination where a too
large number leads to sparse histograms.

HI(i, c) =
∑
x,y

(LBPr,p(x, y) = i ∧ Cr,p(x, y) = c) i = 0, · · · , 2p − 1 (9)

The set of possible contrast values ranges from 0 to 16265.25 (the highest
value results from a set of the neighboring pixels with half of the pixels hav-
ing the minimum value (0) and half of the pixels with the maximum value
(255)). Obviously it is highly unlikely to find a pixel neighborhood with these
properties in a natural image. The distribution of contrast values is far from
being uniform. Therefore a linear mapping of the contrast value to the cor-
responding interval index is inadequate as it would result in unevenly filled
histograms. In this case a high percentage of patterns would be associated
with only a few quantized contrast values and the discriminative power could
not be improved. Ojala et al. do not suggest an explicit way how to quantize
the contrast values however. Considering that the discriminative power in
case of combined features is not determined by the number of patterns asso-
ciated with a certain contrast range but determined by the actual patterns
associated with a contrast value, we try to find a mapping that results in
equally dense histograms. The mapping was found by estimating the empiri-
cal distribution function using the training data during each experiment. As
the multiscale LBP-extension is used, the effects of low-pass filtering have to
be considered. Obviously the distribution of the contrast values is affected
by this filtering as shown in Figure 2 which displays the empirical cumulative
distribution function that was found using the image data. The y-axis shows
the percentage of patterns with a contrast value less or equal to the corre-
sponding value on the x-axis. We therefore normalize the values by division,
using the standard deviation of the contrast values. This is done for each im-
age during feature extraction. The optimal number of contrast intervals was
found empirically during the experiments by considering all values within a
range from 2 to 22. The right side of the figure demonstrates the results
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of the normalization of the contrast distribution and compares them with a
linear distribution function.

(a) Deviation by Scale (b) Normalized

Figure 2: Cumulative Distributions of the Contrast Measures

3.3. The Wavelet based LBP Operator (WT-LBP)

All LBP-based operators can be categorized into two families by considering
the underlying intensity function. Operators that reflect first derivative in-
formation (such as LBP, LBP/C and LTP) as well as operators that reflect
second derivative information (ELBP and ELTP). The operators reflecting
first derivative information are based on the unmodified intensity function
of a digital image. The other operators are based on the first derivative of
the underlying intensity function. This derivative describes the velocity of
local variation. Therefore the extracted information reflects second deriva-
tive information. Taking into consideration that all LBP-based operators
that were used successfully in the field of texture classification belong to one
of the before mentioned categories, a combination of operators from either
type seems promising. By using the Wavelet representation of the images a
natural connection between both categories can be established.

In Wang et al. (2008) Haar Wavelets are used in combination with uni-
form LBP to improve the texture retrieval rate as compared to “pure” LBP.
Liu and Ding (2009) use non-separable Wavelets with LBP to describe tex-
tures while Su et al. (2009) use Gabor-Wavelets in combination with LBP to
represent texture in an active appearance model. The approaches of Su et al.
and Liu et al. are based on the high frequency subbands while Wang et al.
also use the approximation subbands for feature extraction. The subbands
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however have varying characteristics, therefore using a single operator (all
referenced techniques use LBP) for extracting features from all subbands is
not optimal. When considering the properties of the Wavelet transform, one
can see that there is a natural relation to extensions suggested to the basic
LBP operator:

• Multiscale
The scaling function used within the Wavelet transform leads to a suc-
cessive downscaling of the transformed signal. This corresponds to a
decrease in resolution. When considering the LBP multiscale extension,
pixel intensities are described as a weighted sum of the pixels within
a neighborhood. As averaging filter are used for different scales, this
corresponds to a decrease in resolution as well.

• High Frequency Information
In Mallat’s vertical and horizontal analysis (Mallat, 1989), the decom-
position algorithm is based on two variables x and y leading to a prior-
ization of each direction. The detail subbands contain high frequency
information of the input signal. High frequency components in an im-
age correspond to edge information. As the magnitude of each coef-
ficient represents the strength of an edge we can interpret the detail
subband coefficients as the speed of variation of pixel intensity differ-
ences. This is used within the operator based on using gradient filtering
(ELBP and ELTP).

• Supplemental Features
The coefficients of the detail subbands represent the information that is
lost due to the downscaling of the approximation subband. Therefore
the information present in the detail subbands complements the in-
formation present within the approximation subband in a natural way.
Since both, high-frequency and low-frequency texture information have
been promising in the context of classifying celiac disease in endoscopic
images, we combine these features to improve the discriminative power.
This in parallel to the LBP/C operator where supplemental features
(the binary labels and the contrast values) are combined to improve
the discriminative power.

As a consequence we propose a new Wavelet-based operator which is con-
structed by combining suitable variants of the basic LBP operator. The
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(a) Approximation (b) Horizontal Details (c) Vertical Details

Figure 3: Coefficients of Wavelet Subbands.

properties of the specific operators and the Wavelet decomposition is taken
into account when constructing this new WT-LBP operator. Both the ap-
proximation and detail subbands are used for feature extraction. By using
all subbands, different components of textures can be described optimally.

• Detail Subbands
The detail subbands contain high frequency components and are in a
way similar to the information that is represented by gradient images.
The set of Wavelet functions spans the differences between the spaces
spanned by the various scales of the scaling function. In contrast to the
ELBP and ELTP operators the detail subband coefficients contain the
information that is lost due to the downscaling process of the Wavelet
transform. By combining features from all subbands no important in-
formation is lost overall. This is in contrast to the Sobel filtering. Even
more, the high frequency components can be used at different scales
without losing information (although in our case only in a dyadic step-
ping). We are interested in the energy distribution of the coefficients,
therefore the absolute values of the coefficients are used.

Figure 3 shows the approximation subband as well as the absolute
values of the coefficients of the horizontal and vertical detail subbands
of a wavelet decomposed mucosa texture image. As can be seen, due
to using a discrete signal, the detail coefficients contain some amount
of noise. To avoid introducing this noise to the computed histograms
the LTP operator is used to extract features from the detail subbands.
Applying the LTP operator is similar to the quantization of coefficients.
The LTP operator that is applied to the detail coefficients does not use
the multiscale extension in order to avoid the low pass filtering of the
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high frequency information since different scales are represented by the
Wavelet transform coefficients anyway. The radius of the LTP that is
used within the WT-LBP is set to 1.5 pixels. This is similar to a 3× 3
pixel window, however since we use interpolation the actual values of
the diagonal neighbors might be slightly different.

• Approximation Subbands
The approximation subband represents the low frequency components
of the image. By using dyadic sampling the bandwidth of the image is
halved during each iteration. This is a problem, as we can not guaran-
tee that the size of texture elements corresponds to this sampling. It
is possible to miss texture components by applying the basic LBP op-
erator to the approximation subband coefficients. Therefore the LBP
multiscale extension is used to extract features from the approximation
subband. As the LTP and LBP operator can not describe the strength
of the patterns and the LBP/C operator proved to be very effective,
the LBP/C operator is used to extract features from the approximation
subbands. We use a maximum LBP-scale of 3 and a minimum LBP-
scale of 1 since higher scales are obtained by the Wavelet decomposition
anyway.

Figure 4 demonstrates the process of extracting features using two scales of
the WT-LBP operator. The filter bank that is used in the experiments is
the biorthogonal Cohen-Daubechies-Feauveau (CDF) 9/7 analysis filter also
used within JPEG2000.

3.4. Operator Parameters

The performance of the LBP-based operators is determined by a significant
set of parameters. The used neighborhood size of the operator controls how
many neighboring samples are involved in building the pattern. A neigh-
borhood size too small leads to poor discrimination while a neighborhood
too large generates sparse histograms. Most authors suggest using an eight-
neighborhood resulting in 256 patterns for the LBP operator. Mäenpää et al.
(2000) suggest using only a subset of all possible patterns called the uniform
patterns. This subset is characterized by the property that at maximum
two transitions from 0 to 1 or vice versa are allowed within each pattern (58
patterns satisfy this condition). This constraint leads to a robust subset for
classification. Additionally the dimensionality of the histogram is reduced
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Figure 4: Two-Scale Wavelet Based LBP Operator (WT-LBP-Operator).

which is beneficial for our task. In all experiments the subset of uniform
Local Binary Patterns is used for classification. In case of the LTP operator
and those based upon the LTP operator, two histograms are concatenated
to represent the pattern distributions. Therefore the size of the combined
histogram is twice the size of the LBP based operator.

The LBP-scale parameter (with the meaning as in Mäenpää (2003)) of the
operator describes how many pixels are actually involved for each neighboring
sample. An increasing LBP-scale represents a lower image resolution and is
used to describe large scale structural information that could otherwise not
be represented. It is unclear a priori which LBP-scales are best suited to
represent a given texture. Experiments show however, that features extracted
using LBP-scales greater than 3 do not contribute useful information for
classification. Therefore the extracted features are based on using a set of
LBP-scales ranging from 1 to 3.

Huang et al. (2004) compute the gradient magnitudes to generate the
ELBP histograms. In general however, mucosal images may have a dominant
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orientation (this could be related to the physician’s style however). Hence
a filter orientation might be superior over the other. If one orientation is
dominant within the image, the calculation of the gradient magnitude might
introduce an error. Therefore both gradient images are directly used for
computing the LBP histograms. We additionally use a so called diagonal
orientation which represents the mean of both gradient orientations.

Obviously, not all filter orientations, Wavelet subbands, or LBP-scales are
equally well suited for feature extraction. All combinations of these parame-
ters are used to compute the histograms. During the classification process we
optimize the best combination of histograms for each image set and classifi-
cation problem by using a feature subset selection algorithm (SFS, Jain and
Zongker (1997)). The absolute overall classification rate was used as crite-
rion function for the optimization. Mäenpää et al. (2000) use feature subset
selection methods to find an optimal subset of patterns for classification. A
single histogram could however be interpreted as a single feature. In this
work, the combination of used histograms was optimized but not the subset
of patterns within histograms.

4. Experiments

To be able to assess the performance of the proposed extensions and the
WT-LBP operator and to gain insight into the possible performance of the
four-class modified Marsh classification scheme, we applied as a comparison
a set of several different feature extraction methods that provided promising
results in classification of endoscopic image data in earlier work. The abbre-
viations of the techniques used throughout this work are shown in bold. We
used the following feature extraction methods (given in alphabetical order):

• DT-CWT Correlation Signatures: We have extended the Wavelet
Correlation Signatures approach of de Wouwer et al. (1997) to work
with the Dual-Tree Complex Wavelet Transform in Häfner et al. (2008).
The correlation between subbands of different (and equal) color chan-
nels is computed based on the mean and standard deviation of coef-
ficient magnitudes. The DT-CWT decomposition depth is set to four
levels and the color space is RGB. The resulting features vectors have
144 elements.

• DT-CWT-Weibull: The Dual-Tree Complex Wavelet Transform is
used to decompose the images into 6 scales and the empirical his-
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togram of the detail subband coefficient magnitudes is modeled by
two-parameter Weibull distributions. The Weibull parameters are then
arranged into a feature vector (Kwitt and Uhl, 2007). In case of color
images (which applies here) a feature vector has 216 elements.

• ELBP: Extended Local Binary Patterns (Huang et al., 2004) are used
with an 8-neighborhood and LBP-scales ranging from 1 to 3. The
image is gradient filtered by applying a Sobel filter using a horizontal,
a vertical and a diagonal orientation. The optimal filter directions and
LBP-scales are determined by using the SFS algorithm. The histogram
dimensionality is 58.

• ELTP: The approach is applied as introduced in section 3.1. The
ELTP operator is used with an 8-neighborhood and LBP-scales ranging
from 1 to 3. The used α value was 0.1. In analogy to the ELBP
operator, the filter orientations as well as color channels and LBP-
scales are optimized using the SFS approach. The dimensionality of a
each histogram is 116.

• FFT-Evolved: By using the FFT an image is transformed into the
respective power spectrum. Multiple ring-shaped filters are then ap-
plied to the spectrum of each color channel of the RGB color model
to concentrate on discriminative frequency subbands only. Since the
number of possible ring filters is quite large, an evolutionary algorithm
is used to find an optimal set of filters for each color channel (Vécsei
et al., 2009) (sets are denoted by F1, F2, and F3). For each of these
ring filters the mean of the coefficient magnitudes within such a ring is
used as a feature. This results in a feature vector for each color channel
having a length equal to the number of rings used. By concatenating
the feature vectors of all color channels of an image, the final feature
vector is obtained having a length of |F1|+ |F2|+ |F3| (restricted to less
then 20 elements).

• Gabor, Classic: The Gabor Wavelet Transform is used with 4 scales
and 6 orientations, the mean and standard deviation of the coefficient
magnitudes within a subband are used as features (Manjunath and
Ma, 1996; Häfner et al., 2009c). The resulting feature vectors have 144
elements in case of color images.
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• LBP: The Local Binary Pattern operator (Ojala et al., 1996) is used in
an 8-neighborhood to compute histograms for each LBP-scale employed
(in the range 1 - 3). The optimal combination of LBP-scales and color
channels is found by the optimization routine (SFS) as described in
section 3.4.

• LBP/C: The Local Binary Pattern operator combined with a contrast
measure (Ojala et al., 1996) is used in an 8-neighborhood to compute
histograms for each LBP-scale employed (in the range 1 - 3). The
optimal combination of LBP-scales and color channels is found by the
SFS algorithm. The optimal number of quantization intervals used for
the contrast measure is optimized from 2 to 22 by an exhaustive search
during each training. Let cn be the number of used contrast values.
The dimensionality of a single histogram is 58 · cn.

• LTP: The Local Ternary Pattern operator (Tan and Triggs, 2007) is
used in an 8-neighborhood to compute histograms for each LBP-scale
employed (in the range 1 - 3). The adaptive thresholds are computed
using an α value of 0.1. The optimal combination of LBP-scales, color
channels and filter orientations is found by using the SFS algorithm.
The dimensionality of a single histogram is 116.

• WT-BBC: The Best Basis Centroids method (Liedlgruber and Uhl,
2007) uses the Best-Basis algorithm to find an optimal basis for each im-
age in a training set and computes a centroid over all resulting Wavelet
packet decomposition structures (maximal decomposition depth 3). Af-
ter transforming all images into this basis, the most informative subset
of the resulting subbands (with respect to a cost function) is used to
compute the energy over all coefficients within a subband. These values
are concatenated to form the feature vector for an image. We use all
color channels of the RGB color model and end up with a final feature
vector length of 3 · S with S being the number of selected subbands.

• WT-LBP: The approach is used as introduced in section 3.3 by ap-
plying a three stage dyadic Wavelet transform of the image data. The
optimal combination of Wavelet-scales, color channels and LBP-scales
is found by applying the SFS algorithm. In parallel to the LBP/C op-
erator the quantized contrast values are found by an exhaustive search
within the range of 2 to 22. The used α value was 0.1. For cn contrast
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values, the approximation subband based histograms have a dimen-
sionality of 58 · cn, while the detail subband based histograms have a
dimensionality of 116.

• WT-GMRF: This method (Häfner et al., 2009a) first transforms an
image to the Wavelet domain using the pyramidal discrete Wavelet
transform (two stages) resulting in 3 · 3 · 2 = 18 detail subbands since
we use each color channel of the RGB color model. For each of these
detail subbands the Markov parameters of a Gaussian Markov Random
Field are estimated. The number of parameters resulting from one de-
tail subband depends on the neighborhood order (neighborhoods used
are of Geman type (Geman and Geman, 1984)). In addition to the
Markov parameters we use the approximation error for each subband
as a feature too. Hence, when assuming a neighborhood consisting of n
neighbors, we have n

2
+ 1 features per subband (the neighborhoods are

symmetric). Since we estimate these parameters for each subband in
each color channel, the final feature vector length equals to 18(n

2
+1).

• WT-LDB: The Local Discriminant Basis algorithm is employed to
find an optimal Wavelet packet decomposition basis (maximal number
of stages is 3) with respect to discrimination between the image classes
into which all images are transformed to. Based on the resulting de-
compositions we use the energy contained within a subband as feature,
where only the S most discriminative subbands are used for feature
extraction. The most discriminative subbands are found by computing
the discriminative information for every respective subband following
Saito and Coifman (1994). Since we use all color channels of the RGB
color model we end up with feature vectors having a length of 3 · S
(Liedlgruber and Uhl, 2007).

In case of the methods FFT-Evolved, WT-BBC, WT-GMRF, and WT-LDB
the images were always pre-processed by applying CLAHE (Zuiderveld, 1994)
followed by a Laplace Sharpening with a kernel size of 9× 9 (Gonzalez and
Woods, 2002). For the other techniques no image pre-processing has been
applied.

For classification we apply a k-nearest neighbors (k-nn) classifier to the
extracted features. In the classifier, all methods except for the LBP-based
ones use the Euclidean distance metric for the k-nn classification. The LBP-
based methods use the histogram intersection as distance metric. While each
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of the employed techniques has been published with a certain specific classi-
fier (often leading to better results compared to k-nn classification), we want
to give more emphasis to the features used by applying a common classifier.
The optimal k-value was determined by an exhaustive search through the
admissible corresponding parameter range. Based on previous experiments
with the different techniques, the parameter range is specified as follows. For
all methods k (the number of neighbors considered) is chosen from 1 to 15
except for the FFT-Evolved Method. The results of the FFT-Evolved meth-
ods are optimized by an evolutionary process, which either assigns k=1 or
k=2 depending on the used chromosomes. On a tied decision among classes
the a priori probability (class frequencies) is used for the final classification
decision.

To evaluate how well the methods and estimated parameters perform on
an independent dataset we constructed two disjoint sets of texture patches
as explained in section 2. Parameter and feature optimization (including the
k-value of the k-nn classifier) was based on using a leave-one-out cross valida-
tion (LOOCV, (Fukunaga, 1990)) on the training set. The evaluation of the
methods accuracy was then performed by applying the trained classifiers to
the evaluation set. No prior knowledge was used concerning the classification
of the evaluation set.

To improve the results obtained by the k-nearest neighbor classifier, we
use an Ensemble classifier as described in Häfner et al. (2009b); Vécsei et al.
(2009). This classifier aims at achieving a higher overall classification ac-
curacy and more stable results across different image classes by combining
different methods. The performance of the Ensemble classifier is dependant
on single methods with high accuracy and a high measure of diversity among
each other. Therefore the selection algorithm starts by selecting the method
with the highest accuracy based on a cross validation on the training data.
Then the best method in terms of classification accuracy with a significant
different outcome to the previously picked method (at a significance level of
5%) is selected. This process is repeated until no more methods are found.
The optimization of the k-value as well as the reliability measure used by the
Ensemble classifier was entirely based on the training set of images (denoted
as Ensemble1 and Ensemble3). We additionally combined a set of single clas-
sifiers by using knowledge of how well these methods generalize based on the
performed experiments on the evaluation set. These results however have to
be considered with care as the manual combination of methods prevents a
fair comparison to the other methods and are only used to assess how much
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room for improvement exists for the Ensemble of classifiers. We denote these
Ensembles as Ensemble2 and Ensemble4 in the corresponding tables.

5. Results

In this section we present the results of the conducted experiments. We
present two result tables for each classification task (i.e. two-class and four-
class). One result table displays the classification results estimated by a leave-
one-out cross validation performed on the training set. The second table
presents the results of classifying the evaluation set based on the previously
optimized parameters and trained classifiers. Authors in a related field might
not be in the position to use distinct datasets to evaluate presented methods
due to a limited amount of available data. We therefore study both evaluation
methods to be able to give a comprehensive view of how well certain methods
generalize on an independent dataset and of how significantly methods tend
to (over)-fit the extracted features and parameters towards the data.

Within the result tables we use the abbreviations “Spec.“ for specificity
(the percentage of correctly classified images actually showing a normal mu-
cosal state) and “Sens.” to indicate the methods sensitivity (the percentage
of correctly classified images showing villous atrophy). To improve the read-
ability the results are rounded to one decimal position in the discussion. In
case of the four-class scheme we use the abbreviations 0, 3A, 3B or 3C to
indicate the specific Marsh class.

We display the best overall classification results among all LBP-based
methods as well as the other methods (except for the Ensemble classifiers)
in bold face. In case of one or more methods with the same classification
accuracy we display the method with the highest sensitivity in bold face. The
“k”-column indicates the number of neighbors that was used for the nearest
neighbor classification. The column labeled as “Int.” indicates the number of
intervals used for the contrast values in case of the two dimensional LBP/C
based histograms. We present the two ensembles of single methods with a
corresponding superscript to unambiguously identify the specific ensembles.

In addition to the result tables we also show the results of the statistical
tests for significance we performed. The check sign indicates that a statistical
significant difference between two results according to McNemar’s test (Mc-
Nemar, 1947) was found. The value of α corresponds to the significance level
of the specific test. McNemar’s test considers the classification agreement
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Classification Rates
Spec. Sens. Overall k Int.

LBP 94.19 93.63 93.91 3 -
LTP 94.19 94.90 94.55 5 -
LBP/C 97.42 92.99 95.19 3 6
ELBP 93.55 94.27 93.91 15 -
ELTP 93.55 94.27 93.91 10 -
WT-LBP 98.06 93.63 95.83 5 20
DT-CWT-Corr. 90.97 92.40 91.67 3 -
DT-CWT-Weibull 92.26 88.54 90.38 4 -
FFT-Evolved 95.48 87.90 91.67 2 -
Gabor-Classic 89.03 91.08 90.06 5 -
WT-BBC 90.97 89.81 90.38 5 -
WT-GMRF 87.74 89.81 88.78 5 -
WT-LDB 89.68 89.81 89.74 7 -
Ensemble1 98.70 92.99 95.83 - -
Ensemble2 98.07 94.90 96.47 - -

Table 3: Classification Result of a Leave-One-Out Cross Validation on the Training Set
(Two-Class Case).

between two classification results. The null hypothesis of marginal homo-
geneity states that the marginal outcomes of two considered experiments are
the same. This means, considering two experiments, that the probabilities
of experiment one being correct for an image while experiment two being
incorrect and vice versa (experiment two being correct while experiment one
being incorrect for that same image) are equal. If McNemar’s test statistic is
significant (the significance level used in McNemar’s test is used to evaluate
whether the test statistic is likely in terms of a chi-squared distribution) there
is evidence to reject the null hypothesis. This implies that the difference be-
tween two classification results are considered to be statistically significant.
At a significance level of 2.5 percent (α = 0.025) there is a confidence level of
97.5 percent that the differences between two classification results were not
caused by random variation.

5.1. Results of the Two-Class Scheme for Classification

Tables 3 and 4 present the results of the experiments based on the two-class
scheme for classification. Comparing the results using a leave-one-out cross
validation and the classification of the evaluation set, we see that the classi-
fication accuracy drops by an average of 8.6 percentage points in case of the
LBP-based methods as well as the non-LBP-based methods. This is interest-
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Classification Rates
Spec. Sens. Overall k Int.

LBP 79.47 87.25 83.33 3 -
LTP 75.50 93.96 84.66 5 -
LBP/C 82.12 92.62 87.33 3 6
ELBP 80.13 92.62 86.33 15 -
ELTP 79.47 92.62 86.00 10 -
WT-LBP 85.43 90.60 88.00 5 20
DT-CWT-Corr. 83.44 81.21 82.33 3 -
DT-CWT-Weibull 87.42 76.51 82.00 4 -
FFT-Evolved 83.44 81.21 82.33 2 -
Gabor-Classic 80.13 80.54 80.33 5 -
WT-BBC 80.13 85.23 82.67 5 -
WT-GMRF 75.50 84.56 80.00 5 -
WT-LDB 78.81 86.58 82.67 7 -
Ensemble1 85.43 91.95 88.67 - -
Ensemble2 85.43 90.60 88.00 - -

Table 4: Classification Results of the Trained Methods on the Evaluation Set (Two-Class
Case).

ing as the LBP-based methods all use feature subset selection as compared
to the other methods were only FFT-Evolved applies an additional process
of feature optimization. This indicates that the selected feature subsets gen-
eralize well on an independent dataset. The decrease in classification rate
is assumed to be caused by a bias within the training data caused by pos-
sibly multiple texture patches of a single patient in combination with the
leave-one-out cross validation. In general the LBP-based methods performed
better on the evaluation set (85.9%) as compared to the non-LBP-based
methods (81.8%). The better overall accuracy of the LBP-based methods
is explained by a higher average sensitivity of approximately 9.3 percentage
points. The best result of a single method based on the evaluation set is
achieved by the WT-LBP operator with 88.0 percentage points overall accu-
racy. Compared to the classification accuracy of the LOOCV this method’s
accuracy drops by 7.8 percentage points which is below the average decrease.
By using the Ensemble classifier the result could be slightly improved to 88.7
percentage points. Interestingly the manually combined ensemble could not
further improve the classification rates.

Table 5 displays the outcomes of the conducted statistical significance
tests based on the classification results of the evaluation set. We see that
there is no statistically significant difference between the WT-LBP operator
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and the other LBP-based operators at a significance level of 0.025. Consid-
ering a significance level of 0.05 there is a significant difference between the
results of the WT-LBP and the basic LBP operator.

α = 0.025 α = 0.05
WT-LBP Ens.1 Ens.2 WT-LBP Ens.1 Ens.2

LBP - 3 - 3 3 3
LTP - - - - - -
LBP/C - - - - - -
ELBP - - - - - -
ELTP - - - - - -
WT-LBP - - - - - -
DT-CWT-Corr. 3 3 3 3 3 3
DT-CWT-Weibull 3 3 3 3 3 3
FFT-Evolved 3 3 3 3 3 3
Gabor-Classic 3 3 3 3 3 3
WT-BBC 3 3 3 3 3 3
WT-GMRF 3 3 3 3 3 3
WT-LDB 3 3 3 3 3 3

Ensemble1 - - - - - -
Ensemble2 - - - - - -

Table 5: Results of McNemar’s Test for Significance among the Results of the Trained
Methods on the Evaluation Set for the Two-Class Case.

Compared to the non-LBP-based methods the differences are all statistically
significant. As a consequence of the single methods selected, there are no
statistically significant differences between the Ensemble classifiers1 2 and
the LBP-based methods except for the basic LBP-operator. Statistically
significant differences to the non-LBP-based methods can be seen at both
significance levels. The standard deviation of the LBP/C method among all
evaluated interval numbers (2 to 22) during the training of was 1.2 percentage
points with a mean classification accuracy of 86.6 percent. The mean accu-
racy and standard deviation of the WT-LBP method was 87.3 percentage
points and 1.6 percentage points respectively.

5.2. Results based on the Four-Class Scheme for Classification

Tables 6 and 7 present the results of the classification based on the four-class
scheme for classification. By analogy to the two-class scheme for classification

1Ensemble1 combines DT-CWT-Weibull, FFT, LBP/C, LTP, WT-BBC and WT-LBP
2Ensemble2 combines DT-CWT-Weibull, LTP, WT-LBP and WT-LDB
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we can see a decrease of classification accuracy when using a distinct set for
evaluation. However, in the four-class case the decrease is significantly higher
with an average of 19.4 percentage points in case of methods based on LBP
and 16.1 percentage points for the non-LBP-based methods.

Classification Rates
0 3A 3B 3C Overall k Int.

LBP 96.77 68.00 62.50 50.98 78.53 8 -
LTP 95.48 72.00 60.71 60.78 79.81 1 -
LBP/C 96.13 74.00 83.93 45.10 82.05 4 15
ELBP 94.84 56.00 71.43 54.90 77.88 7 -
ELTP 96.77 62.00 71.43 50.98 79.16 11 -
WT-LBP 97.42 76.00 78.57 50.98 83.01 4 12
DT-CWT-Corr. 95.48 64.00 67.86 56.86 79.17 4 -
DT-CWT-Weibull 92.26 60.00 66.07 41.00 74.04 7 -
FFT-Evolved 83.23 72.00 73.21 56.86 75.32 1 -
Gabor-Classic 92.26 74.00 67.86 41.18 76.60 8 -
WT-BBC 92.26 48.00 67.86 43.14 72.76 5 -
WT-GMRF 93.55 58.00 66.07 35.29 73.40 5 -
WT-LDB 88.39 64.00 67.86 43.14 73.40 4 -
Ensemble3 98.70 78.00 89.29 25.49 81.77 - -
Ensemble4 98.71 76.00 78.57 78.57 83.01 - -

Table 6: Classification Result of a Leave-One-Out Cross Validation on the Training Set
(Four-Class Case).

This indicates that the features selected by the histogram subset selection
algorithm slightly over-fits the model towards the data. On average, the clas-
sification rates of the LBP-based methods are 60.6 percent compared to 58.9
percent achieved by the non-LBP-based methods. The low classification ac-
curacy is explained by the classification rates of the Marsh type 3 subclasses.
Marsh-3C has the lowest average classification accuracy with a mean below
30 percentage points for all methods. The best result was achieved by the
basic LBP operator with 66.3 percent (a drop in overall accuracy of only 12.2
percentage points). The WT-LBP operator achieves a result of 63.7 percent.
The best non-LBP based method is DT-CWT-Weibull also with 63.7 per-
cent. It is interesting that the automatically selected Ensemble3 of classifiers
could not improve the classification accuracy and reaches only 62.3 percent.
This result can be explained by the single methods used for the Ensemble:

3Ensemble3 combines Gabor-Classic, LBP/C and WT-LBP
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WT-LBP, LBP/C and Gabor-Classic. The algorithm selected these meth-
ods because they performed well on the training set using LOOCV and had
statistically significant different results. However in case of the classification
using the evaluation set, LBP/C dropped by 24.4 percentage points. Also the
best performing method (LBP) was not selected because the performance in
the leave-one-out cross validation of the training set was below average. In
contrast to this, the manually selected Ensemble4 improved the classification
accuracy to an overall of 68.0 percent. Although the manual selection is un-
fair to some degree by using prior information of how well certain methods
generalize, we see that there is still room for improvement. The standard
deviation of the LBP/C method among all evaluated interval numbers (2 to
22) during the training was 1.0 percentage points with a mean classification
accuracy of 80.9 percent. The mean accuracy and standard deviation of the
WT-LBP method was 81.9 percent and 0.8 percentage points respectively.
Considering table 8 we see that only few statistical significantly different
results were produced by the WT-LBP and the Ensemble classifiers. It is
interesting that the WT-LBP was statistical significantly different to two of
the other Wavelet-based methods as well as LTP and LBP/C. This is in-
teresting as these two methods (LTP and LBP/C) are incorporated in the
WT-LBP method.

5.3. Result Discussion and Interpretation

A general remark is that with respect to the absolute values of classification
accuracy it should be noted that the results shown are obtained with a k-nn
classifier. Previous experiments with the employed feature extraction tech-
niques have shown that these results can be further improved by employing
SVM or Bayes classifiers (Hegenbart et al., 2009; Vécsei et al., 2009).

By using a distinct set of texture patches for evaluation of trained methods
we avoid the problem of over-fitting the parameters towards the given data.
We saw that in the four-class case some amount of over-fitting happened
when using leave-one-out cross validation in combination with parameters
and feature optimization. We also saw that care has to be taken when inter-
preting results of a cross validation as the constructed image data might be
biased because of multiple texture patches extracted for a single patient. We
suggest, if possible, to use a modification to the leave-one-out cross valida-

4Ensemble4 combines DT-CWT-Weibull, ELTP, LBP, WT-LBP and WT-BBC
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Classification Rates
0 3A 3B 3C Overall k Int.

LBP 90.07 48.88 46.55 30.43 66.33 8 -
LTP 78.15 22.22 22.41 32.61 52.00 1 -
LBP/C 86.09 20.00 31.03 34.78 57.66 4 15
ELBP 85.43 35.55 44.83 17.39 59.66 7 -
ELTP 88.74 46.66 48.28 21.74 64.33 11 -
WT-LBP 87.41 24.44 51.72 39.13 63.66 4 12
DT-CWT-Corr. 86.09 46.67 27.59 17.39 58.33 4 -
DT-CWT-Weibull 88.08 35.56 48.28 30.43 63.66 7 -
FFT-Evolved 70.20 33.33 46.55 30.43 54.00 1 -
Gabor-Classic 87.42 31.11 53.45 26.09 63.00 4 -
WT-BBC 84.77 60.00 32.76 19.57 61.00 8 -
WT-GMRF 82.78 46.67 29.31 17.39 57.00 5 -
WT-LDB 80.79 46.67 17.24 26.09 55.00 4 -
Ensemble3 96.02 20.00 53.45 4.35 62.33 - -
Ensemble4 94.04 51.11 53.45 53.45 68.00 - -

Table 7: Classification Results of the Trained Methods on the Evaluation Set (Four-Class
Case).

α = 0.025 α = 0.05
WT-LBP Ens.3 Ens.4 WT-LBP Ens.3 Ens.4

LBP - - - - - -
LTP 3 3 3 3 3 3
LBP/C - - 3 3 - 3
ELBP - - 3 - - 3
ELTP - - - - - -
WT-LBP - - - - - -
DT-CWT-Corr. - - 3 - - 3
DT-CWT-Weibull - - - - - -
FFT-Evolved 3 3 3 3 3 3
Gabor-Classic - - - - - -
WT-BBC - - 3 - - 3
WT-GMRF - - 3 3 - 3
WT-LDB 3 3 3 3 3 3

Ensemble3 - - 3 - - 3
Ensemble4 - 3 - - 3 -

Table 8: Results of McNemar’s Test for Significance among the Results of the Trained
Methods on the Evaluation Set for the Four-Class Case.

tion known as leave-one-patient out (LOPO) cross validation. It is possible
that the selected feature subsets and optimized parameters are suboptimal
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for classification, caused by a biased texture patch set due the leave-one-out
cross validation. We expect that by using leave-one-patient out cross valida-
tion for feature optimization more stable features for classification could be
found.

We can make the following observations. The proposed ELTP operator
does improve the results of the LTP operator and the ELBP operator in case
of the evaluation set in the four-class scheme. The results of those two meth-
ods are comparable in the two-class scheme. The proposed Wavelet-based
WT-LBP operator delivered the best overall classification results in the two-
class case and was among the best methods in the four-class case. Obviously,
the combination of first derivate- and second derivative based information in
this operator is a successful strategy. We also observe, that LBP-based op-
erators outperform non-LBP-based feature extraction techniques in terms
of obtained top and average results. This indicates that indeed LBP-based
schemes are very well suited for the classification of our datasets.

Considering the results of McNemar’s test we saw that the agreement
among the LBP-based methods was not significantly different in a statistical
meaning. However, as this test only considers the homogeneity of marginal
frequencies of two classification results, a negative test result does not nec-
essarily mean, that a method reaching a higher accuracy is not superior to a
method with a lower accuracy.

6. Conclusion

We have found statistically significant differences in classification accuracy
among different settings, especially between the two and four-classes case.
The performance of the used methods builds a solid basis for future work
in case of the two-class scheme for classification. In case of the four-classes
case however we saw that the used features fail to discriminate between the
Marsh-3 subtypes. Overall classification rates in the range of 60 to 65 percent
requires more effort to justify a clinical deployment. We saw that using in-
formation about how well certain methods generalize an improved ensemble
yielding robust features that improved the classification rates in the four-
class case could be found. Although comparing this result to the result of
the other methods lacks fairness to some degree, it indicates that there is
room for further improvement. Ensari (2010) states that the Marsh clas-
sification, as modified by Oberhuber et al. (1999), might lead to increased
intraobserver and interobserver variations. Ensari suggests to use a new clas-
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sification scheme based on Corazza and Villanacci (2005) using only 3 classes
by combining Marsh type 3A and 3B. By using this scheme, automated clas-
sification might be improved. Also more advanced techniques using feature
subset construction such as suggested by Šajn and Kukar (2010) in combina-
tion with a more realistic leave-one-patient-out cross validation to increase
feature reliability should be considered towards the improvement of classifi-
cation accuracy. Considering the discriminative power visible features among
the Marsh type-3 subclasses, advanced techniques used in endoscopy such as
narrow band imaging (NBI, Gross and Wallace (2006)) could possibly be
beneficial to automated classification accuracy. For the two-class problem
(distinguishing areas affected by celiac disease and unaffected areas) the ob-
tained classification accuracy builds a solid basis for future work towards
employment in a clinical study.

The results show that the LBP-operator family exhibited better result
accuracy compared to a wide range of other feature extraction techniques.
The proposed Wavelet-based operator (WT-LBP), combining the LTP oper-
ator using an adaptive threshold and the LBP/C operator using an empirical
distribution function for quantization of the contrast values, was among the
best operators in all experiments. We saw that combining the first derivative-
and second derivative information based operators using the Wavelet trans-
form is beneficial to the feature discrimination and is able to improve the
classification results.
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Häfner, M., Kwitt, R., Uhl, A., Gangl, A., Wrba, F., Vécsei, A., Sep. 2008.
Computer-assisted pit-pattern classification in different wavelet domains
for supporting dignity assessment of colonic polyps. Pattern Recognition
42 (6), 1180–1191.
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Mäenpää, T., 2003. The local binary pattern approach to texture analysis -
extensions and applications. Ph.D. thesis, University of Oulu.
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Ojala, T., Pietikäinen, M., Mäenpää, T., July 2002. Multiresolution Gray-
Scale and rotation invariant texture classification with local binary pat-
terns. IEEE Transactions on Pattern Analysis and Machine Intelligence
24 (7), 971–987.

Petroniene, R., Dubcenco, E., Baker, J., March 2005. Given capsule en-
doscopy in celiac disease: evaluation of diagnostic accuracy and interob-
server agreement. The American Journal of Gastroenterology 100 (3), 685–
694.

Saito, N., Coifman, R., Jul. 1994. Local discriminant bases. In: Laine, A.,
Unser, M. (Eds.), Wavelet Applications in Signal and Image Processing II.
Vol. 2303 of SPIE Proceedings. San Diego, CA, pp. 2–14.

Su, Y., Tao, D., Li, X., Gao, X., 2009. Texture representation in aam using
gabor wavelet and local binary patterns. In: SMC’09: Proceedings of the
2009 IEEE international conference on Systems, Man and Cybernetics.
IEEE Press, Piscataway, NJ, USA, pp. 3274–3279.

Tan, X., Triggs, B., oct 2007. Enhanced local texture feature sets for face
recognition under difficult lighting conditions. In: Analysis and Modelling
of Faces and Gestures. Vol. 4778 of LNCS. Springer, pp. 168–182.

Vécsei, A., Fuhrmann, T., Liedlgruber, M., Brunauer, L., Payer, H., Uhl,
A., 2009. Automated classification of duodenal imagery in celiac disease
using evolved fourier feature vectors. Computer Methods and Programs in
Biomedicine 95, 68–78.

Vécsei, A., Fuhrmann, T., Uhl, A., 2008. Towards automated diagnosis of
celiac disease by computer-assisted classification of duodenal imagery. In:
Proceedings of the 4th International Conference on Advances in Medical,
Signal and Information Processing (MEDSIP ’08). Santa Margherita Lig-
ure, Italy, pp. 1–4, paper no P2.1-009.

36

Automated Marsh-like Classification of Celiac Disease in Children using Local Texture
Operators.
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Abstract

Scale invariant texture recognition methods are applied for the computer assisted diagnosis of celiac disease. In particular,
emphasis is given to techniques enhancing the scale invariance of multi-scale and multi-orientation wavelet transforms
and methods based on fractal analysis. After fine-tuning to specific properties of our celiac disease imagery database,
which consists of endoscopic images of the duodenum, some scale invariant (and often even viewpoint invariant) methods
provide classification results improving the current state of the art. However, not each of the investigated scale invariant
methods is applicable successfully to our dataset. Therefore, the scale invariance of the employed approaches is explicitly
assessed and it is found that many of the analyzed methods are not as scale invariant as they theoretically should be.
Results imply that scale invariance is not a key-feature required for successful classification of our celiac disease dataset.

Keywords: scale invariance, texture recognition, celiac disease

1. Introduction

Texture analysis is one of the fundamental issues in im-
age processing. The majority of existing texture analysis
methods work with the assumption that texture images
are acquired from the same viewpoint (Zhang and Tan,
2002). This limitation makes these methods useless for ap-
plications, where textures occur with different scales, ori-
entations, or translations. Therefore, scale and orientation
invariant texture analysis approaches have been proposed
(see Tan (1995) or Zhang and Tan (2002) for surveys on
this topic). Invariance is important for many applications
in medical image processing, since medical images are of-
ten acquired at different scales and viewpoints. This is
especially true for endoscopic imagery since mucosal tex-
ture is seen from different perspectives and distances to
the cavity wall depending on the relative position of the
endoscopes tip and the mucosa surface. Figure 1 illus-
trates that, depending on the angle between endoscope
and the surface (middle case) and the curvature of the
surface (rightmost example), different distances between
camera and surface may even occur within a single image.

In gastroscopic (and other types of endoscopic) imagery,
mucosal texture is usually found with different perspective
and scale (see Figure 3). That means that the mucosal
texture shows different spatial scales, depending on the
camera perspective and distance to the mucosal wall (see
Figure 1).
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Figure 1: The field of view (FOV) depending on the endoscopic
viewpoint and distance to the mucosal wall

As a consequence, endoscopic imagery typically exhibits
mucosal texture with different and/or mixed spatial scales,
depending on the corresponding acquisition conditions (see
Figure 3 for examples from our celiac disease database).

In this work, we focus on scale invariant texture classifi-
cation approaches being applied in computer-assisted diag-
nosis of celiac disease. While most of the used techniques
in this work exhibit additional invariance to other trans-
formations like rotation, translation, and illumination, we
specifically concentrate on scale invariance for the reasons
explained above. The contributions of this manuscript are
as follows:

• We apply general purpose scale invariant texture de-
scriptors for the classification of duodenal mucosa tex-
ture imagery aiming at the staging of celiac disease.
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• Several approaches have been developed to achieve
scale (and often orientation) invariance for multi-scale
and multi-orientation wavelet transforms. These tech-
niques are mostly applicable to any multi-scale and
multi-orientation transform. We employ the Dual-
Tree Complex Wavelet Transform (DT-CWT) (Se-
lesnick et al., 2005) instead of the originally proposed
transforms and are able to show that our approach
works better for the target celiac disease database
than other wavelet-type transforms (like e.g. Gabor
filters (Fung and Lam, 2009) or steerable pyramids
(Montoya-Zegarra et al., 2007) (see Table 3). An ad-
ditional benefit is the improved ability to compare
the different strategies to achieve scale invariance if
the underlying transform is the same in all cases.

• We propose a new affine invariant method based on
Local Ternary Patterns (LTP).

• We conduct explicit experimental tests for scale in-
variance for all feature descriptors considered based
on the Columbia-Utrecht (CUReT) (Dana et al.,
1999) dataset and the Celiac Disease Scale (CDS)
database (see Section 6.2.2) following ideas in Varma
and Zisserman (2009), revealing that claimed scale in-
variance cannot be verified for many of the schemes
investigated.

• Most approaches are tested for their ability of invari-
ant texture analysis on public databases like Bro-
datz (Brodatz, 1966), CUReT (Dana et al., 1999),
KTH-TIPS (Hayman et al., 2004), or the UIUCTex
(S. Lazebnik and Ponce, 2005) database. Correspond-
ingly, most of the considered methods have been opti-
mized for the corresponding datasets. Hence we have
adjusted some of these methods (e.g. using differ-
ent parameters or replacing parts of the original algo-
rithm) to make them applicable in a sensible manner
for the classification of celiac disease (e.g., use of dif-
ferent measures in techniques based on fractal analy-
sis in Section 4 or application of a different clustering
strategy for the dense Scale Invariant Feature Trans-
form (SIFT) features in Section 5).

• We show, that methods extracting highly contrast
sensitive information work well for the classification
of celiac disease, specifically methods based on fractal
analysis.

This paper is organized as follows. In Section 2 we briefly
introduce the concept of computer-assisted diagnosis of
celiac disease by automated classification of duodenal mu-
cosa texture patches and review the corresponding state-
of-the-art. In Section 3, we describe strategies to achieve
scale invariance for wavelet transforms including the appli-
cation of the discrete cosine transform (DCT) or the dis-
crete Fourier transform (DFT) to the feature vectors of the
wavelet transforms (Häfner et al., 2010; Lo et al., 2004),

re-arrangement of feature vectors (cyclic shifting, domi-
nant scale, and slide matching) (Montoya-Zegarra et al.,
2007; Lo et al., 2009; Fung and Lam, 2009), or methods
that preprocess the image before the wavelet transform is
being applied (Lee, 2003). Section 4 describes techniques
based on fractal analysis while Section 5 covers a het-
erogeneous set of additional approaches to generate scale
invariant texture descriptors (e.g. neural nets (Ma et al.,
2010; Zhan et al., 2009), SIFT features and region detec-
tors (Fei-Fei and Perona, 2005; Zhang et al., 2006), and
multiscale blob features (Xu and Chen, 2006)) as well as a
new affine invariant method we propose which is based on
scale-normalized Laplacian maxima combined with Local
Ternary Patterns (Hegenbart and Uhl, 2013). Experimen-
tal results with respect to classification of the celiac dis-
ease dataset and with respect to effective scale invariance
(by means of the CDS database and parts of the CUReT
database) are presented in Section 6. Section 7 concludes
our work.

2. Computer-Assisted Diagnosis of Celiac Disease

Celiac disease is a complex autoimmune disorder in ge-
netically predisposed individuals of all age groups after
introduction of gluten containing food. The gastrointesti-
nal manifestations invariably comprise an inflammatory
reaction within the mucosa of the small intestine caused
by a dysregulated immune response triggered by ingested
gluten proteins of certain cereals (wheat, rye, and barley),
especially against gliadine. During the course of the dis-
ease, hyperplasia of the enteric crypts occurs and the mu-
cosa eventually looses its absorptive villi thus leading to
a diminished ability to absorb nutrients. The real preva-
lence of the disease has not been fully clarified yet. This
is due to the fact that most patients with celiac disease
suffer from no or atypical symptoms and only a minority
develops the classical form of the disease.

Since several years, prevalence data have continuously
been adjusted upwards. Fasano et al. (2003) state that
more than 2 million people in the United States, this
is about one in 133, have the disease. People with un-
treated celiac disease even if asymptomatic are at risk for
developing various complications like osteoporosis, infer-
tility and other autoimmune diseases including type 1 dia-
betes, autoimmune thyroid disease and autoimmune liver
disease. This is why early diagnosis is of highest im-
portance. Endoscopy with biopsy is currently considered
the gold standard for the diagnosis of celiac disease. Be-
sides standard upper endoscopy, several new endoscopic
approaches for diagnosing celiac disease have been applied
(Chand and Mihas, 2006). The modified immersion tech-
nique described in Cammarota et al. (2006) is based on
the instillation of water into the duodenal lumen for bet-
ter visualization of the villi. Furthermore magnifying en-
doscopy (standard endoscopy with additional magnifica-
tion) has been investigated (Cammarota et al., 2004). For
conducting capsule endoscopy (Petroniene et al., 2005) the
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patient swallows a small capsule equipped with a camera
that takes images of the duodenal mucosa during its pas-
sage through the intestine. All these techniques aim for
detection of total or partial villous atrophy and other spe-
cific markers that show a high specificity for celiac disease
in adult patients like scalloping of the small bowel folds, re-
duction in the number or loss of Kerkring’s folds, scalloped
folds, mosaic patterns, and visualization of the underlying
blood vessels (Niveloni et al., 1998).

Automated classification as a support tool is an emerg-
ing option for endoscopic treatments (e.g. (Liedlgruber
and Uhl, 2011a,b)). Systems are being developed that
support physicians during surgery or highlight malignant
areas during an endoscopy for further inspection. Such
systems could also be used for training purposes. In the
context of celiac disease, an automated system identifying
areas affected by celiac disease in the duodenum would
offer the following benefits (among other):

• Methods that help indicating specific areas for biopsy
might improve the reliability of celiac disease diagno-
sis. As biopsying is invasive and the number of biopsy
samples should be kept small, optimal targeting is de-
sirable. This targeting can be supported by an auto-
mated system for identification of areas affected by
celiac disease.

• The whole diagnostic work-up of celiac disease,
including duodenoscopy with biopsies, is time-
consuming and cost-intensive. To save costs, time,
and manpower and simultaneously increase the safety
of the procedure it would be desirable to develop a
less invasive approach avoiding biopsies. Recent stud-
ies (Cammarota et al., 2006, 2007) investigating such
endoscopic techniques report reliable results. These
could be further improved by analysis of the acquired
visual data (digital images and video sequences) with
the assistance of computers.

• The (human) interpretation of the video material cap-
tured during capsule endoscopy (Petroniene et al.,
2005) is an extremely time consuming process. Auto-
mated identification of suspicious areas in the video
would significantly enhance the applicability and re-
duce the costs of this technique for the diagnosis of
celiac disease.

The celiac state of the duodenum is usually determined by
visual inspection during the endoscopic session followed
by a biopsy of suspicious areas. During endoscopy at least
four duodenal biopsies are taken. The severity of the mu-
cosal state of the extracted tissue can be histologically
staged according to a modified Marsh scheme (Oberhuber
et al., 1999) which is based on Marsh (1992).According to
this staging scheme, we have divided available duodenal
image material into four different classes, Marsh-0 Marsh-
3a, Marsh-3b and Marsh-3c (see Figure 2).

(a) Marsh-0 (b) Marsh-3a (c) Marsh-3b (d) Marsh-3c

Figure 2: Example images for the respective classes

(a) Marsh-0 (b) Marsh-3a (c) Marsh-3b (d) Marsh-3c

Figure 3: Images with different perspective and scale

Marsh-0 represents a healthy duodenum with normal
crypts and villi, Marsh-3a, Marsh-3b and Marsh 3c have
increased crypts and mild atrophy (3a), marked atrophy
(3b) or the villi are entirely absent (3c), respectively.
Types Marsh-3a to Marsh-3c span the range of charac-
teristic changes caused by celiac disease, where Marsh-3a
is the mildest and Marsh-3c is the most severe form. We
also consider the 2-class case, where we only differenti-
ate between healthy (Marsh-0) and unhealthy (Marsh-3a,
Marsh-3b and Marsh 3c) mucosal types, respectively.

As described in Section 1 endoscopic image material
of mucosal texture is usually found at different per-
spective and scale (see Figure 3 for examples from our
database). Therefore, the employment of scale invariant
feature description techniques is a highly intuitive idea for
a computer-assisted diagnosis system.

Prior approaches dealing with the computer-aided diag-
nosis of celiac disease using endoscopic imagery do exist
but they do not focus on scale invariance. With respect
to feature descriptors in previous papers, we have inves-
tigated several variants of Local Binary Pattern (LBP)
based operators (Vécsei et al., 2011; Hegenbart et al.,
2011), band-pass type Fourier filters (Vecsei et al., 2009),
as well as histogram and wavelet-transform based features
(Uhl et al., 2011a; Vécsei et al., 2008). We have also
systematically compared the classification performance of
two different image capturing techniques and various pre-
processing schemes using a set of different feature extrac-
tion and classification methods (Hegenbart et al., 2009).
Smoothness/sharpness measures have been used as fea-
tures in Ciaccio et al. (2011). Techniques involving tem-
poral information computed from videocapsule endoscopy
have been described recently (Ciaccio et al., 2010b,a).

3. Scale Invariant Wavelet based Features

In this section we describe scale invariant texture descrip-
tors, that are based on multi-scale and multi-orientation

3
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Figure 4: Cyclic shifting of the means of the subbands across the
scale dimension

transforms like the discrete wavelet transform, the Ga-
bor wavelet transform and the dual-tree complex wavelet
transform (DT-CWT). Various wavelet-based feature ex-
traction methods have been proposed for endoscopic im-
age analysis (since approximately 2003) (e.g. Kwitt et al.
(2009); Barbosa et al. (2008, 2009); Iakovidis et al. (2004)).
The subbands of these methods contain information about
different scales and orientations of an image. The strate-
gies to make these transforms invariant to scale change are
to transform or reorder the corresponding transform coef-
ficients or to find a different representation for the images
before applying the respective transforms. The underly-
ing principles how to achieve scale invariance are similar
for the approaches in this section (except for the approach
that re-arranges the image before the transformation). If
an image is scaled, then the subbands of the scaled im-
age are shifted across the scale dimension compared to the
subbands of the unscaled image. In Figure 4 we see two
checkerboard patterns in the first row, where the right pat-
tern is a scaled version of the left one with a scale factor of
two. In the second row of Figure 4, the corresponding sub-
band means (when using DT-CWT) of the checkerboard
patterns are shown. We can see that the subband means of
the scaled checkerboard pattern (the right one) are shifted
one scale level up compared to the subband means of the
unscaled checkerboard pattern.

Most strategies used to achieve scale invariance of the
methods described are applicable to any multi-scale and
multi-orientation transform method. We propose to apply
these different strategies to the DT-CWT as opposed to
the various (wavelet) transforms published in the original
papers. The advantages of this approach are as follows:
First, the DT-CWT provides better results for the classi-
fication of celiac disease than any other type of multi scale
transform (as we will see in Table 3). Second, the different
strategies to achieve scale invariance are easier to compare

Figure 5: Computing the discrete cosine transform (DCT) or discrete
Fourier transform (DFT) across the scale dimension of the subband
means

if the underlying transform is the same in all cases. In fact,
the results for classifying celiac disease are better for all
strategies if we use the DT-CWT instead of the originally
proposed (wavelet) transforms. One possible reasons for
that is the shift invariance of the DT-CWT. Shift invari-
ance is important for the classification of celiac disease,
since the representation of features of an image by wavelet
coefficients should not be dependent on the position of the
features in the image. Another possible reason is the high
redundancy of the DT-CWT (it is using two separate Dis-
crete Wavelet Transforms (DWT) and thus has double the
redundancy of the DWT), which provides extra informa-
tion for the analysis.

Kingbury’s DT-CWT (Selesnick et al., 2005) divides an
image into six directional (15◦, 45◦, 75◦, 105◦, 135◦, 165◦)
oriented subbands per level of decomposition. The DT-
CWT analyzes an image only at dyadic scales. For some
of the strategies proposed in this section, a finer scale res-
olution is required. The double dyadic dual-tree complex
wavelet transform (D3T-CWT) (Lo et al., 2009) overcomes
this issue by introducing additional levels between dyadic
scales. These additional levels are generated by recursively
applying the DT-CWT to a downscaled version of the orig-
inal image (using a factor of 2−0.5 in downscaling). For
each subband we calculate the statistical features’ mean
(µ) and standard deviation (σ) from the absolute values
of the subband coefficients. We denote a statistical fea-
ture of a subband Sl,d with scale level l ∈ {1, . . . , L} and
orientation d ∈ {1, . . . , D} as ql,d. The feature vector of
an image is composed of these statistical features collected
from the different subbands.
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3.1. Applying Discrete Fourier Transform and Discrete
Cosine Transform to DT-CWT

Features that are approximately scale invariant can be gen-
erated by applying the discrete Fourier transform (DFT)
across the scale dimension of a feature vector of the the
D3T-CWT (Häfner et al., 2010) (see Figure 5):

Qn,d =
1√
L

L∑
l=1

ql,d e
−i 2π(l−1)(n−1)

L ,

with n ∈ {1, . . . , L} , d ∈ {1, . . . , D}.
The vector fvSI = {|Q1,1|, . . . |QL,1|, |Q1,2|, . . . |QL,2|,
. . . |QL,D|} provides a texture feature that is nearly in-
variant to scale. The feature curve of a feature vector
shifts if input texture is scaled (see Figure 4). If a fea-
ture curve qml,d is a cyclic shifted version of the old one
(qml (mod L+1),d = q l+m (mod L+1),d , m ∈ {1, . . . , L}),
then applying DFT to the feature curves followed by tak-
ing the magnitude of it provides the same results for the
old and new feature curve (|Qn,d| = |Qm

n,d|, where Qm
n,d

is defined like Qn,d, but with using qml,d instead of ql,d ).
The reason for that follows from the Shift Theorem of the
DFT: Qm

n,d = Qn,d e
2πi(n−1)m

L ( with |e
2πi(n−1)m

L | = 1). The
problem is, that the Shift Theorem is only valid if the
input signal ql,d is periodic, but it is questionable why
these statistical features should be periodic. However if
the statistical features are close to zero at both ends, the
approach provides good scale invariance. In Figure 5 we
can see the means of the subband coefficients from the red
color channel of an image of the celiac disease database
(we separately apply the DFT to the features of the three
color channels of the RGB color space). We can see that
the coarse end (l = 6) has the highest means, which are
absolutely not close to zero. This of course questions input
periodicity.

Another possibility is to consider only the real part of
the DFT, which is a cosine transform. This leads us to
the application of the Discrete Cosine Transform (DCT)
across scale dimension (see Häfner et al. (2010)). The DCT
is not invariant to cyclic shifts of the feature curve and so
it is not theoretically clear if the DCT enhances the scale
invariance of the DT-CWT in general. Even if the DCT
would be invariant to cyclic shifts, this would not enhance
scale invariance since the input signal ql,d is not periodic.
Results in Häfner et al. (2010) indicate that the DCT en-
hances the scale invariance at least for small differences of
scales (maximum scale factor ≈ 1.4), tests for bigger scale
differences were not made.

A related approach (Lo et al., 2004) is to resize each
D3T-CWT subband to the size of the original image. In
this way we get a local feature vector for each pixel con-
sisting of the subband coefficients (absolute values) at the
position of the pixel. Like in the approach before, the DFT
is applied across the scale dimension of these local feature
vectors (see Figure 5), but this time to each local feature
vector instead of the statistical features of the subbands:

Qlocal
n,d (x, y) =

1√
L

L∑
l=1

Sl,d(x, y) e
−i 2π(l−1)(n−1)

L ,

with n ∈ {1, . . . , L} , d ∈ {1, . . . , D}. For each “trans-
formed subband” Qlocal

n,d we compute the statistical features
mean and standard deviation. Since the operations for
achieving scale invariance are applied to the local subband
coefficients (instead to the global statistical subband fea-
tures mean and standard deviation like in the approaches
before) we denote this method as “D3T-CWT with DFT
(local)”. In extending Lo et al. (2004) we additionally use
the DCT instead of the DFT and denote this method as
“D3T-CWT with DCT (local)”. A feature vector of DT-
CWT or DT-CWT with DCT has a length of 216 (6 orien-
tations × 6 scale levels × 3 color channels × 2 statistical
features per subband). In case of DT-CWT with DFT,
for each direction d, the following features form complex
conjugates: Q2,d = Q∗

6,d and Q3,d = Q∗
5,d. That means

2 of the 6 scale levels (scale levels 5 and 6) are redun-
dant, which reduces the length of the feature vector to 144
elements. If using D3T-CWT instead of DT-CWT, the
feature vector length is doubled.

3.2. Cyclic Shifting of Local Features

Instead of computing the DFT across the scale dimension
of the local feature vectors of the D3T-CWT, these vec-
tors are cyclically shifted across the scale dimension (in
the original approach (Lo et al., 2009), the local feature
vectors are additionally shifted across the orientation di-
mension to achieve orientation invariance, but since we
are primarily interested in scale invariance we omit that).
First we square each element of the local feature vectors
and apply subsequently a circular-correlation (only across
the scale dimension) of the squared feature vector with a
specific mask M (see Figure 6).

The result of this process is a correlation vector, which
is as long as the number of scale levels is. Now the original
feature vector is cyclically shifted in the scale dimension,
so that the first scale level of the new local feature vector
is the scale level of the original local feature vector, in
which the correlation vector had its maximum (see Figure
6). Then the subbands (consisting of the corresponding
feature values) are modeled by a Rayleigh distribution (Lo
et al., 2009) and the parameters of this distribution are
used to form the final feature vector of an image. Since we
use only one statistical feature per subband, the number
of features per image is half the number of features using
the D3T-CWT (216).

3.3. The Dominant Scale Approach

The accumulated energies of the scales l ∈ {1 . . . , L}
are computed across the orientations d ∈ {1, . . . , D}
(Montoya-Zegarra et al., 2007):
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Figure 7: Comparison of the subband means and energies
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A scale invariant representation is achieved by computing
the dominant scale (DS) of the images followed by feature
alignment. The dominant scale is defined as the scale with
the highest accumulated energy E(l). Now the feature
vector, consisting of mean and standard deviation of the
subbands, is circularly shifted, such that the features of
the dominant scale are the first ones in the feature vector.

We face a problem when applying this method to our
database (which is identical for the original approach
(Montoya-Zegarra et al., 2007) using steerable pyramid
decomposition and for our version using the DT-CWT).
Due to subsampling, subbands at increasing scale have a
lower number of coefficients. On the other hand, the abso-
lute values of coefficients in higher scales are distinctively
higher than those in lower levels (see the subband means
in Figure 7). Nevertheless, the dominant scale will almost
ever occur at scale level l = 1 due to the high number of
coefficients.

In fact, when using the DT-CWT on our data set, the
DS is always at scale level l = 1, and for the steerable
pyramid decomposition the DS is not at scale level l = 1
for 17 images only (out of 612 images). That is why we

adapted the dominant scale approach by using subband
means instead of the subband energies. Using this ap-
proach, for 38 images the DS is not at scale level l = 6
which improves the situation only slightly. Feature vector
values are almost always monotonically increasing with the
scale level (subband means) or monotonically decreasing
with the scale level (energy of the subbands) and therefore
shifting the features across the scale dimension according
to the DS does not make a big difference. The original ap-
proach of Montoya-Zegarra et al. (2007) also determines
the dominant orientation, but as we are more interested
in scale invariance we omit this process (results have been
deteriorated when using this approach). The length of the
feature vector is equal to that of the DT-CWT (216).

3.4. The Slide Matching Approach
Slide matching (Fung and Lam, 2009) was originally pro-
posed for the Gabor transform but is used with the D3T-
CWT in our context. The original approach is first made
orientation invariant by summing up the means and stan-
dard deviations of the subbands’ coefficients with same
scale level. In adapting the proposed approach to our sce-
nario (Fung and Lam, 2009), we compute the scale lev-
els 1, 1.5, 2, . . . , 6 of the training set and the scale levels
2, 3, 4, 5 of the evaluation set. The distance between an
image of the training set and an image of the evaluation
set is the distance that is minimized by sliding the feature
vectors along the scale dimension against each other (see
Figure 8).

Since we are primarily interested in scale invariance we
also use a modified version of slide matching without sum-
ming up the subbands of the same scale level. Conse-
quently, we have for each scale level 12 (6 orientations,
2 parameters per subband) instead of 2 features for the
slide matching process. Therefore in case of the original
version the length of the feature vector is equal to that of
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Figure 8: (a) Different scale factors are used for the training set
images and for the evaluation set images. Each node denotes two
elements, a sum of means and a sum of standard deviations. (b)
The sliding of evaluation set image feature vector along augmented
training set image vector

the DT-CWT (216) and in case of the modified version,
the length of the feature vector is only a sixth of that of
the DT-CWT (36).

3.5. The Log-Polar Approach
The log-polar transformation maps points from the Carte-
sian plane (x, y) to points in the log-polar plane (ξ, η) (see
Figure 9). In this coordinate system, scaling and rotation
is converted to translations.

Scale invariance (and orientation invariance) can be
achieved by analyzing the transformed image with a shift
invariant transform like the adaptive row shift invariant
wavelet packet transform (as originally proposed in Lee

x

y

Figure 9: The log-polar transformation

(a) (b) (c)

Figure 10: Fractal dimension D in 2D space. (a) Smooth spiral
curve with D = 1, (b) the checkerboard with D = 2 and (c) the
Sierpinski-Triangle with D ≈ 1.6

(2003)) or the DT-CWT used in this work. Unlike in Lee
(2003), we compute subband means and standard devia-
tions as features (instead of energies) and do not use the
best basis algorithm. Obviously, the length of the feature
vector is equal to that of the DT-CWT (216).

4. Scale Invariant Methods based on Fractal Anal-
ysis

For a point set E defined on R2, the fractal dimension of
E is defined as

dim(E) = lim
δ→0

logN(δ, E)

− log δ
,

where N(δ, E) is the smallest number of sets with diameter
less than δ that cover E. The set is made up of closed
disks of radius δ or squares of side length δ. In Figure
10 we present some examples for the fractal dimensions of
different objects.

Intuitively, the fractal dimension is a statistical quan-
tity that gives a global description of how complex, how
irregular or how rough a geometric object is. However,
the fractal dimension alone, as defined before, does not
provide a rich description. It is just a single value.

The local fractal dimension or also called the local den-
sity function, used in two of the three methods presented
in this section, provides a more powerful and adaptive de-
scription. Let µ be a finite Borel regular measure on R2.
For x ∈ R2, denote B(x, r) as the closed disk with center
x and radius r > 0. µ(B(x, r)) is considered as an expo-
nential function of r, i.e. µ(B(x, r)) = crD(x), where D(x)
is the density function and c is some constant. The local
density function (or also called local fractal dimension) of
x is defined as

D(x) = lim
r→0

logµ(B(x, r))

log r
.

The density function measures the “non-uniformness” of
the intensity distribution in the region neighboring the
considered point.

The local density D is invariant under the bi-Lipschitz
map, which includes view-point changes and non-rigid de-
formations of texture surface as well as local affine illumi-
nation changes. A bi-Lipschitz function f must be invert-
ible and satisfy the constraint c1||x−y|| ≤ ||f(x)−f(y)|| ≤

7

Scale Invariant Texture Descriptors for Classifying Celiac Disease.



c2||x − y|| for c2 ≥ c1 > 0. Consequently, local fractal di-
mensional based approaches are especially interesting for
developing scale-invariant feature descriptors, and so also
for the classification of celiac disease.

By choosing different measures µ, the local density func-
tion can be adapted to different image processing tasks. As
we will see, measures based on derivative information work
best for our dataset, since their contrast sensitiveness is a
good feature to differentiate between images with or with-
out celiac disease. The reason for that is that images of
patients with celiac disease have less or entirely no villi and
therefore a lower amount of contrast compared to images
of patients without celiac disease.

4.1. The Multi-Fractal Spectrum

First, the local fractal dimension is computed for each pixel
of an image (Xu et al., 2009b). Let Eα be the set of all
image points x with local density in the interval α:

Eα = {x ∈ R2 : D(x) ∈ α}.

Usually this set is irregular and has a fractal dimension
f(α) = dim(Eα).

We denote the convolution ∗ between an image I =
I(x, y) and a Gaussian kernel Gσ = G(x, y, σ) =

1
2πσ2 e

x2+y2

2σ2 (i.e. Gaussian blur) as follows:

I(x, y, σ) = I(σ) =

∫ ∞

−∞

∫ ∞

−∞
I(x+u, y+v)G(u, v, σ)dudv

and Ix(σ) is the first derivative of I(σ) in the direction
of x.

In the original approach (Xu et al., 2009b) three different
types of measures µ(B(x, r)) are defined for the computa-
tion of the local density:

µ(B(x, r)) =
∫
B(x,r)

I(σ) dx

µ(B(x, r)) =
∫
B(x,r)

∑4
k=1(fk ∗ (I(σ)2) 1

2 dx

µ(B(x, r)) =
∫
B(x,r)

|(Ixx(σ) + Iyy(σ))| dx, (1)

where {fk, k = 1, 2, 3, 4} are four directional operators
(derivatives) along the vertical, horizontal, diagonal, and
anti-diagonal directions. The feature vector of an image
I consists of the concatenation of the fractal dimensions
f(αi) for the three different measures µ(B(x, r)).

In case of our dataset, it turned out that the Laplacian
measure (equation (1)) is the only one of the three mea-
sures which leads to sensible results. The reason for that
is very probably the comparatively highest contrast sensi-
tiveness of the Laplacian measure. So contrasting to the
original proposal (Xu et al., 2009b), the employed feature
vector only has entries of the third type. We use 14 non-
overlapping intervals α and so the length of the feature
vector per image is 14.

4.2. Fractal Analysis using Filter Banks

Instead of partitioning the local densities of images in sets
E(α)’s and computing their fractal dimensions, we first
convolve the images with the MR8 filter bank (Varma and
Zissermann, 2005; Geusebroek et al., 2003), a rotationally
invariant, nonlinear filterbank with 38 filters but only 8
filter responses, and compute local fractal dimension after-
wards (Varma and Garg, 2007; Uhl et al., 2011b). Filters
can smooth over image noise and lead to more robust fea-
tures. However, they also have the drawback of lowering
the level of bi-Lipschitz invariance.

Let us introduce the measures

µ(B(x, r)i) =
∫ ∫

B(x,r)
|f(i)| dx (2)

µ(B(x, r)i) =
∫ ∫

B(x,r)
|(Sx + Sy) ∗ (Gσ ∗ f(i))| dx,(3)

where f(i) is the i-th MR8 filter response image with
1 ≤ i ≤ 8. Sx = [−1, 0, 1;−2, 0, 2;−1, 0,−1]/4 and
Sy = −S(x)T are Sobel filters. The first measure (Equa-
tion 2) is the measure originally proposed in Varma and
Garg (2007), while the second measure (Equation 3) is
proposed in Uhl et al. (2011b), where the original fractal
method of Varma et al. (Varma and Garg, 2007) has been
optimized for the celiac disease database. We follow the
optimized approach using the second measure and com-
puting the local density for each of the 8 filter responses
(in Varma and Garg (2007), only 5 of the 8 filter responses
are used, in our experiments the results are better using
all 8 responses). For each pixel of an image, we result in
an 8-dimensional local density vector. For each class of
the training set we aggregate the local density vectors of
the images of this class and learn cluster centers (called
textons) by k-means clustering.

The next step is to learn models for each image of the
training and evaluation sets. Given an image, its corre-
sponding model is generated by first convolving it with
the filter bank, computing the local density of each filter
response and then labeling each local density vector with
the texton that lies closest to it. Distances between two
frequency histograms (models) are measured using the χ2

statistic. The length of the feature vector per image is the
number of classes of the according image database multi-
plied by 10 (10 clusters per class).

4.3. Fractal Dimensions for Orientation Histograms

Similar to SIFT features (see next section), this method
(Xu et al., 2009a) is based on computing local orientation
histograms. First the gradient magnitude and the orien-
tation of a given pixels neighborhood are computed. The
orientation histogram from the neighborhood of the given
pixel is formed by discretization of orientations by weigh-
ing the gradient magnitude (see Figure 11). The histogram
is then assigned to one of 29 orientation histogram tem-
plates, which are constructed based on the spatial struc-
ture of the orientation histogram (the number of significant
image gradient orientations and their relative positions).
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Figure 11: The process of construction and discretization of the ori-
entation histogram when using a neighborhood of size 3× 3

We now have for each pixel (for a given neighborhood size)
a value between 1 and 29, depending on the template it
is assigned to. By setting a pixel to one if it is assigned
to template i (i ∈ {1, . . . , 29}) and to zero otherwise, 29
binary images are generated, from which we compute the
fractal dimensions (by means of the box-counting method
1). This process is applied for eight different neighbor-
hood sizes (scale levels). In order to get better robustness
to scale changes, finally a wavelet transform (a redundant
tight wavelet frame system) is applied across the scale di-
mension (the different neighborhood sizes) of the fractal
dimensions. The final feature vector of an image consists
of the detail and approximation coefficients of the wavelet
transform. This feature vector can be viewed as the in-
formation about the changes with respect to scale (the
neighborhood sizes represent the scale levels). According
to (Xu et al., 2009a), this enhances the scale invariance,
since the scale changes are often consistent across multiple
scales for natural textures. The length of the feature vec-
tor per image is 1160 (29 orientation histogram templates
× 8 neighborhood sizes × 5 (2 different high-pass filters
each with 2 decomposition levels and a low-pass filter using
only the second decomposition level).

5. Further Approaches

In this section we will present approaches that are neither
based on wavelet transforms nor on fractal analysis. The
first two approaches are based on the widely used SIFT
features (Lowe, 1999) and affine invariant region detectors
(Zhang et al., 2006), two approaches work with neural net-
works (Ma et al., 2010; Zhan et al., 2009) and one approach
analyzes characteristics of connected regions (blobs) (Xu
and Chen, 2006). Finally we cover the affine invariant Lo-
cal Ternary Patterns which are based on the analysis of
multi-scale second moment matrices in a Laplacian scale
space (Hegenbart and Uhl, 2013).

5.1. SIFT Features and Region Detectors
The Scale Invariant Feature Transform (SIFT) (Lowe,
1999) is probably the most popular feature used in com-
puter vision (Vedaldi and Fulkerson, 2008). SIFT detects
salient image regions (keypoints) and extracts discrimina-
tive yet compact descriptors of their appearance. SIFT

1rsbweb.nih.gov/ij/plugins/fraclac/FLHelp/BoxCounting.htm

keypoints are invariant to viewpoint changes like transla-
tion, rotation, and rescaling of an image.
First an image is convolved with Gaussian filters at differ-
ent scales σ. By means of detecting the maxima/minima
of the Difference of Gaussians (DoG), local scale space ex-
trema are found. The DoG is given by

DoG(x, y, σ) = I(kσ)− I(σ) .

Local scale space extrema which have low contrast or are
poorly localized are eliminated, the rest are used as key-
points. Using the Gaussian filtered image (with keypoint
scale σ), gradient magnitudes and orientations are com-
puted from the neighboring region of the keypoint to form
an orientation histogram. Now the gradient information is
rotated according to the dominant orientation of the ori-
entation histogram and weighted by a Gaussian function.
A local descriptor uses 16 histograms, aligned in a 4 × 4
grid, each with 8 orientation bins. This results in a feature
vector containing 128 (16*8) elements for each keypoint of
an image.

The original approach Lowe (1999) is suited for object
recognition, in this work however we are interested in tex-
ture classifications, SIFT keypoints do not make sense in
our context. We apply two different ways to deal with that
problem:

1. We use dense SIFT features (Fei-Fei and Perona,
2005), that means that we compute SIFT descriptors
for each pixel of an image.

2. We use a region detector that is suited for texture
images and then apply the SIFT descriptor to the
detected regions (Zhang et al., 2006).

A region detector suited for texture recognition is the Har-
ris detector (S. Lazebnik and Ponce, 2005; Mikolajczyk and
Cordelia, 2004). The Harris detector is based on the sec-
ond moment matrix MI . This matrix must be adapted to
scale changes to make it independent of the image resolu-
tion:

MI(σ, γ) = Gσ ∗
(

I2x(γ) Ix(γ)Iy(γ)
Ix(γ)Iy(γ) I2y (γ)

)
,

The Harris corner measure µ is defined as follows:

µ(σ, γ) = det(MI(σ, γ))− α trace2(MI(σ, γ)).

Note that µ simultaneously lives in two scale spaces
(caused by the Gaussian kernel G) with parameters γ and
σ. The inner scale γ, which is less critical than the outer
scale σ, is set to a constant value. Local maxima of this
measure determine the location of Harris interest points,
and then the Laplacian scale selection procedure is applied
at these locations to find their characteristic (outer) scale
σ. The Laplacian scale selection finds the characteristic
scale at a given point (x, y) by maximizing the Laplacian-
of-Gaussian:

L(x, y;σ) = σ2|Ixx(σ) + Iyy(σ)|. (4)
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The elliptic region around a found location is described by
its principal axes corresponding to the eigenvectors of MI

and axis length depending on the eigenvalues. For affine
invariance, a region is normalized by mapping it onto a
unit circle and using a rotational invariant descriptor, the
SIFT descriptor.

So for both ways, using dense SIFT features or using
the Harris detector (combined with the affine invariant
mapping and the SIFT descriptor), we get features from
the SIFT descriptor as output. For both approaches we
follow the strategy applied in Section 4.2, as opposed to the
classical dense SIFT approach (Fei-Fei and Perona, 2005).
For each class of the training set we aggregate the SIFT
descriptors of the images of this class and learn cluster
centers (textons) by k-means clustering. Given an image,
its corresponding model is generated by labeling its SIFT
descriptors with the texton that lies closest to it. Distances
between two frequency histograms (models) are measured
using the χ2 statistic. For both approaches, the length of
the feature vector per image is the number of classes of the
according image database multiplied by 10 (10 clusters per
class).

It should be noted that instead of using the Harris de-
tector it would be possible to use other region detectors
(e.g. Laplacian (Zhang et al., 2006) and Hessian region
detectors (Mikolajczyk and Schmid, 2002)) and descrip-
tors (e.g. SPIN and RIFT features (Zhang et al., 2006)),
the principle of the approach however remains the same.
Following the terminology in the original papers, we de-
note the approach using the dense SIFT features as “Dense
SIFT Features” and the approach using the Harris detector
as “Local Affine Regions”.

5.2. Pulse-Coupled Neural Networks based Methods
Pulse-coupled neural networks (PCNN’s) (Ranganath
et al., 1995) are neural models proposed by modeling a
cat’s visual cortex. PCNN is a neural network algorithm
that produces a series of binary pulse images when stim-
ulated with an image. The intersecting cortical model
(ICM) (Ma et al., 2010) and the spiking cortical model
(SCM) (Zhan et al., 2009) are two methods derived from
the PCNN, which are faster and provide better or similar
results as compared to the PCNN (Ma et al., 2010; Zhan
et al., 2009).

The ICM model consists of two coupled oscillators, a
small number of connections and a non-linear function.
F is the state oscillator and Θ the threshold oscillator.
Together they constitute the neurons pulse sequence Y .
The mathematical model of ICM is described as follows:

Fij(n) = fFij(n− 1) + I(i, j) +∑
kl

MijklYkl(n− 1)

Θij(n) = gΘij(n− 1) + hYij(n− 1)

Yij(n) =

{
1 for Fij(n) > Θij(n)

0 otherwise.

where f, g and h are scalars, M =
[0.5, 1, 0.5; 1, 0, 1; 0.5, 1, 0.5] is the connection func-
tion through which the neurons communicate, I is the
input image and n ∈ {1, . . . , N}. The pair (i, j) stands
for the position of the neuron in the map and (k, l) is
that of its neighboring neurons. The outputs of ICM are
N binary images, which represent features like texture,
edges, and segments.

The mathematical model of the SCM is described as
follows:

Fij(n) = fFij(n− 1) + I(i, j) +

I(i, j)
∑
kl

MijklYkl(n− 1)

Θij(n) = gΘij(n− 1) + hYij(n− 1)

Yij(n) =

{
1 for Fij(n) > Θij(n)

0 otherwise.

As for ICM, the outputs of SCM are N binary images.
The final feature vectors of the SCM and ICM, respec-
tively, consist of the entropies of the N = 37 binary output
images.

The authors (Ma et al., 2010; Zhan et al., 2009) state
that their approaches (ICM and SCM) are scale invari-
ant (and rotation and translation invariant), however their
manuscripts miss a valid justification for this statement.
They reference a further publication (Johnson, 1994) in
which scale invariance is explained. The problem is that
there a special kind of PCNN is considered and that scale
invariance is only shown for objects on a uniform back-
ground, not for textures.

5.3. Multiscale Blob Features
In order to derive multiscale blob features (Xu and Chen,
2006), we apply a series of flexible threshold planes to a
textured image and then use the topological and geometri-
cal attributes of the generated blobs in the obtained binary
images to describe image texture. The flexible threshold
planes FP are determined by Gaussian blurring:

FP (x, y;σ, b) = b+ I(x, y, σ) .

where σ2 is the variance to control the spread of the win-
dow and b is the bias. By applying the flexible threshold
planes to the grayscale image I, we obtain binary images

gb(x, y;σ) =

{
1 if I(x, y) > FP (x, y;σ, b)

0 otherwise

In each binary image, all 1-valued pixels and 0-valued
pixels are grouped into two sets of connected regions called
blobs (see Figures 12,13).

The original approach uses two features to describe an
image, the number of blobs and the shapes of the blobs.
The shape feature indicates how compact the blobs of an
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Figure 12: Process of extracting binary blobs
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Figure 13: Binary blob images with different sigmas and biases de-
noted by b, where s denotes the standard deviation of the original
image. 0-valued pixels are displayed as black pixels and 1-valued
pixels are displayed as white ones

image are (the compactness of a blob is here defined as
the maximum of the distances from the pixels of a blob to
the centroid of the blob, divided by the square root of the
number of pixels of the blob). The multiscale blob features
are invariant to rotation and gray-level scaling (the bias b
of FP (x, y;σ, b) is depending on the standard deviation
of the input image). The shape features are invariant to
spatial scaling within a small range (the compactness is
similar for spatial scaling within a small range), but the
number of blobs change to some extent. As opposed to
the original approach (Xu and Chen, 2006), we separately
classify the images for the two blob features, since the
shape feature is scale invariant and the number of blobs
is not. The length of the final feature vector is 480 (30
values for σ × 8 values for b × 2 (black and white regions
of a binary image)).

5.4. Affine Invariant Local Ternary Patterns
The Local Binary Pattern approach as introduced by Ojala
et al. (1996) as well as the Local Ternary Patterns method
proposed by Tan and Triggs (2007) are not affine invariant.
An extension to the method suggested by Mäenpää (2003)
uses multiple Gaussian filters with varying sizes to improve
the support area of the operator. This extension adds
multi resolution to the operator but misses a scale selection

mechanism. We propose an affine invariant method based
on Local Ternary Patterns that employs scale-normalized
derivatives of local scale space maxima for scale selection.
We compute the multi-scale second moment matrices at
given scales to analyze textures according to their affine
shape along an ellipse. The method shares the idea of using
the scale space framework with methods such as the SIFT
feature detector and other region detectors as discussed in
Section 5.1. The idea of combining scale space maxima
with Local Binary Patterns has also been explored by Li
et al. (2012).

Instead of using the DoG (difference of Gaussian) ap-
proximation to the Laplacian of Gaussians as used by
SIFT we construct the scale space by computing the
scale-normalized Laplacian (see Equation 4) of each im-
age I at each location x ∈ N2 at different scales with
σ = 1.5√

2

k
, k ∈ {1, . . . , 20} denoted as (△I(x;σ)). The ini-

tial scale is chosen such that it corresponds to the standard
radius of LBP (1.5).

Due to the fact that not all locations in an image at-
tain a local maximum and a maximum between scales, we
compute a scale mask to improve the reliability of the scale
estimation. This is especially useful when textures are not
strictly periodic and attain multiple scales as is the case
in celiac disease. The computation involves the detection
of local maxima at each scale. We exploit the fact that
pixels in close spatial proximity to a maximum are at the
same or a relatively close scale to the detection scale of the
corresponding maximum.

We compute the multi-scale second moment matrices at
each location x of an image I which is attaining a local
scale space maximum. We use the detection scale of the
maximum as the local scale t, the integration scale s =

√
2t

is depending on the detection scale.

µ(x; t, s) =

∫
ξ∈R2

(∇I)(x− ξ; t)(∇I)T (x− ξ; t) g(ξ; s) dξ.

With (∇I)(x; t) denoting the gradient of the scale space
orientation at scale t and g denoting a Gaussian func-
tion. The second moment matrix summarizes the gra-
dient distribution of the area around a pixel location at
a given scale. The eigenvalues of the matrix characterize
the length of the axes of an ellipse (up to some constant
multiplier) while the eigenvectors describe the orientation
of the axes. Due to the fact that the orientation of the
ellipse described by the second moment matrix is normal
to the detected blob we compute the inverse of the second
moment matrix. The inverse results in a rotation by ninety
degrees without modifying the ratios of the axis lengths.

The absolute sizes of the axes given by the second mo-
ment matrices are unknown, we therefore normalize the
ellipses such that the circumference is equal to the cir-
cumference of the detected maxima treated as circle (the
radius at scale σ is

√
2σ). To do so, we apply Ramanujan’s

formula for approximating the circumference of the ellipse
(with axes a and b) and solve the quadratic equation for a
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constant scaling factor c

√
2σ2π = π

(
3(ac+ bc)−

√
(3ac+ bc)(ac+ 3bc)

)
.

The axes of the ellipse are then re-scaled by the appropri-
ate solution of c.

After the computation of the support area of a local
maximum (the ellipse given by the second moment matrix
at the position and scale of the maximum), all locations
within this area are assigned to the scale and response of
that maximum (we call this a corresponding maximum for
a location). In our methodology it is possible that a single
location contains multiple possible scales and responses,
this is due to the fact that the support areas of multiple
maxima might overlap.

We observed that the reliability of a location attaining
the same scale as a corresponding maximum decreases with
spatial distance. To compensate for this, we compute the
reliability of a scale at a distance d from a corresponding
maximum using a Gaussian probability density function
choosing σp such that the reliability of a given scale at a
distance of the length of the semi minor axis b of the corre-
sponding maximum’s normalized support area is 0.5. We
additionally use the responses of all corresponding max-
ima for a pixel location to ensure that maxima with lower
responses have lower reliabilities.

r(x; l) =
△I(x; l)

max
t

△I(x; t)
e

−d2

2σ2
p and σp =

(
−( b2 )

2

2 log(0.5)

) 1
2

The reliability measure is finally used to assign a weight
controlling the contribution of each computed pattern to
the histogram . Once the scales of each location have been
determined we apply an adaptive Gaussian filter to the
data, prior to computing the LTP code at a location. We
select the width of the Gaussian filter such that the area
covered by the operator in relation to the local scale is the
same across all scales. This gives invariance to uniform
scaling. The width of the Gaussian filter (fw) is selected in
a way that 90 percent of the area of the Gaussian function
are in the area of the computed filter.

fw =

√
2σ2π

n
and σGauss =

fw 0.5√
2 erf−1(0.9)

For n being the number of considered LTP neighbors, σ
being the scale at the location.

To compute a pattern at a location we estimate the sec-
ond moment matrices using the detection scales of all cor-
responding maxima at that location. We distribute the
sample points of the operator such that they lie along the
normalized ellipses described by the second moment ma-
trices. By using this approach non uniform scaling of the
data can be compensated, because this type of transfor-
mation would change the shape of the ellipses accordingly.

We then distribute sample points so that the distance in
terms of arc length between adjacent points is equal, giv-
ing n-equidistant points along the ellipse. To speed up the
computation we define four support points on the ellipse
which lie on the ends of the major and minor axes respec-
tively. The definition of support points limits the method
to distribute a number of 4N + 4 equidistant points along
the ellipse but reduces the computation to N points. We
use the fact that all ellipses can be described as a scaled
and rotated version of a canonical ellipse. To distribute
the points on a canonical ellipse in parametric form, the
positions of N points in the first quadrant are computed
and symmetries are exploited to gain the other 3N points.
To find the offset on the x-axis of the n-th point (∆xn)
from the center of the ellipse the equation

n

N + 1

∫ a

0

√
1 +

(
dy

dx

)2

dx =

∫ ∆xn

0

√
1 +

(
dy

dx

)2

dx

is solved for ∆x, where a is the length of the horizon-
tal semi-axis, N is the number of points to distribute per
quadrant and the second additive term is the derivative of
the canonical implicit equation of an ellipse.

The definition of support points also provides the possi-
bility of defining a fixed starting point for the computation
of the patterns. Due to the ambiguous orientation of an
ellipse we define two starting points (computing two pat-
terns per position) to compensate. These are by definition
the points on the intersection of the major axis with the
ellipse.In case of ellipses that are close to a circle this defini-
tion becomes unreliable, we therefore treat second moment
matrices with a ratio of eigenvalues λmin

λmax
>= 0.95 as a cir-

cle treating the vertical axis as the major axis. By defining
a starting point we are able to compensate rotations, this
is due to the fact that this kind of affine transformation
is reflected by the orientation of the computed ellipses.
Please see Hegenbart and Uhl (2013) for a more thorough
explanation of the method. The feature vector of an image
consists of a single histogram with 59 bins.

6. Experimental Results

We use the software provided by the Robotic Research
Group 2 for region detection (Harris detector) and descrip-
tion (SIFT) in Section 5.1, the VLFEAT implementation
(Vedaldi and Fulkerson, 2008) for the dense SIFT features
in Section 5.1 and the implementation of Geusebroek et al.
(2003) for the MR8 filter in Section 4.2. For the remain-
ing algorithms custom implementations from earlier work
(Kwitt and Uhl, 2007; Uhl et al., 2011b) (DT-CWT, Frac-
tal Analysis using Filter Banks) or specifically developed
for this work have been used (all using Matlab except for
the affine invariant LTP method which we developed using
Java).

2http://www.robots.ox.ac.uk/ vgg/research/affine
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The original manuscripts employ a wide variety of differ-
ent classifiers. Since higher developed classifiers (e.g. the
SVM classifier) will mostly produce better results than
more simple classifiers (e.g. the k-NN classifier) and since
the focus lies on scale invariant feature extraction strate-
gies and not on classification methods, all methods are
classified using the k-NN classifier. The advantage of that
approach is the better comparability of the results with
respect to feature expressiveness.

Classification accuracy is computed using an evaluation
set and a training set. An image from the evaluation set is
classified into the class, where most of the k nearest neigh-
bors from the training set belong to. The k for the k-NN
classifier, used to classify the evaluation set, is optimized
on the training set (the k with the highest overall classi-
fication rate (OCR) using leave–one–out cross–validation
(LOOCV) on the training set).

The algorithms using k-means clustering provide differ-
ent results each run. For these methods we provide average
results from 10 runs per method.

6.1. Celiac Disease
We use a database of duodenal endoscopic images em-
ployed in earlier work (Hegenbart et al., 2011) to enable
easier comparison. Table 1 lists the number of image sam-
ples and patients per class. To avoid overfitting and to
test the methods in in a practice-related context, the im-
ages of a patient are either all in the evaluation set or all
in the training set. In this way it is impossible that the
nearest neighbors of an image and the image itself come
from the same patient. This is important to avoid any
bias in the result, the setup of this data set resembles in
a way how LOPO (Leave–one–patient–out) and LOOCV
(Leave–one–out cross–validation) work.

The original endoscopic images (which are of size 620×
530 or 520 × 510 depending on the used endoscope) of-
ten exhibit only small areas that permit a distinction be-
tween healthy mucosa and mucosa affected by celiac dis-
ease. This is due to the facts, that endoscopic images in
general show a high amount of distortions such as bubbles,
specular reflections and occlusions due to the geometric
properties of the duodenum. Additionally, the distribution
of villous atrophy caused by the disease could be restricted
to certain areas within the visible area (this is known as
patchy distribution of celiac disease). Therefore we extract
non overlapping patches of size 128× 128 (under supervi-
sion of a physician). Our celiac disease database consists
of these patches.

We observed that the overall classification rate (OCR)
varies significantly depending on the chosen number of
nearest neighbors of the k-NN classifier. Therefore, we use
a second measure for the 2-class case to evaluate the meth-
ods, the area under the ROC (receiver operating character-
istic) curve (AUC) (Bradley, 1997). We generate the ROC
curve by considering the class membership of the 20 near-
est neighbors for each image of the evaluation set, where
the area under the ROC curve is calculated by trapezoidal

Data set Training set
Marsh type 0 3a 3b 3c Total
Number of images 155 50 56 51 312
Number of patients 66 6 7 8 87
Data set Evaluation set
Marsh type 0 3a 3b 3c Total
Number of images 151 45 58 46 300
Number of patients 65 5 6 8 84

Table 1: Number of image samples per Marsh type (ground truth
based on histology)

integration (Bradley, 1997). The AUC uses the informa-
tion how many of the 20 nearest neighbors of each eval-
uation set image are positive (celiac disease) or negative
(healthy), whereas the OCR only uses the information if
more or less of the k nearest neighbors are positive than
negative.

The results in Table 2 are sorted according to the OCR
results of the 2-class case. In the last four rows of the ta-
ble we display methods not designed to be scale invariant,
DT-CWT, D3T-CWT and two earlier results using the
same database (Hegenbart et al., 2011). One method is
the original LBP approach, the other one, denoted “WT–
LBP”, is the best performing approach for this dataset
so far. (Except for the approach ‘Fractal Analysis using
Filter Banks“ , which is proposed in Uhl et al. (2011b))
WT–LBP is a combination of Local Binary Patterns and
the discrete wavelet transform (for details see Hegenbart
et al. (2011)).

The two fractal methods using the local density function
perform best for our celiac disease database, especially
“Fractal Analysis using Filter Banks” works very good.
Also the second fractal method (“Multi-Fractal Spectrum”)
performs reasonably well. However, the AUC of the lat-
ter fractal method is not high compared to other methods.
This is because this method has the highest OCRs when
we consider many nearest neighbors (30 ≤ k ≤ 70 in the
kNN classifier), while the AUC only uses information of the
20 nearest neighbors (all other methods have their highest
OCRs for ks between one and thirty). The third method
using fractal features, “Fractal Dimensions for Orientation
Histograms”, also provides useful results. Overall, the con-
sidered fractal methods are quite well suited for classifying
celiac disease.

When we consider the results of different strategies for
achieving scale invariance using the DT-CWT or the D3T-
CWT, we see that DCT computed across the scale dimen-
sion of the statistical subband features (DT-CWT and
D3T-CWT with DCT) can clearly enhance the results
compared to the the DT-CWT or the D3T-CWT with-
out any further feature manipulation. All other modifi-
cations of the DT-CWT or D3T-CWT decrease the re-
sults. The results of the methods, where operations for
achieving scale invariance are applied to the local subband
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Method 2-class case 4-class case
OCR AUC OCR

Fractal Analysis using Filter Banks 91.7 95.0 65.8
Multi-Fractal Spectrum 89.0 90.5 62.0
D3T-CWT with DCT 88.3 92.9 63.0
Multiscale Blob Features (number) 86.3 89.9 57.7
DT-CWT with DCT 86.0 92.7 63.0
Affine Invariant LTP 85.6 92.4 61.3
Fractal Dim. for Orientation Histograms 84.0 90.6 62.7
Dense SIFT Features 83.6 87.5 62.0
D3T-CWT with DCT (local) 82.3 89.3 60.0
Cyclic shifting of Local Features 81.0 88.4 61.7
Log-Polar Approach 80.0 86.9 57.0
Dominant Scale Approach 78.3 87.5 56.7
D3T-CWT with DFT (local) 78.3 86.4 55.7
Slide matching (original) 76.3 81.7 57.3
Slide matching (modified) 74.7 85.5 62.3
Local Affine Regions 70.9 88.1 56.3
Multiscale Blob Features (shape) 70.8 76.2 54.3
ICM 67.7 71.7 52.3
D3T-CWT with DFT 66.0 70.2 50.0
SCM 64.0 66.4 51.3
DT-CWT 84.7 90.2 60.3
D3T-CWT 82.3 90.1 58.0
WT-LBP 88.0 – 63.7
LBP 84.0 – 61.4

Table 2: Results of the different methods in OCR (%) and AUC. In the 4–class case we only present the OCR

coefficients of the D3T-CWT (“D3T-CWT with DCT (lo-
cal)”, “D3T-CWT with DFT (local)”, and “Cyclic Shifting
of Local Features”), are in the middle of the results range
and give pretty similar OCR. The results of the methods,
where operations for achieving scale invariance are applied
to the global statistical subband features (e.g. mean and
standard deviation) of the D3T-CWT, differ a lot. Some
are better than their local counterparts (“DT-CWT and
D3T-CWT with DCT”), some are worse (“Slide Matching”
and “D3T-CWT with DFT”), while the others (“Log-Polar”
and “Dominant Scale Approach”) give comparable OCR.

“Multiscale Blob Features” using the scale dependent
number of blobs as feature works well whereas using the
scale invariant shape of the blobs as feature did not provide
useful rates for classifying celiac disease. This result, to-
gether with the well performing DT-CWT and D3T-CWT
techniques without any technique for further scale invari-
ance being applied, questions the importance of scale in-
variance in general for our dataset. “Dense SIFT Features”,
which do not use any keypoint selection, provides a clearly
better result compared to “Local Affine Regions” using a
keypoint selection strategy specifically tuned for textured
data. “Affine Invariant LTP“ shares the same idea of key
point detection with “SIFT” and “Local Affine Regions” ,
the computed scales mask however increases the reliabil-
ity in case of non periodic textures. Overall it provides a
better performance as compared to these two methods.

The results of the neural nets approaches (“ICM” and
“SCM”) and the two slide matching variants are not com-
petitive at all.

If we compare results of the 4-class case to the 2-class
case, then we see that the differences among the results are
smaller in case of the 4-class case. The ranking among the
different approaches is similar to the 2-class case. Over-
all, the OCRs in the 4-class case are not suited for any
application scenario and do not improve over earlier work.

Having applied DT-CWT and D3T-CWT instead of the
originally proposed transforms for several techniques, we
shed light on the reason for this decision. In Table 3 we
show classification results of the wavelet based methods,
which originally did not use CWTs. We compare the OCRs
(2–class case) of the methods using the originally proposed
wavelet transforms with the results using DT-CWT vari-
ants instead of the original transforms.

As we can see in Table 3, using CWTs works distinctly
better for classifying celiac disease as compared to the
originally proposed transforms.

Finally, we want to assess statistical significance of our
results. The aim is to analyze if the images from the celiac
disease database are classified differently by the various
methods considered or if all techniques fail for the same set
of images. We use the McNemar test (McNemar, 1947), to
test if two methods are significantly different for a given
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Methods original CWT
Log-Polar Approach 58.0 80.0
Dominant Scale Approach 74.3 78.3
Slide matching Approach 74.0 76.3

Table 3: Results of the wavelet based methods in % (2–class case).
The column “original” shows the results using the originally pro-
posed wavelet transforms, the column “CWT” shows the results using
CWTs instead of the original transforms

level of significance (α) by building test statistics from
incorrectly classified images. Tests were carried out for
the 2-class case with three different levels of significance
(α = 0.05, α = 0.01 and α = 0.001). Results are dis-
played in Figure 14 (the methods are sorted according to
the OCR results of the 2-class case), where we can ob-
serve, that methods with similar OCRs are never found to
be significantly different. Figure 14 shows that only meth-
ods with clearly different OCR results are rated as sig-
nificantly different. That indicates that for methods with
similar OCR results, almost the same images are classified
wrong, independent of the extracted features.

6.2. Testing Scale Invariance Explicitly

We have employed a set of methods, explicitly introduced
to provide scale invariance, motivated by the observation
that our celiac disease database contains features at var-
ious scales. We want to investigate if these methods are
really as scale invariant as they theoretically should be.
Further, we want to assess if the techniques’ scale invari-
ance really enhances the results for detecting celiac disease,
or if the obtained results depend primarily on the general
feature extraction ability, independent of scale invariance
properties.

The training and the evaluation sets of the celiac dis-
ease database both contain images with features at differ-
ent scales (as well as various orientations, brightnesses and
viewpoints). Since each class in the training or evaluation
sets has at least 45 images, for almost every image in the
evaluation set there might exist images of the same class
in the training set with rather similar scales. That means,
that a technique does not necessarily have to be scale in-
variant to work well on our dataset. Therefore, for assess-
ing the scale invariance of a method it is not adequate to
test if the method works well for a database containing
images with various scales. We need to use two databases,
where one database contains differently scaled images as
compared to the other.

A further problem of testing scale invariance of the em-
ployed approaches with the celiac disease database is that
we do not have the information which actual spatial scale
an image belongs to (i.e. the distance and perspective of
the camera to the mucosal wall) therefore it is difficult to
separate the database into two disjoint sets depending on
the scale of the images. Another possibility to get two
data sets with different scales would be to synthetically

1.)  Fractal A. u. Filter Banks

2.)  Multi Fractal Spectrum

3.)  D3t-CWT with DCT (global)

4.)  M. Blob Feat. (number) 

5.)  DT-CWT with DCT (global)

6.)  Affine Invariant LTP

7.)  DT-CWT (global)

8.)  Fractal Dim. f. O. H.

9.)  Dense Sift Features

10.)D3T-CWT (global)

11.)D3T-CWT with DCT (local)

 

12.)Cyclic shifting of Local F.

13.)Log-Polar Approach

14.)Dominant Scale Approach

15.)D3T-CWT with DFT (local)

16.)Slide matching (original)

17.)Slide matching (modified)

18.)Local Affine Regions

19.)M. Blob Feat. (shape)

20.)ICM

21.)D3T-CWT with DFT (global)

22.)SCM

(a) Methods

(b) α = 0.01

(c) α = 0.001 (d) α = 0.05

Figure 14: Results of the McNemar test for the 2–class case. A
white square in the i’th row and j’th column or in the j’th row and
i’th column of a plot means that the i’th and the j’th method are
significantly different with significance level α. If the square is black
then there is no significant difference between the methods. The
methods are sorted beginning with the best ones (OCR 2-class case)
like in Table 2

scale the database, but this changes the characteristics of
the images too much (e.g. interpolation effects, eventual
contrast changes, etc. ...).

We solved this problem by extracting patches from
frames of endoscopy videos instead of extracting them
from endoscopic images (like done for the celiac disease
database). Since it is possible to choose any (suitable)
frame of a video from an endoscopy session, it is easier to
find patches with a specific distance to the mucosal wall
as compared to choosing the patches of some images taken
during the endoscopic session. Additionally it is easier
to estimate distances in a video than estimating them by
means of single images.

As a second texture database to verify the scale in-
variance of the employed methods, we use parts of the
CUReT database (Dana et al., 1999). The advantage of
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this database compared to our celiac disease scale database
is that we have the exact information to which scale an im-
ages actual belongs to and that images of one texture class
are gathered under exactly the same scale conditions.

That is why we decided to test scale invariance by using
two different databases, the celiac disease scale database
and parts of the CUReT database.

6.2.1. CUReT Database
The cropped version of the CUReT database 3 contains 92
images per texture with different viewing and illumination
conditions. There are four texture classes from the CUReT
database (material numbers 2, 11, 12, and 14), for which
additional scaled data is available (as material numbers
29, 30, 31, 32). The scale difference between these two
sets is approximately 1.7. These materials are shown in
Figure 15. The material classes are evenly divided into one
part for the evaluation set and one part for the training
set, where the images of 46 viewpoint and illumination
conditions are used for the training set and the images
of the remaining 46 viewpoint and illumination conditions
are used for the evaluation set.

For explicitly testing scale invariance, two experiments
are performed following ideas in Varma and Zisserman
(2009). In the first experiment (E1), the training set
consists of original textures (4 × 46 images of material
numbers 2,11,12, and 14, each with 46 different viewpoint
and illumination conditions), while the evaluation set con-
sists of original textures and scaled versions of the origi-
nal textures (8 × 46 images, images of material numbers
2,11,12,14, 29, 30, 31 and 32 with the remaining 46 view-
point and illumination conditions). For this experiment,
scale invariance is obviously crucial since half of the evalu-
ation set consists of data scaled differently than the data in
the training set. In the second experiment (E2), the eval-
uation set is like in the first experiment, but this time the
training set consists of original textures as well as scaled
versions of the original textures. The lower the difference
between the classification results of the first and the second
experiment, the higher the scale invariance of a method is.

The classification results are shown in Table 5.

6.2.2. Celiac Disease Scale Database
The celiac disease scale (CDS) database consists of patches
extracted from endoscopy videos. To determine the scale
invariance of the employed approaches, we divided the
patches into the two categories “Regular“ and “Far“, de-
pending of the distance to the mucosa wall. Images of
the category “Regular“ have optimal distances to differen-
tiate between ”healthy” and ”affected” tissue. Because of
the larger distances, the differentiation between the two
classes is harder for images of the category “Far”. The as-
sessment of distance was performed manually based on the

3www.robots.ox.ac.uk/vgg/research/texclass/data/curetcol.zip

Figure 15: The top row shows one image each from material numbers
2, 11, 12, and 14 from the CUReT database, while the bottom row
shows the textures with higher zoom factor (as material numbers 29,
30, 31, and 32)
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Figure 16: Example images of the CDS database gathered from reg-
ular and further distances

visibility of features (there is no ground truth about the
actual distance of the endoscope to the mucosal wall).

We only used images of sequences showing the same mu-
cosal area at a regular distance as well as at a further dis-
tance (like done in Hegenbart et al. (2012)). That means
for each extracted image of regular distance, we extracted
exactly one image with further distance (and vice versa).
Similar to the CUReT database, the CDS database con-
sists of a training set (named training set ”Regular-Far”),
consisting of images with far and regular distances, a sec-
ond training set (training set “Regular“) consisting of im-
ages with only regular distances (the images of training set
Regular-Far with regular distance), and an evaluation set
consisting of images with regular and far distances (eval-
uation set “Regular-Far“) (see Figure 16).

In parallel to the celiac disease database, the images of
the training sets are gathered from different patients as
of these contained in the evaluation set. Table 4 lists the
number of image samples and patients per class.

For explicitly testing scale invariance we perform two
experiments. In the first experiment, we use training set
Regular-Far and evaluation set Regular-Far. In the second
experiment, we use training set Regular and evaluation
set Regular-Far. Similar to the CUReT database, scale
invariance is only needed for the second experiment and
not for the first, since only in the second experiment the
training and evaluation set are gathered under different
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Data set Training set Regular-Far
Class healthy celiac disease Total
Number of images 40 40 80
Number of patients 20 12 32
Data set Training set Regular
Class healthy celiac disease Total
Number of images 20 20 40
Number of patients 20 12 32

Data set Evaluation set Regular-Far
Class healthy celiac disease Total
Number of images 38 38 76
Number of patients 19 10 29

Table 4: Number of image samples and patients of the CDS database

scale conditions. The Classification results are shown in
Table 5. The lower the difference between the classification
results of the first (E3) and the second experiment (E4),
the higher is the scale invariance of a method.

6.2.3. Results of Testing the Scale Invariance
The presented results in Table 5 are the mean values of
the results using a k-NN classifier with k = 1−20. In that
way we balance the problem of varying results depending
on the number of nearest neighbors of the k-NN classifier.
The lower the difference between the classification results
of experiment 1 (E1) and experiment 2 (E2) respectively
experiment 3 (E3) and experiment 4 (E4), the higher is
the scale invariance of a method.

The methods showing the highest degree of scale invari-
ance for a database are marked with a “+“, the ones show-
ing the least degree of scale invariance are marked with a
“−“, and the methods showing average scale invariance are
marked with a ”◦”. The ones that are hard to interpret,
because they even do not work without scale changes (E1
or E3), are marked with a ”?“.

Results shown in Table 5 are quite unexpected, espe-
cially the ones of the CUReT database.

The absolute OCR results of the first (E1 respectively
E3) and second experiments 2 (E2 respectively E4) are not
relevant for us, but the differences between them, indicat-
ing the extent of scale invariance, are very interesting.

In case of the CDS database, some results are hard to
interpret (the two slide matching approaches, D3T-CWT
with DFT and SCM), because even the results without
scale changes (E3) are pretty near to the results of
randomly classifying images (50%).

In case of the CUReT database, the three methods
using fractal analysis are rated as not scale invariant
(except of ”Fractal Analysis using Filter Banks“, which is
rated as average). In case of the CDS database all three
methods are rated as scale invariant. So the ratings with
respect to scale invariance of the CUReT database are

contrary to those of the CDS database.

When we consider the methods based on DT-CWT
or D3T-CWT, we also see a clear difference between
the two databases. In case of the CUReT database the
original (not scale invariant) approaches (DT-CWT and
D3T-CWT) are more scale invariant than their variations
(except of the Dominant Scale Approach). In case of the
CDS database, the methods applying a transformation to
the local wavelet features or shifting them across the scale
dimension (D3T-CWT with DCT (local), D3T-CWT with
DFT (local) and Cyclic Shifting of Local Features) provide
more scale invariance than the original approaches. The
methods which apply the transformation to global wavelet
features or shift them across the scale dimension are
either average scale invariant (DT-CWT with DCT and
D3T-CWT with DCT), not scale invariant (Dominant
Scale Approach) or they are hard to interpret, because
already the results without scale change (E3) are rather
low (the two slide matching approaches and D3T-CWT
with DFT). The Log-Polar-Approach turned out to be
scale invariant for both databases.

The methods ICM and SCM are rated as average scale
invariant or unratable for both databases.

The Multiscale Blob Features are rated as quite scale in-
variant (the shapes of the blobs) or as average scale invari-
ant (the number of blobs) in case of the CUReT database
(corresponding to to the theoretical considerations). But
in case of the CDS database they are both rated as not
scale invariant (especially when using the shape of the
blobs).

The Dense SIFT Features are for both databases more
scale invariant as compared to the Local Affine Regions.
In case of the CUReT database both methods are rated
as average scale invariant, in case of the CDS database
the Dense SIFT are rated as quite scale invariant and the
Local Affine Regions are rated as not scale invariant.

The Affine Invariant LTP is rated as quite scale invariant
for both databases.

Overall, the results of the two databases with respect to
the scale invariance are quite different. Of course the two
databases for testing the scale invariance are very different.

The intra-class variability of the CUReT database is
significantly smaller than those of the CDS database. The
visual distinction between images with or without celiac
disease is quite different, since there are many images
that don’t look like typical representatives of their class
or they even look like belonging to the other class. In case
of the CUReT database the visual distinction between
the classes is quite easy. Another difference between the
two databases is, that the images of the CUReT database
are much more homogeneous than those of the CDS
database (an image of the CUReT database looks similar
at different positions of the image, that is usually not the
case for images of the CDS database). One additional
problem is, that one of the most important feature to
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Method CUReT CDS
E1 E2 Diff SI E3 E4 Diff SI

Fractal Analysis using Filter Banks 91.1 85.8 5.8 ◦ 71.8 70.5 1.8 +
Multi-Fractal Spectrum 91.4 77.0 15.8 − 69.1 71.1 -2.8 +
D3T-CWT with DCT 98.3 88.7 9.8 ◦ 76.1 73.8 3.0 ◦
Multiscale Blob Features (number) 97.2 89.6 7.8 ◦ 65.9 59.9 9.1 −
DT-CWT with DCT 98.4 87.1 11.5 ◦ 75.3 70.9 5.8 ◦
Affine Invariant LTP 99.0 95.7 3.3 + 74.4 75.8 -1.9 +
Fractal Dim. for Orientation Histograms 86.9 74.1 14.7 − 71.7 70.6 1.5 +
Dense SIFT Features 71.5 67.4 5.7 ◦ 68.1 66.7 2.1 +
D3T-CWT with DCT (local) 97.7 92.9 4.9 ◦ 72.2 71.1 1.5 +
Cyclic Shifting of Local Features 98.8 95.1 3.7 + 73.3 72.8 0.7 +
Log-Polar Approach 90.7 88.3 2.6 + 72.6 73.4 -1.1 +
Dominant Scale Approach 92.7 93.9 -1.3 + 72.4 64.8 11.7 −
D3T-CWT with DFT (local) 96.3 89.7 6.9 ◦ 72.9 73.0 -0.1 +
Slide Matching (original) 93.5 81.4 12.9 ◦ 58.8 54.3 7.6 ?
Slide Matching (modified) 97.6 75.3 22.8 − 63.2 60.5 4.3 ?
Local Affine Regions 96.1 89.8 6.6 ◦ 67.6 59.0 12.7 −
Multiscale Blob Features (shape) 96.9 93.9 3.1 + 72.0 62.0 16.1 −
ICM 90.2 81.4 9.8 ◦ 64.8 59.8 7.7 ◦
D3T-CWT with DFT 95.9 89.2 7.0 ◦ 63.7 69.1 -8.5 ?
SCM 97.9 92.6 5.4 ◦ 60.3 56.5 6.3 ?
DT-CWT 99.2 97.0 2.2 + 72.4 68.4 5.5 ◦
D3T-CWT 99.1 96.8 2.3 + 73.0 69.7 4.5 ◦

Table 5: OCR results for the CDS and CUReT database.The columns “E1“ and “E3“ show the results of the experiments using same scale
levels in training and evaluation set, and the columns “E2“ and “E4“ show the results of the experiments using different scale levels in training
and evaluation set. The columns ”Diff” show the relative differences between the results of E1 and E2 respectively E3 and E4. The column
“SI“ rates the scale invariance of the methods as high (+), low (−), average (◦) or unratable (?)

differentiate between the two classes of the CDS database,
the villi, are often less visible at bigger distances of the
endoscope to the mucosal wall. This complicates the
differentiation between images showing healthy mucosa
from further distances to those showing celiac disease
affected mucosa from closer distances Hegenbart et al.
(2012).

Because of these big differences between the two
databases, there are features proving to be more scale in-
variant for one database than for the other. The scale
invariance of the extracted features of a method vary with
the application of the method.

7. Conclusion

It seems that especially contrast sensitive methods work
very well for the celiac disease database, specifically the
fractal methods. The “Multi-Fractal Spectrum” is orig-
inally using a combination of three different measures
(µ(B(x, r))), but we only use the Laplacian measure,
which is the most contrast sensitive of the three. The sec-
ond fractal method, “Fractal Analysis using Filter Banks”
behaves similarly. Other contrast sensitive methods are
the third fractal method “Fractal Dimensions for Orienta-
tion Histograms” and the method “Multiscale Blob Fea-
tures (number)”, both methods performed well for our

celiac disease database. The affine invariant LTP method
performed comparably to the best methods.

When we consider the methods using the DT-CWTs,
we see that many of the techniques designed to be scale
invariant perform worse than the original CWTs without
any specific tuning, except for the methods applying DCT
across global subband descriptors, for which it is not
even theoretically clear why they should enhance scale
invariance of the DT-CWT.

Our results indicate that scale invariance is not impor-
tant for the classification of celiac disease, at least when
considering our dataset to be representative. There is no
positive correlation between the performance of the meth-
ods (in terms of OCR) and their (determined) scale invari-
ance.

There is a big difference between theoretical concepts
for scale invariance and practical scale invariance actually
achieved in experiments. It also turned out that the prac-
tical scale invariance of a method is not fixed, it depends
on the application the method is used for. The determined
scale invariance of the methods using the CUReT database
(application texture recognition) is quite different to the
determined scale invariance using the CDS database (ap-
plication endoscopic image classification).

In case of endoscopic image classification, it turned out
that the methods which have not been designed to be scale

18

Scale Invariant Texture Descriptors for Classifying Celiac Disease.



invariant are nearly as scale invariant than those explicitly
designed to be scale invariant. The affine invariant LTP
method exhibited the highest degree of scale invariance.

The behavior of methods is interesting in the case of
texture recognition. Our results indicate that scale vari-
ant methods turn out to be more effective than their scale
invariant counterparts. This is quite surprising, since these
methods were especially designed to be scale invariant for
texture recognition tasks. From this point of view we
have to state that techniques claimed to be scale invariant
should be actually tested for this property in properly de-
signed experiments. It contradicts good scientific practice
to state properties which do not hold in actual applica-
tions.
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ABSTRACT

Local Binary Patterns and its derivatives have been widely
used in the field of texture recognition over the last decade. A
restriction of methods based on LBP is the variance in terms
of signal scaling. This is mainly caused by the fixed LBP ra-
dius and the fixed support area of sampling points. In this
work we present a general framework to enhance the scale-
invariance of all LBP flavored methods, which can be applied
to existing methods with minimal effort. Based on scale-
normalized Laplacian of Gaussian extrema in scale-space, the
global scale of a texture in question is estimated, combined
with a confidence measure, to compute scale adapted patterns.
By using the notion of intrinsic scales, textures are analyzed at
appropriate LBP scales. A comprehensive experimental study
shows that the scale-invariance of three different LBP based
methods (LBP, LTP, Fuzzy LBP) is highly improved by the
proposed extension.

Index Terms— scale, adaptive, LBP, scale-space, estima-
tion

1. INTRODUCTION

In certain scenarios, medical imaging for example, textures
are captured at various perspectives and distances [1]. These
variations caused by camera motion lead to a visualization of
textures under different scales. Methods that are invariant in
terms of signal scale can therefore improve the accuracy of an
automated classification in such a setting.

Since the introduction of the Local Binary Patterns (LBP)
method [2], a variety of LBP based flavors have been devel-
oped and applied in various specialized texture recognition
scenarios. All LBP based methods share the limitation of
being highly affected by scaling of a signal however. Ojala
and Mäenpää introduced multi-resolution Local Binary Pat-
terns [3], using a set of different radii with appropriate sam-
pling areas. While this approach improves the discriminative
power of the method, it does not employ a scale selection
mechanism and hence does not improve invariance in terms
of signal scaling.

The idea of combining scale-space extrema with LBP
to improve scale-invariance has also been explored by Li et
al. [4]. Their approach utilizes the scale of a scale-space
maxima at a pixel position as the scale of the Local Binary
Pattern descriptor, using a fixed number of neighbors (8) with
a fixed sized neighbor sampling area.

Our experimentation has shown that scale selection, based
on a single pixel location, is very prone to error, especially
for non-regular textures such as shown in Figure 1. We there-
fore compute a global scale estimation combined with a con-
fidence measure for the estimation to compute scale adapted
patterns along a fixed grid (all pixel positions) in an image.
Experimental data also shows that a direct mapping from a
scale in scale-space to LBP scale is far from optimal. The fact
that the estimated scale at a pixel level highly correlates to the
intrinsic scale of a texture, leads to rather large LBP scales if
using a direct mapping. This reduces the discriminative power
of the LBP patterns due to the decreased correlation between
sampling points and reference point and leads to sparse sam-
pling if fixed sampling area dimensions are used, reducing
the discriminative power even further. We solve this prob-
lem by introducing the notion of intrinsic scale, computing a
mapping from estimated scale in scale-space to a much more
suitable LBP scale. We adjust the sampling area dimensions
according to the adapted LBP scale to improve the scale-
invariance even further. In this work a general framework
to enhance the scale-invariance of all LBP flavored methods,
which can be applied to existing methods with minimal effort,
is presented.

2. A SCALE-ADAPTIVE EXTENSION TO LBP
BASED METHODS

The scale-space theory was first extensively explored in the
field of signal processing by Lindeberg [5, 6]. It presents
a framework to analyze signals at different scales. Let f :
R2 7→ R represent a continuous signal, then the linear scale-
space representation L : R2 × R+ 7→ R is defined by

L(·;σ) = g(·;σ) ∗ f, (1)

A Scale-Adaptive Extension to Methods based on LBP using Scale-Normalized Laplacian of
Gaussian Extrema in Scale-Space.



Fig. 1: Scale Estimation of a non-Regular Texture (stone2)

with initial condition L(·; 0) = f . Where σ ∈ R+ is the scale
parameter, g is a Gaussian function and “∗“ denotes convolu-
tion. The scale-space family L is the solution to the diffusion
equation (heat equation):

∂σL = σ

(
∂2L

∂x2
+

∂2L

∂y2

)
= σ△L. (2)

We construct the scale-space and compute the scale-normalized
Laplacians (σ2 |△L(·;σ)|, denoted as △I(·;σ)) of each
image I at each location x ∈ N2 at different scales with
σ = c

√
2
k
, k ∈ {−4,−3.75, . . . , 7.75, 8} and c = 2.1214.

Note that the parameter c acts as a scaling factor of the scale-
space and was initially chosen such that the center scale
equals a 3 pixel radius. We however found during experimen-
tation that the intrinsic scale of natural textures tends to be
large. We therefore expanded the scale-space to cover larger
scales as well.

Methods based on scale selection employing the scale-
space abstraction identify image locations which are simulta-
neously a local extremum with respect to both the spatial co-
ordinates and the scale-space parameter. Hegenbart et al. [1]
use a local scale reliability mask to improve the reliability
of the scale estimation based on such extrema. Experimen-
tation showed however that the utilization of such locations
to compute LBP based feature vectors in general leads to an
insufficient number of computed patterns and a reduced dis-
criminative power of the feature. The scale selection based
on a single pixel location, such as performed by Li et al. [4],
however is prone to error, as not each pixel is at a representa-
tive scale, especially for non-regular textures as shown in Fig-
ure 1. As a consequence we compute a global scale estimate
combined with an uncertainty for the estimation to compute
LBP patterns along a fixed grid (all pixel positions) in an im-
age, adapted to the global scale of the texture. Let δ denote
the Kronecker delta, the scale estimation response function ξ
is then

ξ(t) :=
∑
x,y

δ(argmax
σ

(△L (x, y;σ)), t)△L(x, y; t). (3)

The global scale is identified by searching for the first local
maximum of ξ which is then used as seed point for a least-

squares Gaussian fit. By using the first local maximum we
are capable of consistently estimating the scale of textures ex-
hibiting more than a single dominant scale. The quality of the
estimation is improved by considering only data points within
a certain offset from the seed point. In our implementation
an offset of ±5 scales is used to fit the Gaussian function.
Finally the average value (s) of the fitted Gaussian function
is interpreted as the estimated scale where the standard de-
viation is used as uncertainty of the estimation (u). Due to
the fact that the accuracy of the scale estimation is not per-
fect, we extract weighted LBP patterns at multiple scales to
improve robustness, taking the uncertainty of the estimation
into account. The weighted patterns contribute to the LBP
histogram, based on the response of the unnormalized Gaus-
sian function at the specific scale level. In our implementation
only scale levels with a response ≥ 0.9 were used. Figure 1 il-
lustrates the fitted Gaussian function (dashed line) to the scale
estimation response function (solid line) of three textures at
different scales.

2.1. Intrinsic Texture Scale

The response of the scale-normalized Laplacian of Gaussians
(LoG) attains a maximum if the zeros are aligned with a cir-
cular shaped structure. Hence scales estimated, based on the
LoG, correlate strongly with the scale of the dominant cir-
cular shaped structures of a texture. As a consequence, the
estimated scale is highly related to an essential property of
each texture, the intrinsic scale of a texture.

A texture exhibiting pebbles for example and a texture
exhibiting sand, captured at the same distance, might have
equal scales in terms of camera-scale, but different scales in
terms of the scale-space, a consequence of different intrin-
sic scales. In contrast, sand and pebbles captured at a dif-
ferent camera-scales, corresponding to the difference of the
textures’ intrinsic scales, are equal in scale in terms of the
scale-space. Scales estimated in the scale-space domain are
therefore always a combination of the intrinsic texture scale
and the camera-scale.

Utilizing LBP based methods, textures are described by
the means of the joint distribution of underlying micro struc-
tures. The discriminative power is not directly related to the
scale of the dominant structures of an image. This statement is
based on the observation that LBP based methods are success-
fully used in classification scenarios with multiple textures
and multiple different intrinsic scales, using a set of fixed
sized LBP radii. Hence, a direct mapping between estimated
scale in scale-space of a texture to LBP scale, introduces sev-
eral problems as discussed in Section 1, without improving
the descriptive capabilities of the method in general.

The identification of an intrinsic scale of a general tex-
ture is a non-trivial problem. A requirement on an intrinsic
scale estimation method would be scale-invariance, a prop-
erty that the LoG response in scale-space does not provide.

A Scale-Adaptive Extension to Methods based on LBP using Scale-Normalized Laplacian of
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Based on the property that the intrinsic scale of a texture is
scale-invariant, the intrinsic factors cancel each other out for
two estimated scales in scale-space of the same texture. We
hence estimate the scale in scale-space per texture class in the
training data, denoted as trained base scale, as the median of
all estimated scales from all images within a class.

This approach requires that all samples of a specific tex-
ture class are at a single or relatively close camera-scale in the
training data. This requirement could be loosened by identify-
ing the trained base scale per class and camera-scale however.
A benefit of estimating the trained base scale per class is, that
additional information such as a shape model per texture class
could be computed and used for improving the feature extrac-
tion further. This is part of our current work.

By using the trained base scale of a texture class, we can
define a mapping from the scale-space domain to the LBP
scale domain (the LBP radius). For a texture with estimated
scale in scale-space s the adapted LBP radius is then com-
puted in reference to the trained base scale (s̄l) of texture
class l as

ι(s, l) = b
s

s̄l
, (4)

with b denoting the defined LBP radius at the trained base
scale s̄l. Please note that the linearity of this mapping is a
requirement for scale-invariance. The value of b defines the
LBP scale the training textures are analyzed at. In order to be
able to adapt to down-scaled textures, the value requires to be
larger than the minimal LBP radius. We use b = 3 as default.

Considering the extraction of feature vectors for evalu-
ation, we are not capable of identifying the corresponding
trained base scale for such input textures, due to the inability
of estimating the intrinsic scale of the texture. Hence, for each
input texture a set of feature vectors is computed, one feature
vector in relation to the specific trained base scale of each
class in the training set. Feature vectors computed in relation
to the same texture class will be based on a matching trained
base scales (the input sample and the texture class are at the
same intrinsic scale), canceling out the intrinsic scale factors.
Feature vectors computed in relation to other texture classes
(and other trained base scales) are computed at the wrong
relative LBP scale.

The pairwise comparison of feature vectors computed at
different trained base scales can lead to very high LBP scales.
As a consequence such feature vectors exhibit a higher gen-
eral similarity among all textures (due to the high amount
of low-pass filtering), leading to a decreased discriminative
power of the system. As a consequence, only features com-
puted at the same trained base scale are compared during
classification. Please note, that this poses no unfair bias or
advantage to the classifier as each of the feature vectors of an
evaluation sample is compared to the corresponding feature
vector of each class in the training data.

Fig. 2: Adaptive Radius and Adaptive Sampling Areas

2.2. Adaptive Sampling Support Area Dimension

Scaling of a texture leads to a scaled spatial extent of struc-
tures. Therefore the number of pixels covering structural
information changes. As a consequence, the size of the
sampling support area has to be adapted accordingly. Ojala
and Mäenpää [3] first used Gaussian filtering to adapt the
sampling support area to various LBP scales to compute
multi-resolution LBP, generally improving the robustness
of the method. By employing low-pass filtering, a pixel at
a single spatial location encodes information of its spatial
neighborhood. We use the estimated global scale of a texture
in relation to a trained base scale to adapt the LBP radius as
well as the size of the sampling support area to achieve scale-
invariance. The radius of the Gaussian filter for a texture at
estimated global scale s in relation to the trained base scale
of texture l is computed as

gr =
ι(s, l)π

N
, (5)

for N being the number of neighbors. The Gaussian filter co-
efficients are then computed such that P percent of the mass
of the Gaussian function is covered∫ gr

−gr

e
− x2

2σg2 dx = P

∫ ∞

−∞
e
− x2

2σg2 dx

2

∫ gr

0

e
− x2

2σg2 dx = Pσg

√
2π

σg =
gr√

2erf−1(P )
. (6)

We chose P to be 0.99 which corresponds to 99% of the mass
of the Gaussian function. As the sampling of a Gaussian func-
tion with very few sampling points leads to a large error we
use the error function (erf) to improve the stability of the com-
putation of the one dimensional Gaussian filters centered at 0

G(x;σg) =
−erf(x−0.5

σg
)− erf(x+0.5

σg
)

2
, (7)

which are then used in a separable convolution. Note that,
as a bonus, the computed filter is already normalized, there-
fore the re-normalization can be avoided. Figure 2 illustrates
the relation between estimated scale in scale-space and the
adapted LBP scale.

A Scale-Adaptive Extension to Methods based on LBP using Scale-Normalized Laplacian of
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Fig. 3: Mean Overall Classification Accuracies

3. EXPERIMENTS AND RESULTS

We constructed a set of experiments to analyze the impact of
the proposed scale-adaptive extension to three different, pop-
ular types of LBP based methods, which all utilize different
types of encoding schemes. The standard LBP method [2],
the Local Ternary Patterns (LTP) operator [7] as well as the
Fuzzy Local Binary Patterns (FLBP) method [8] are com-
pared with the scale-adapted variation of each of those meth-
ods. Please note that the standard methods were used in com-
bination with the multi-resolution Local Binary Patterns ex-
tension [3] using three scales and 8 neighbors, the best con-
figuration we were able to find for the given datasets.

The experiments are based on two different texture
databases. The KTH-TIPS database [9] exhibits texture im-
ages from 10 different materials captured at 9 different scales
with 9 samples per material. Sub-images of size 128 × 128
pixels were extracted from the center of each original image.
Unfortunately, besides KTH-TIPS there are no other publicly
available high quality texture databases with an available
ground-truth of scales. We therefore had to resort to a simula-
tion of the scaling of textures. A subset of the Kylberg texture
database [10], consisting of 28 materials with 160 unique tex-
ture patches per class, captured at a single scale, was used for
the simulation. The high resolution of each patch (576× 576
pixels) allowed us to simulate the scaling without relying on
up-sampling, leading to a smaller amount of interpolation ar-
tifacts. The simulation of scaling was performed according to
the scales of the KTH-TIPS database, interpreting the original
image patches as the maximum scale 21.0. Image patches of
size 128 × 128 pixels were then extracted from the center of
the re-scaled patches. Due to the huge number of samples in
the Kylberg database we use a subset consisting of 20 unique
texture patches per class (5 per image) for experimentation.

The experiments were designed to explicitly reflect the scale
invariance properties of the studied methods. We chose KTH-
TIPS scale 5 and Kylberg scale 20 as the training scale. This
gives us the opportunity to study the method’s capability of
adapting to higher as well as lower relative scales.

The classification was performed based on a k-nearest
neighbors classifier, utilizing the histogram intersection as
similarity metric. The minimum number of neighbors was set
to 1 for all experiments while the maximum number of neigh-
bors was set according to the maximum number of samples
per texture class (9 for KTH-TIPS and 20 for Kylberg).

Figure 3 shows the mean overall classification accuracy
(OCR) over all k-values. The numbers between the results
illustrate the absolute difference in mean OCR between the
scale-adapted type of a method and the standard version. The
horizontal axes denote the relative scale differences as com-
pared to the training set.

4. DISCUSSION AND CONCLUSION

The experimental results show that the scale-adaptive exten-
sion improved the scale-invariance of all three flavors of the
LBP method. The scale-adapted methods performed slightly
worse as compared their standard counterpart at very small
relative scale differences. This is caused by some failed scale
estimations. Considering large scale differences however,
the scale-adapted methods vastly outperform the standard
methods, with improvements of over 40 percentage points.
Although the scale-adaptive extension comes at the cost of
higher computational demand, it can improve the classifica-
tion accuracy of LBP based methods in a setting with varying
scales significantly without changing the encoding or extrac-
tion scheme of the standard method, and could therefore be
used in combination with a variety of LBP based methods.

A Scale-Adaptive Extension to Methods based on LBP using Scale-Normalized Laplacian of
Gaussian Extrema in Scale-Space.
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Abstract—Methods based on Local Binary Patterns have been
used successfully in a wide range of texture classification tasks. A
restriction shared by all methods based on Local Binary Patterns
is the high sensitivity to signal scale. In recent work we presented
a general framework for scale-adaptive computation of Local
Binary Patterns, improving the accuracy in texture classification
scenarios involving varying texture-scales highly. In this work,
the scale-adaptive methodology is extended by an orientation-
adaptive computation of patterns, leading to a scale- and rotation-
invariant classification. The results suggest that estimating a
global orientation to build orientation-adaptive LBPs is superior
to the previously introduced rotation-invariant encodings. The
proposed framework allows the use of the highly-discriminative
LBPs in less-constrained situations, where both orientation, as
well as scale variations, are to be expected.

I. INTRODUCTION

A big challenge in texture classification scenarios in uncon-
strained environments is dealing with varying scales and ori-
entations. This is especially true in medical image acquisition
such as endoscopy [3]. As a result, research focusing on scale-
and rotation-invariant feature descriptors has been a hot topic
in the recent past.

Methods based on Local Binary Patterns (LBP [9]) have
been successfully used in a wide range of texture classification
scenarios. A restriction shared by all those methods is their
high sensitivity in terms of signal scaling, therefore reducing
their applicability to a constrained environment with only
minor scale variances among textures. The correct alignment
of micro structures in terms of orientation is an essential re-
quirement for the accuracy of the baseline LBP type methods.
Ojala et al. [10] alleviate this restriction by using a special type
of rotation-invariant pattern encoding, leading to a possibly
reduced discriminative power of features. A drawback of that
method is the limited angular resolution. As a consequence
the rotation-invariant encoding is not very well suited in a
scale-adaptive computation. In [2] we proposed a general
scale-adaptive methodology that enables the use of the highly-
discriminative LBPs in less-constrained situations, where scale
variations are to be expected. Experiments have shown that this
scale-adaptive framework improved the accuracy of LBP based
methods in scenarios with varying scales significantly.

In this work we present an extension to this scale-adaptive
framework, alleviating the restriction of correct texture orienta-
tion alignment by utilizing a global orientation-estimate. This
allows the use of highly-discriminative LBPs in a scenario with
varying scales and orientations.

By using multi-scale second moment matrices [7], a global
orientation is estimated at dominant local scales, leading to
a robust orientation estimation in noisy environments with
varying texture scales. By leveraging the already pre-computed
scale-spaces, our proposed orientation estimation approach
integrates naturally with the scale-adaptive LBP framework at
moderate computational cost. Employing the estimated orien-
tation, an orientation-adaptive computation of LBP patterns
is performed. Our results suggest that estimating a global
orientation to build orientation-adaptive LBPs in a scale-
adaptive computation is superior to the previously introduced
rotation-invariant encodings.

In Section II we give a review of the general scale-adaptive
computation that enables the use of LBPs in scenarios with
varying scales. Section III-A describes the orientation-adaptive
methodology. The fusion of the orientation- and scale-adaptive
computation is covered in Section IV. The experiments con-
ducted to evaluate the proposed methodology are described in
Section V, the results presented and discussed in Section VI.
Finally Section VII concludes the paper.

II. SCALE-ADAPTIVE COMPUTATION OF LBP

The scale-adaptive computation is based on a global scale esti-
mation combined with a confidence measure for the estimation.
Based on the estimated scale, the radius of the LBP as well
as the dimension of the sampling area is adapted accordingly.
This methodology allows the use of LBP flavored methods in
a scenario with varying scales.

A. Scale Estimation

We employ a global scale estimation algorithm which is based
on scale-normalized Laplacian of Gaussian extrema in scale-
space The scale-space theory was first extensively explored in
the field of signal processing by Lindeberg [6]. It presents a
framework to analyze signals at different scales. Let f : R2 7→
R represent a continuous signal, then the linear scale-space
representation L : R2 × R+ 7→ R is defined by

L(·;σ) = g(·;σ) ∗ f, (1)

with initial condition L(·; 0) = f . Where σ ∈ R+ is the
scale parameter, g is a Gaussian function and “∗“ denotes
convolution. The scale-space family L is the solution to the
diffusion equation (heat equation):

An Orientation Adaptive Extension to Scale-Adaptive Local Binary Patterns.



∂σL = σ

(
∂2L

∂x2
+

∂2L

∂y2

)
= σ△L. (2)

We construct the scale-space and compute the scale-normalized
Laplacians (σ2 |△L(·;σ)|, denoted as △I(·;σ)) of each image
I at each location x ∈ N2 at different scales with σ =
c
√
2
k
, k ∈ {−4,−3.75, . . . , 7.75, 8} and c = 2.1214. Note

that the parameter c acts as a scaling factor of the scale-space
and was initially chosen such that the center scale equals a 3
pixel radius. We however found during experimentation that
the intrinsic scale of natural textures tends to be large. We
therefore expanded the scale-space to cover larger scales as
well.

Methods based on scale selection employing the scale-
space abstraction identify image locations which are simultane-
ously a local extremum with respect to both the spatial coordi-
nates and the scale-space parameter (3D maxima), a prominent
example is the Scale Invariant Feature Transform (SIFT [8]).
Experimentation has shown however that the utilization of such
locations for a global scale estimation is unreliable. This can
be seen in Figure 1, comparing the distribution of the responses
of the 3D maxima with the responses of the scale estimation
of textures, the extrema are either at various different scales
or only a small number of extrema is present, leading to
unreliable scale estimations. We therefore use the distribution
of responses of the scale normalized Laplacians to estimate a
global scale. The scale estimation response function ξ is

ξ(t) :=
∑
x,y

△I(x, y; t). (3)

The global scale is identified by searching for the first local
maximum of ξ which is then used as seed point for a least-
squares Gaussian fit. By using the first local maximum we
are capable of consistently estimating the scale of textures ex-
hibiting more than a single dominant scale. The quality of the
estimation is improved by considering only data points within
a certain offset from the seed point. In our implementation an
offset of ±5 scale levels is used to fit the Gaussian function.
Finally the mean value s̃ of the fitted Gaussian function is
interpreted as the dominant level in scale-space. The standard
deviation u of the fitted Gaussian is used as uncertainty of
the estimation. For a given dominant level in scale-space s̃i,

Fig. 2: Scale Estimation of a non-Regular Texture (stone2).

the spatial scale si corresponds to to the scale parameter σi at
the dominant scale level. Figure 2 illustrates the fitted Gaussian
function (dashed line) to the scale estimation response function
(solid line) of three textures at different scales.

The response of the scale-normalized Laplacian of Gaus-
sian (LoG) attains a maximum if the zeros are aligned with a
circular shaped structure. Hence scales estimated, based on the
LoG, correlate strongly with the scale of the dominant circular
shaped structures of a texture. As a consequence, the estimated
scale is highly related to an essential property of each texture,
the intrinsic scale of a texture.

A texture exhibiting pebbles for example and a texture
exhibiting sand, captured at the same distance, might have
equal scales in terms of camera-scale, but different scales in
terms of the scale-space, a consequence of different intrinsic
scales. In contrast, sand and pebbles captured at a different
camera-scales, corresponding to the difference of the textures’
intrinsic scales, are equal in scale in terms of the scale-
space. Scales estimated in the scale-space domain are therefore
always a combination of the intrinsic texture scale and the
camera-scale.

The identification of an intrinsic scale of a general texture
is a non-trivial problem. A requirement on an intrinsic scale
estimation method would be scale-invariance, a property that
the LoG response in scale-space does not provide. The esti-
mated scale in scale-scape is therefore always a combination
of camera-scale and intrinsic texture scale. Please refer to [3]
for more details.

III. ORIENTATION-ADAPTIVE LOCAL BINARY PATTERNS

The correct alignment of micro structures in terms of orienta-
tion is an essential requirement for the accuracy of the baseline
LBP type methods. Ojala et al. [10] alleviate this restriction
by using a special type of rotation-invariant pattern encoding.
The original pattern is shifted circularly until a minimum with
respect to a numeric interpretation of the pattern is found. As
a consequence all patterns are implicitly aligned among each
other.

A drawback of this approach is the limited angular resolu-
tion, depending on the number of used LBP-neighbors. For a
standard LBP-neighborhood with 8 neighboring samples, this
angular resolution corresponds to 45 degrees. A side-effect of
the encoding is the decreased number of individual patterns.
The authors propose to use uniform patterns in combination
with the rotation-invariant encoding to improve robustness,
implicitly improving the angular resolution by considering
only special type of micro structures. Uniform patterns are a
subset of patterns with a maximum of two transitions between
1 and 0. The proposed combination of rotation-invariant and
uniform patterns reduces the number of individual patterns
even further. Experiments discussed in Section VI show that
the small number of individual patterns leads to a decreased
classification accuracy if combined with the scale-adaptive
computation. As a consequence we utilize the estimation of a
global orientation to build orientation-adaptive LBP. Following
literature on LBP, we refer to Local Binary Patterns utilizing
the rotation-invariant encoding in combination with uniform
pattern as LBPriu from here on.

An Orientation Adaptive Extension to Scale-Adaptive Local Binary Patterns.



Fig. 1: Distribution of 3D-Maxima compared to the Response of ξ.

A. Orientation Estimation

We utilize the multi-scale second moment matrices [7] of
an image, computed at dominant local scales, for a robust
orientation estimation in noisy environments with varying
texture scales. The second moment matrix (also known as
structure tensor) summarizes the predominant directions of
the gradient in a specific pixel neighborhood of an image. In
contrast to the second moment matrix, the multi-scale second
moment matrix is defined over two scale parameters. It allows
to estimate the shape of visual structures at their dominant
scale, as detected by the scale-estimation algorithm.

The local scale, denoted by t determines the scale in
terms of the scale-space a local structure is analyzed at. The
integration scale i is used as parameter to a Gaussian function g
defining the shape and weights of a specific neighborhood area
in the image over which the gradient response is accumulated.
We compute the multi-scale second moment matrices at each
location x ∈ R2 of an image I . The local scale t is selected
depending on the estimated texture scale (see Section IV),
the integration scale i =

√
2t depends on the corresponding

detection scale. The second moment matrix for an image
location x at local scale t is then computed as

µ(x; t, i) =

∫
ξ∈R2

(∇I)(x− ξ; t)(∇I)T (x− ξ; t) g(ξ; i) dξ.

(4)
We denote (∇I)(x; t) as the gradient of the scale-space
representation of image I at scale t and position x.

The multi-scale second moment matrix is positive definite,
it therefore has two non-negative eigenvalues which correspond
to the length of the axes of an ellipse (up to some constant fac-
tor). The eigenvectors of the multi-scale second moment matrix
correspond to the orientation of the ellipse. By computing the
angle between the major axis of the ellipse and the vertical
axis we identify the dominant orientation at a specific image
position. Due to the ambiguous orientation of the ellipse, all
angles are treated modulus 180.

Based on the distributions of all orientations at all pixel
locations, a global orientation is estimated for an image. This
is done by fitting a Gaussian function to the distribution of
orientations. To improve the quality of the estimation, we
remove data points with an offset of ±40 degrees from the
maximum prior to the fitting process. Finally, the average value
of the Gaussian is interpreted as the dominant orientation, the
standard deviation of the fitted Gaussian function is interpreted

Fig. 3: Orientation Estimation (pearlsugar1).

as the uncertainty of the estimation. To avoid using invalid ori-
entation estimations, we reject estimations with an uncertainty
above 20. In such a case the estimated orientation is defined
as 0 degrees.

Figure 3 illustrates the fitting of a Gaussian function
(dashed red line) to the distribution of orientations (solid blue
line) of three differently rotated images. The numbers centered
at each Gaussian function relate to the mean value of the
fitted Gaussian function, corresponding to the estimated global
orientation of the specific image.

B. Global versus Local Orientation Estimation

As explained in Section III-A a global orientation is computed
for a specific image. In theory however, a texture could consist
of multiple sub textures with different orientations, leading
to potentially worse estimation accuracies. We therefore eval-
uated the performance of a local orientation estimation on
a pixel basis in comparison to the used global orientation
estimation. The local orientation estimation is based on the
same methodology utilizing multi-scale second moment ma-
trices as described for the global orientation estimation. In
contrast to the global orientation however, the estimation is
done per pixel instead of fitting a Gaussian function to the
distribution of orientations to estimate a global orientation.
Figure 4 demonstrates that the accuracy of the local estimation
is inferior as compared to the global estimation. The mean
absolute error of the estimated orientation (vertical axis) was
computed between a reference image without rotation and
the same image with a specific rotation, as depicted by the
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horizontal axis, for all images in the Kylberg database which
was also used for experimentation as explained in Section V.
The mean absolute error was computed for three relative scales
between the reference and the rotated images. We can see that
the global estimation is superior to the local estimation in all
regards. We assume that this is caused by homogeneous pixel
areas which do not allow for a robust estimation of orientation,
introducing a large error. The results also indicate that scaling
of the textures has only a minor impact to the general accuracy
of the orientation estimation method, an important property
for using the method in combination with the scale-adaptive
methodology.

Fig. 4: Global versus Local Orientation Estimation Error.

C. Impact of Signal Noise

Utilizing the multi-scale second moment matrix allows to
estimate the orientation of a visual structure at its dominant
scale, as a benefiting side effect of utilizing the scale-space
data, signal noise is suppressed to some degree. We explicitly
constructed an experiment to evaluate this property. The mean
absolute error of the orientation estimation is computed for
noisy image textures at the same texture scale. Let P be
the set of all pixels in image I ∈ N2, ω = (ωp)p∈P , be
a collection of independent identically distributed real-valued
random variables following a Gaussian distribution with mean
m and standard deviation σ. We simulate thermal noise as
additive Gaussian noise with m = 0, variance σ for pixel p at
position x, y as

N(x, y) = I(x, y) + ωp, p ∈ P, (5)

with N being the noisy image, for an original image I .
Figure 5 illustrates the effects of Gaussian white noise to the
global orientation estimation. We see that noise only has a
minor impact to the average accuracy of the method, another
welcome benefit of using multi-scale second moment matrices
for orientation estimation.

Fig. 5: The Impact of Signal Noise to the Estimation.

IV. COMBINING THE SCALE-ADAPTIVE COMPUTATION
WITH THE ORIENTATION-ADAPTIVE COMPUTATION

The orientation-adaptive computational approach integrates
very naturally into the scale-adaptive LBP framework. As
a consequence of computing the LoG for scale-estimation
instead of using the Difference of Gaussians approach, the
scale-space data can be re-used for computing the multi-
scale second moment matrices used for orientation estima-
tion. Therefore the Gaussian filtering to compute the local
scale t can be omitted. We adaptively select the local scale
t of the multi-scale second moment matrix, based on the
estimated scale of a texture. By doing so, we guarantee a
robust orientation estimation across different texture scales.
Experimentation has shown that a reasonable value for the
local scale t is half of the estimated texture scale. This is
explained by the property that the estimated scale at a pixel
level highly correlates to the intrinsic scale of a texture, there-
fore leading to rather large estimated scales. Large local scales
however would result in a decreased estimation accuracy. By
re-using the scale-space data, the computation of the multi-
scale second moment matrices only involves the computation
of the first partial derivatives in both image dimensions as
well as a convolution with a Gaussian filter to compute the
integration scale i. Figure 6 illustrates schematically how
the scale- and orientation-adaptive computation is combined.
Based on the estimated texture scale, appropriate LBP radii
and neighborhood sampling area dimensions are chosen. The
ordering of the computation is adaptively chosen depending on
the estimated orientation. Please note that due to the ambiguity
of the orientation, we compute two patterns at each image
location, rotated circularly to accommodate orientations above
180 degrees. This is indicated by the red sampling points
which correspond to the respective starting location of the
computation.

To compensate for possible errors of the orientation esti-
mation as well as unsuitable alignments on the pixel grid, we
compute multiple LBP histograms using a small interval of
different orientations depending on the estimated orientation.
The size of the interval is chosen depending on the uncertainty
measure of the orientation estimation. As a consequence the
chosen interval for an unreliable orientation estimation is wider
and the error is more likely to be compensated. The interval
width chosen for the experiments discussed in Section V was
0.7 times the standard deviation (interpreted in degrees) of the
fitted Gaussian. This value was not optimized and might be
dependent on the given problem however. For each orientation
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Fig. 6: Illustration of the Scale- and Orientation-Adaptive
Computation.

An Orientation Adaptive Extension to Scale-Adaptive Local Binary Patterns.



in the interval (in steps of 5 degrees), a separate LBP histogram
is computed. Finally, the best alignment of orientations is
implicitly chosen during classification by selecting the min-
imum of all distances computed pairwise between all LBP
histograms computed based on the specific orientation within
the intervals of two texture images. Note that this does not
pose an unfair advantage to the classifier, as no information
about class membership is used implicitly or explicitly. This
approach is comparable to the cyclic shift of binary iris features
used to compensate for small rotational alignment errors in
biometric systems for example.

V. EXPERIMENTS

We constructed a large set of experiments to analyze the
performance of the orientation-adaptive extension to the scale-
adaptive LPB framework in a scenario with varying scales and
varying image rotations. We explicitly compare the accuracy
of LBPriu methods employing the scale-adaptive methodology
with the accuracy of the standard LBP methods employing the
proposed scale- and orientation-adaptive framework. Addition-
ally we analyze the performance of non scale-adaptive methods
based on LBPriu in the same scenario.

The used methods are the LBPriu method [10], the Local
Ternary Patterns (LTPriu) operator [11] as well as the Fuzzy
Local Binary Patterns (FLBPriu) method [4]. Please note
that these methods were used in combination with the multi-
resolution Local Binary Patterns extension [10] based on three
scales and 8 neighbors, the best configuration we were able to
find for the given data sets.

The experimentation is based on two independent texture
databases. The KTH-TIPS database [1] exhibits texture images
from 10 different materials captured at 9 different scales with 9
samples per material. Sub-images of size 128×128 pixels were
extracted from the center of each accordingly rotated original
image. The rotation was performed using bilinear interpolation.
We simulated rotations of 30 degrees, 60 degrees 120 degrees
and 180 degrees respectively. Due to the dimension of the
original images of material ”cracker“, this material class could
not be used for simulating rotation without a large black border
within the 128 × 128 image patches. Unfortunately, besides
KTH-TIPS there are no other publicly available high quality
texture databases with an available ground-truth of scales. We
therefore had to resort to a simulation of the scaling of textures.
A subset of the Kylberg texture database [5], consisting of 28
materials with 160 unique texture patches per class, captured
at a single scale, was used for the simulation. The image
database contains rotated versions of each image at 30 degree
steps ranging from 0 to 330 degrees. The high resolution of
each patch (576 × 576 pixels) allowed us to simulate the
scaling without relying on up-sampling, leading to a smaller
amount of interpolation artifacts. The simulation of scaling was
performed according to the scales of the KTH-TIPS database,
interpreting the original image patches as the maximum scale
21.0. Image patches of size 128×128 were then extracted from
the center of the re-scaled patches. Due to the huge number
of samples in the Kylberg database we use a subset consisting
of 20 unique texture patches per class (5 patches per image)
for experimentation.

The experiments were designed to explicitly reflect the
properties of the studied methods. The images from the KTH-

TIPS database at scale 5 without rotations build the training
set for experiments based on the KTH-TIPS database. Respec-
tively the images from the Kylberg database at scale 20 without
rotation are used as training data for experiments based on the
Kylberg database. To evaluate the impact of rotation and scale,
the classification was performed on the corresponding scaled
and rotated version of the data from each of the databases. The
used classification method was a k-nearest neighbors classifier.
The maximum value of k was chosen depending on the number
of samples per material class. In case of the Kylberg database
the maximum value of k was set to 20 while the maximum
value of k was 9 in case of the KTH-TIPS database. To allow
for an unbiased evaluation, all interpreted results are the mean
accuracy over all possible k-values ranging from 1 to the
specific maximum.

VI. RESULTS

Figure 7 presents the results of the experiments. The horizontal
axis denotes the relative scale difference between training data
and evaluation data while the vertical axis corresponds to the
classification accuracy. The bold lines show the mean classifi-
cation accuracy over all image rotations (5 different rotations
for the KTH-TIPS set and 12 for the Kylberg database). We
visualize the minimum and maximum classification accuracy
over all rotations with error bars in case of the KTH-TIPS
database as well as a smaller error bar with the corresponding
area in case of the Kylberg database.

Methods utilizing the proposed scale- and orientation-
adaptive methodology are abbreviated as SOA and the respec-
tive name of the used LBP based method, the scale-adaptive
method. Methods utilizing the scale-adaptive methodology in
combination with the rotation-invariant encoding are abbrevi-
ated as SA and the specific method’s name. The name of the
methods based on LBP are used as known from literature.

The difference in mean classification accuracy between the
proposed scale- and orientation-adaptive (SOA) framework and
the scale-adaptive (SA) framework using the rotation invariant
encoding is reflected by the upper row of numbers. The lower
row of numbers label the difference between the scale-adaptive
framework based on LBPriu with the respective standard
method.

Figure 7 shows that the mean classification accuracy of
methods utilizing the scale- and orientation-adaptive method-
ology (SOA) are superior in terms of classification accuracy
and variance as compared to methods utilizing the scale-
adaptive (SA) framework with rotation-invariant encoding.
Comparing the results with prior experiments in [2], we see
that the accuracy of the standard methods decreased due to
the rotation invariant encoding. This is reflected by the fact
that the maximum results are below the results in [2]. In
general we observe a minor degree of variation caused by
the different orientations across the results. Interestingly the
methods employing the scale-adaptive framework (SA) exhibit
the highest degree of variance, a property we expected due to
the reduced discriminative power as discussed in Section III.
Methods utilizing the proposed scale- and orientation-adaptive
(SOA) framework show the smallest degree of variance with
respect to orientation. Additionally the mean classification
accuracy is clearly above the accuracy of traditional methods as
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Fig. 7: Mean Overall Classification Accuracies over all Rotations.

well as methods utilizing the scale-adaptive (SA) approach in
combination with the rotation-invariant encoding. Concerning
the results based on the KTH-TIPS database, we can see
that the variation caused by rotation is considerably higher
across all methods. The smallest variations caused by rotation
is again observed for methods utilizing the proposed scale-
and orientation-adaptive (SOA) methodology. In parallel to the
Kylberg database, methods based on the SOA framework show
the highest mean accuracy. We observe the highest amount of
variance of methods utilizing the SOA methodology at small
relative scales. We assume this is caused by the higher impact
of the orientation estimation error for textures at a smaller
relative scale. In general, the trends observed for the Kylberg
database are confirmed by the results based on the KTH-TIPS
database.

VII. CONCLUSION

In this work, we presented an orientation-adaptive extension
to the scale-adaptive LPB framework. By leveraging the
already pre-computed scale-spaces, our proposed orientation
estimation approach integrates naturally with the scale-
adaptive LBP framework at moderate computational cost.
In particular, using multi-scale second moment matrices,
computed at dominant local scales, leads to 1) robust
orientation estimation in noisy environments and 2) scenarios
with varying texture scales. Our experiments suggest that
estimating a global orientation to build orientation-adaptive
LBPs is superior to the previously introduced rotation-invariant
encodings; this is reflected by less variance in classification
accuracy as well as superior mean accuracy over multiple
orientations. In summary, the proposed framework enables
the use of the highly-discriminative LBPs in less-constrained
situations, where both orientation as well as scale variations
are to be expected.
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Abstract

Local Binary Patterns (LBP) have been used in a wide range of texture clas-
sification scenarios and have proven to provide a highly discriminative feature
representation. A major limitation of LBP is its sensitivity to affine transfor-
mations. In this work, we present a scale- and rotation-invariant computation
of LBP. Rotation-invariance is achieved by explicit alignment of features at the
extraction level, using a robust estimate of global orientation. Scale-adapted fea-
tures are computed in reference to the estimated scale of an image, based on the
distribution of scale normalized Laplacian responses in a scale-space represen-
tation. Intrinsic-scale-adaption is performed to compute features, independent
of the intrinsic texture scale, leading to a significantly increased discriminative
power for a large amount of texture classes. In a final step, the rotation- and
scale-invariant features are combined in a multi-resolution representation.

Keywords: LBP, scale, adaptive, rotation, invariant, scale-space

1. Introduction

A major challenge in texture classification is dealing with varying camera-scales
and orientations. As a result, research focused on scale- and rotation-invariant
feature representations has been a hot topic in the last years. Feature extraction
methods providing such invariant representations, allow to be categorized into
four conceptually different categories.

In a theoretically elegant approach, methods of the first category transform
the problem of representing features in a scale- and rotation-invariant manner
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in the image domain, to a possibly easier, but equivalently invariant repre-
sentation in a suitable transform domain. Pun et al. [1] utilize the Log-Polar
transform to convert scaling and rotation into translation, scale- and rotation-
invariant features are then computed using the shift invariant Dual-Tree Com-
plex Wavelet Transform (DT-CWT [2]). Jafari-Khouzani et al. [3] propose a
rotation-invariant feature descriptor based on the combination of a Radon trans-
form with the Wavelet transform. A general drawback of this class of methods
is, that scaling can only be compensated at dyadic steps. As an improvement,
Lo et al. [4, 5] and Uhl et al. [6] use a Double-Dyadic DT-CWT combined with a
Discrete Fourier Transform (DFT) and a Discrete Cosine Transform (DCT) re-
spectively, to construct scale-invariant feature descriptors at sub-dyadic scales.
The periodicity of the DFT is also exploited by Riaz et al. [7, 8] to compute
scale-invariant features by compensating the shifts in accumulated Gabor filter
responses.

In a more pragmatic approach, methods of the second category achieve scale-
and rotation-invariance either explicitly, by a re-arrangement of feature vectors,
or implicitly, by selection of suitable transform sub-bands. In general, methods
in this class also rely on some sort of image transformation. Lo et al. [9] (us-
ing the DT-CWT), Montoya-Zegarra et al. [10] (using the Steerable Pyramid
Transform) as well as Han et al. [11] and Fung et al. [12] (both relying on Gabor
filters responses) are representative approaches of this category. In parallel to
the first concept, methods of this class are often limited in the accuracy and
amount of compensable scaling and rotation by the nature of the used image
transformation.

The obvious, but potentially most devious category, is based on a feature
representation with inherent scale- and rotation-invariance. The fractal dimen-
sion ([13, 14, 15, 16]), as measure for the change in texture detail across the
scale dimension, is a promising candidate for such a representation. Geomet-
ric invariant feature representations based on the temporal series of outputs of
pulse coupled neural networks (PCNN) have been used by Ma et al. [17] and
Zhan et al. [18]. As a consequence of the inherent scale- and rotation-invariance
however, this type of features is likely to have a decreased discriminative power
as compared to other feature representations and often requires a generative,
model based approach, such as Bag-Of-Words, to be competitive.

The fourth and last category of methods utilizes estimated texture prop-
erties to adaptively compute features with the desired invariants. Xu and
Chen [19] use geometrical and topological attributes of regions, identified by
applying a series of flexible threshold planes. Another large set of methods
is based on the response of interest point detectors, such as the Laplacian of
Gaussian (LoG, Lindeberg [20]), the Harris-Laplace detector (Mikolajczyk et
al. [21]), Difference of Gaussian (DoG, SIFT [22]), Determinant of Hessian (DoH,
SURF [23]) or Wavelet modulus maxima (SIFER [24]) to construct invariant fea-
tures. Lazebnik et al. [25] apply affine normalization, based on the estimation
of local shape and scale at detected interest points, to compute affine invariant
features. Hegenbart et al. [26] compute LBP in an affine-adapted neighborhood
while Li et al. [27] rely on local responses of the LoG to build a scale-invariant
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LBP representation. Due to the sparse output of interest point detectors and
the stability of selected regions, a feature representation derived from interest
points, might not be appropriate for all texture classification scenarios however.
Even more, the intrinsic-scale of a large number of textures is inappropriate for
a directly adapted computation of discriminative features, due to unsuitably
large or small scales. As a consequence, the SIFT, SURF and SIFER features
descriptors are primarily used for tasks in computer vision apart from texture
classification. A variation of these methods without scale-selection, based on
local descriptors, computed at a dense grid, is generally used for computing
features for the classification of textures.

In this work, we present a methodology which combines ideas from the sec-
ond (alignment of features) and the last category (scale-adaption) to construct
a scale- and rotation-invariant LBP feature representation. The method inte-
grates seamlessly into the general computation of LBP, providing a high angular
resolution with a fine grained compensation of scaling. Rotation-invariance is
achieved by explicit alignment of features at the extraction level, based on a
robust global estimate of orientation, using information provided by multi-scale
second moment matrices [28]. The distribution of scale normalized Laplacian re-
sponses, in a scale-space representation of an image, allows a reliable estimation
of the global image scale, which is used for a scale-adaptive feature computation.
Based on the estimation of the global scale, intrinsic-scale-adaption is applied
to compute features independent of the intrinsic texture scale. This assures
the use of suitable LBP-radii, increasing the discriminative power of the feature
representation significantly for a large amount of texture classes. In a final step,
the rotation- and scale-invariant features are combined in a multi-resolution
representation to further improve the discriminative power.

1.1. Limitations of LBP with Image Scaling and Rotation

The Local Binary Pattern method [29] represents textures as the joint distribu-
tion of underlying micro structures, modeled via intensity differences in a pixel
neighborhood. Such a neighborhood is defined in relation to a center pixel at
position (x, y) as a tuple of n equidistant points on a circle with a fixed radius
r. The position of neighbor number k is computed as

ηr,n(k;x, y) =

(
x+ r cos

(
2πk
n

)
y − r sin

(
2πk
n

))T

.

(1)

A weighted sum, representing the pixel neighborhood, is computed and inter-
preted as binary label, based on a sign function sg(x) mapping to 1 if x ≥ 0
and 0 else. For a position (x, y) in an image, the standard LBP, based on n
neighbors and radius r is computed as

LBPr,n(x, y) =

n−1∑
k=0

2k sg
(
I
(
ηr,n(k;x, y)

)
− I(x, y)

)
. (2)
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Finally, the distribution of patterns is represented by a histogram, which is then
used, in conjunction with a meaningful distance function, as an LBP feature.

The LBP feature representation has been used in a wide range of texture
classification scenarios and has proven to be highly discriminative. A restriction
of LBP however, is its sensitivity to affine transformations. As a consequence of
the fixed-scale radius and the fixed sampling area dimension of the pixel neigh-
borhood, the locally computed patterns implicitly encode the underlying micro
structures of a texture at a scale directly related to the camera-scale of an image.
As a result, the LBP feature representation is unable to compensate for differ-
ent camera-scales. Even more, a rotation of an image is reflected as a circular
shift in the individual patterns, which affects the distribution of patterns in a
non-linear fashion. As a consequence, the standard LBP feature representation
requires either an implicit or explicit alignment of patterns, which is generally
done at the encoding level, to compensate for image rotations.

A widely used rotation-invariant encoding of LBP is based on the work of
Ojala and Mäenpää [30]. The authors construct a rotation-invariant represen-
tation at the encoding level by implicit alignment of patterns, representing each
individual pattern as the minimal decimal interpretation of all possible bitwise
circular shifts of that specific pattern. A major limitation of encoding level
based approaches is the highly limited angular resolution. As a consequence,
Ojala et al. [30] suggest to combine their rotation-invariant encoding with uni-
form LBP. This combination however, leads to an even smaller number of in-
dividual patterns and a possibly decreased discriminative power of the feature
representation. In the same work, the authors propose a multi-resolution rep-
resentation, which improves the discriminative power of the features, by adding
the capability of describing underlying micro structures at multiple scales. The
multi-resolution representation however lacks a scale-selection mechanism and
is therefore unable to compensate for image scaling.

Li et al. [27] were the first to compute scale-adapted LBP, based on the
estimation of local texture scale. The authors use a direct mapping from the
estimated local texture scale (in terms of the scale-space) to compute scale-
adapted LBP-radii. Rotation-invariance is achieved, based on a modification
of the rotation-invariant encoding of Ojala and Mäenpää, using bit alignment
on the basis of sub-uniform patterns. Unfortunately, using the estimated local
image scale as LBP-radius, significantly reduces the reliability of the method.
This is a result of computing the features in dependence of the intrinsic texture
scale, which is inappropriate for a large number of texture classes (in particular
natural textures), due to either very large LBP-radii (low discriminative power)
or very tiny LBP-radii (limited possibility of scale-adaption).

The proposed scale- and orientation-adaptive (SOA)-LBP, based on prior
work [31, 32], addresses these limitations. The low angular resolution of encod-
ing level based rotation-invariant representations, is significantly improved by
alignment of patterns at the extraction level, using a robust estimate of global
texture orientation. The reliability of the feature representation is greatly en-
hanced by the means of intrinsic-scale-adaption, allowing the computation of
highly discriminative features, independent of a texture’s intrinsic-scale.
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2. Scale-Adaptive Local Binary Patterns

We compute a scale-invariant representation of LBP by appropriate selection of
LBP-radii (Section 2.2), based on a global estimate for image scale (Section 2.1).
To compensate for the changed spatial extent of image structures due to scaling,
we perform Gaussian low-pass filtering in reference to the corresponding scale-
adapted LBP-radius, to sample neighbors at the correct scale (Section 2.3).

2.1. Estimation of the Global Image Scale

We estimate the global scale of an image utilizing the distribution of scale-
normalized Laplacian responses in scale-space. Let f : R2 7→ R represent a
continuous signal, then the scale-space representation, parametrized in terms of
the standard deviation of the Gaussian, L : R2 × R+ 7→ R is defined by

L(·;σ) = g(·;σ) ∗ f, (3)

with initial condition L(·; 0) = f . We denote σ ∈ R+ as the scale parameter (the
standard deviation of the Gaussian function g) and “∗“ represents a convolution
operation. The scale-space family L is the solution to the diffusion equation

∂σL = σ

(
∂2L

∂x2
+

∂2L

∂y2

)
= σ△L. (4)

We construct the scale-space using an exponential spacing of scales σi = c
√
2
ki
, ki ∈

{−4,−3.75, . . . , 7.75, 8} and c = 2.1214. The value of c acts as a scaling factor
and was initially chosen such that the center scale of the representation corre-
sponds to the LBP-radius 3. We later added a set of larger scales to accommo-
date for the large intrinsic-scales of natural textures. By using an exponential
spacing, we provide a fine grained estimation at small scales and still cover a
considerable amount of large scales. Note, that as a result of the Gaussian fil-
tering for computing suitable sampling support areas, estimation errors at large
scales are not as significant as errors at small scales.

As a consequence of the sparse output of interest point detectors, scale esti-
mation based on such scale-space extrema has shown to be unreliable for a large

Scale-Level

Response of
Distribution of Interest Points

Scale-Level Scale-Level

Figure 1: Normalized Response of ξ Compared to the Normalized Response Distribution of
Scale-Space Extrema.
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Figure 2: Estimated Scales-Levels s̃ with Uncertainty u for a Texture at Three Camera-Scales.

number texture classes. Figure 1 illustrates this by comparing the response dis-
tribution of scale-space extrema with the proposed scale estimation function ξ.
It can be observed, that the sparse nature of interest points significantly limits
the reliability of the scale estimation.

We therefore use the distribution of the responses of scale-normalized Lapla-
cians in the scale-space representation of an image I, (σ2 |△L(·;σ)|, denoted as
△I(·;σ)), computed at all scales in the scale-space, to estimate a global image
scale. The scale estimation function ξ is

ξ(σi) =
∑
z

△I(z;σi), (5)

for z ∈ R2 corresponding to a Cartesian coordinate on the pixel grid and σi

denoting a specific scale-level in the scale-space. To determine the global scale
of an image, the first local maximum of ξ is searched, which is then used as
seed point for a least-squares Gaussian fit. By using the first local maximum
we are capable of consistently estimating the scale of textures exhibiting more
than a single dominant global scale. The quality of the estimation is improved
by using only data points within a certain offset from the seed point. We use 10
percent of the number of scale-levels in the scale-space as positive and negative
offset from the estimated first local maximum to fit the Gaussian function. The
mean value s̃ of the fitted Gaussian function is interpreted as the dominant
level in scale-space. The standard deviation u of the fitted Gaussian is used as
uncertainty of the estimation. For a given dominant scale-level in scale-space s̃i,
the spatial scale si corresponds to the scale parameter σi in L(·;σi) (the extent
of a spatial structure at scale si is σi

√
2). Figure 2 illustrates the determination

of a global scale by fitting a Gaussian function (dashed red line) to the scale
estimation response function ξ (solid blue line).

The scale estimation method is reliable for the majority of evaluated images
but fails completely for a small fraction (approximately 3%). We identify a
failed scale estimation by evaluating the uncertainty u. In our implementation,
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the scale estimation is considered as failed if u, normalized by the number of
scale-levels, is greater than 0.4082 (an empirically found value). In such a case,
scale-adapted radii can not be computed reliably. We therefore fall back to
a default, computing the standard LBP with a fixed radius. Note that this
value (0.4082) was used across all experiments in this work and is assumed to
generalize well for a large set of scenarios.

We evaluated the accuracy of the scale estimation for computing scale-
adapted LBP-radii, by estimating the global scale of all images in the KTH-
TIPS and Kylberg image sets (see Section 5.1) at all 9 scales. Images at the
default training scale (20) where then used as reference for computing the rel-
ative error of scale-adapted LBP-radii compared to the theoretically optimally
scale-adapted radius. Figure 3 presents the relative error (in percent) of scale-
adapted LBP-radii, compared to the error of a fixed-scale LBP radius.

The results show, that the relative errors of scale-adapted LBP-radii are sig-
nificantly smaller as compared to the fixed-scale LBP-radius. This indicates that
the computation of scale-adapted patterns should improve the scale-invariance
of the feature representation. Please note the general asymmetry of the relative
error, which can be observed for the fixed-scale LBP radii.

2.2. Intrinsic-Scale-Adaption of the LBP-Radius

Responses of the scale-normalized LoG attain a maximum if its zeros are aligned
with a circular shaped image structure. As a consequence, scales estimated
based on the LoG, correlate strongly with the scale of the dominant circular
shaped structures of a texture. The estimated scale of an image is therefore
highly related to an essential property of the texture, the intrinsic-scale. It is
critical to realize that the observed scale of an image is always a combination
of the intrinsic-scale of the texture and the camera-scale of the image. Scales
estimated using the scale-space methodology therefore always represent a com-
bination of the camera- and intrinsic-scale. Estimation of the intrinsic-scale is
a highly non-trivial problem. As a consequence of the scale-invariance of the
intrinsic-scale, a method for the estimation would be required to be invariant
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Figure 3: Relative Error (in Percent) of Scale-Adapted LBP-Radii.
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in terms of camera-scale, but sensitive to the intrinsic-scale. Unfortunately we
do not know such a method. If so, the intrinsic-scale itself could be a promising
candidate to construct a scale-invariant feature representation, similar to the
fractal dimension.

An entire category of methods utilizing local texture properties to com-
pute adapted, invariant features (such as Affine Invariant Regions [25] or Li-
LBP [27]), are affected negatively by the large variety of intrinsic-scales across
texture classes. This is a consequence of using the estimated scale (as combi-
nation of the intrinsic- and camera-scale) directly to compute adapted features.
Due to unsuitably large or tiny intrinsic-scales for a considerable amount of
texture classes, the estimated scales are likely to be inappropriate for comput-
ing scale-adapted features. In this work, we propose a method to compute
scale-adaptive LBP at suitable and highly discriminative scales by the means of
intrinsic-scale-adaption.

We exploit the scale-invariance property of the intrinsic-scale to perform
intrinsic-scale-adaption without actual knowledge of the intrinsic-scale. Con-
sidering the quotient of two estimated image scales, either the intrinsic-scales
cancel each other out (the images are from the same texture class) and the
quotient is therefore in terms of the camera-scale, or the intrinsic-scales do not
match (images are from different texture classes) and the quotient is basically
random. By explicit computation of scale-adapted patterns, based on the quo-
tient between the estimated scale of an image and a trained-base-scale, we are
able to adapt for unsuitable intrinsic-scales implicitly.

A trained-base-scale, acting as reference for the computation of intrinsic-
scale-adapted patterns, is assigned to each texture class in the training data.
In particular, we estimate the scales of each image in the training data and use
the median of all estimated scales within a texture class as the trained-base-
scale of that class. The scale-adapted LBP-radius used for an image with an
estimated scale s, in reference to the trained-base-scale s̄l of texture class l is
then computed as

λ(s, l, ρ) = ρ
s

s̄l
. (6)

We define ρ (referred to as base-radius) as the LBP-radius used at the trained-
base-scale s̄l. As a trade-off between discriminative power of the representation
and the ability of adapting to a large variety of camera-scales, we set ρ = 3 as
default. Note the linearity of λ as a necessary property for scale-invariance. By
computing LBP-radii as a function of the quotient of the estimated image scale
and a trained-base-scale, the scale-adaptive representation is independent of the
intrinsic-scale of the texture. As a consequence, highly discriminative features
at suitable LBP-radii can be computed for a much larger set of texture classes.

Our experiments have shown that scale-adapted LBP computed in refer-
ence to a wrong trained-base-scale (the wrong texture class), exhibit appropri-
ately the same intra-class variability as compared to the inter-class variability of
features computed at matching trained-base-scales (the correct texture class).
This is a direct result of the basically random LBP-radii used to compute scale-
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adapted patterns in such a case. As a consequence, we distinguish between the
computation of training features and evaluation features.

The correct class is obviously known for images in the training data as part
of the available ground-truth. We therefore compute training features only in
relation to the trained-base-scale of the class of each specific image. Concerning
images for evaluation, the class labels are unknown. In this case, features are
computed in reference to each texture class, with the corresponding trained-
base-scale. During classification, only features computed in reference to the
same trained-base-scale are compared (see Section 4).

By using this approach we assure, that features for training will be computed
at suitable discriminative scales, close to the base-radius ρ for a majority of
images in the training data. Features for evaluation, computed in reference
to the correct trained-base-scale (the same class), benefit from intrinsic-scale-
adaption, while evaluation features computed in reference to the trained-base-
scale of a different texture class are uninformative due to inappropriate (random)
LBP-radii and are insignificant for a later classification.

2.3. Adaptive Sampling Support Area Dimension

Scaling of an image changes the spatial extent of textural structures. Therefore
the number of pixels covering structural information changes as well. As a
consequence, the size of the sampling support area in the LBP neighborhood has
to be adapted accordingly. By applying a Gaussian filter, each pixel in the image
implicitly encodes information about a circular neighborhood of appropriate
spatial scale. The radius of the Gaussian filter for a texture at estimated scale
s in relation to a texture class l using base-radius ρ is computed as

gr =
λ(s, l, ρ)π

n
, (7)

for n defining the number of LBP-neighbors. The Gaussian filter coefficients
are then computed such that P percent of the mass of the Gaussian function is
covered within the interval [−gr; gr]∫ gr

−gr

e
− x2

2σg2 dx = P

∫ ∞

−∞
e
− x2

2σg2 dx

2

∫ gr

0

e
− x2

2σg2 dx = Pσg

√
2π

σg =
gr√

2erf−1(P )
. (8)

We chose P to be 0.99 which corresponds to 99% of the mass of the Gaussian
function. As the sampling of a Gaussian function with very few sampling points
leads to a large error we use the error function (erf) to improve the stability of
the computation of the one dimensional Gaussian filters centered at 0

G(x;σg) =
−erf

(
x−0.5
σg

)
− erf

(
x+0.5
σg

)
2

, (9)
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which are then used in a separable convolution with the analyzed image.

2.4. Computation of Scale-Adapted LBP

The position of LBP-neighbor k, in a scale-adapted computation, in reference
to texture class l and an estimated global image scale s, using base-radius ρ
with n neighbors is computed as

ηρ,nl,s (k;x, y) =

(
x+ λ(s, l, ρ) cos

(
2πk
n

)
y − λ(s, l, ρ) sin

(
2πk
n

))T

.

(10)

A Gaussian filter G with the appropriate standard deviation σg (see Equation 8)
is used to sample neighbors at the correctly adapted spatial scale. Finally, the
scale-adapted LBP is computed at position (x, y) with neighborhood ηρ,nl,s based
on the convolution of image I with G, (Ig = I ∗G), as

SA-LBPρ,n
l,s (x, y) =

n−1∑
k=0

2k sg
(
Ig
(
ηρ,nl,s (k;x, y)

)
− Ig(x, y)

)
. (11)

The histogram of patterns computed in reference to the trained-base-scale of
texture class l is denoted as Hl and added to the SOA-LBP meta-descriptor of
the specific image (see Section 4).

3. Orientation-Adaptive LBP

To compensate for the non-linear changes of the LBP distribution caused by a
rotation of an image, an explicit or implicit alignment of patterns is required.
This is generally performed at the encoding level, leading to a low angular reso-
lution. To improve the angular resolution, we perform pattern alignment at the
extraction level, which integrates naturally with the scale-adaptive computation
of LBP and is based on an estimate of global image orientation.

3.1. Estimation of the Global Image Orientation

A main requirement on the orientation estimation in the context of scale-
adaptive LBP, is robustness to varying image scales. We therefore utilize multi-
scale second-moment-matrices (SMM [28]), computed at the global scale of an
image, to estimate a global image orientation. The SMM summarizes the pre-
dominant directions of the gradient in a specific area of an image. In contrast
to the single-scale SMM, the multi-scale SMM is defined over two scale parame-
ters, the local scale σi as well as the integration scale i. This allows to estimate
the shape of visual structures at appropriate scales, as detected by the scale-
estimation algorithm. The integration scale parameter is chosen in relation to
the local scale (we use i =

√
2σi). The local scale parameter is selected as

the global scale of the image, using the method described in Section 2.1. The
multi-scale SMM of an image at location z ∈ R2 is then computed as

10
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Figure 4: Estimated Orientations for a Texture at Three Orientations.

µ(z;σi, i) =

∫
ξ∈R2

(∇I) (z − ξ;σi) (∇I)
T
(z − ξ;σi) g(ξ; i) dξ. (12)

We denote (∇I) (z;σi) as the gradient of the scale-space representation of image
I at scale σi and position z. An important property of SMMs in general, is posi-
tive definiteness. The two (non-negative) eigenvalues of an SMM, correspond to
the length of the axes of an ellipse (up to some constant factor). The orientation
of the eigenvectors correspond to the orientation of the dominant gradient and
the orientation perpendicular to the dominant gradient respectively.

To estimate the global orientation of an image I, we compute multi-scale
SMMs at a dense grid, corresponding to pixel locations z ∈ R2. The orientation
at a specific location is determined as the angle between the major axis of the
ellipse and the vertical axis of the coordinate system (the axes of the image).
Due to the ambiguous orientation of the ellipse, we treat all angles modulus π.
Hence, the estimated orientation is unambiguous in [0;π]. We then estimate the
global orientation of an image, based on the distribution of local orientations,
computed at all coordinates of the sampled grid.

In parallel to the scale estimation method described in Section 2.1, this is
done by fitting a Gaussian function to the distribution of local orientations in
a least-squares optimization. To improve the accuracy of the estimation, we
remove data points with an offset greater than ±15 degrees from the maximum
of the distribution, prior to the fitting process. Finally, the average value of
the Gaussian is interpreted as the global orientation, which is used to align the
sampling points of the orientation-adaptive LBP.

Figure 4 illustrates the determination of the global orientation from the local
orientation distribution. The dashed red line represents the Gaussian function
fitted to the distributions of local orientations (solid blue line) of an image at
three different orientations. The numbers centered at each figure present the
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Figure 5: Absolute Errors (in Degrees) of the Orientation Estimation.

estimated global orientation of each image.
To evaluate the accuracy of the orientation estimation method, we computed

the absolute error of the estimated orientations (Figure 5) between a reference
image at the default training scale (20) and the same image at a different scale
and random rotation between 30 and 330 degrees in steps of 30 degrees. The
error was evaluated from 891 (81*11) random samples at 8 relative scales using
the KTH-TIPS as well as the Kylberg image sets (see Section 5.1).

The results indicate that the orientation estimation method is robust in re-
spect of image scaling. We see across all scales, that the medians of the absolute
errors are within a range of 5 to 10 degrees. Experiments have shown that the
standard multi-resolu¿tion LBP representation can compensate alignment dif-
ferences of up to 10 degrees, but fails for orientation differences above. In order
to improve the orientation-adaptive representation we apply an error compen-
sation technique based on the accumulation of LBP distributions at multiple
orientations.

3.2. Orientation Estimation Error Compensation

We found, that a distribution of LBP with a small amount of misaligned pat-
terns (a systematic error) will be dominated by the majority of correctly aligned
patterns. As a consequence, we accumulate the distribution of LBP based on
multiple orientations within an interval of ±∆o = 20 degrees of the estimated
global orientation o. Experiments show, that by using this approach an esti-
mated error of up to 20 degrees can be compensated without a significant loss
of discriminative power of the feature representation. Figure 6 illustrates this
error compensation technique.

To improve the reliability of this scheme, we use thresholding to avoid heavy
fluctuation of bits due do interpolation artifacts. The modified sign function
sg(x) used in computing the individual patterns therefore requires x ≥ T to
map to 1. The value of T is selected adaptively based on the Gaussian filtered
image Ig, to accommodate for the adapted image properties, as the square root
of the standard deviation of all pixel values in Ig.
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Figure 6: Orientation Estimation Error Compensation using Accumulated Pattern Distribu-
tions.

3.3. Computation of Orientation- and Scale-Adaptive LBP (SOA-LBP)

To compute SOA-LBP in reference to a texture class l, estimated global image
scale s, global orientation o, base-radius ρ and n neighbors, the position of
neighbor k is adapted as

ηρ,nl,s,o(k;x, y) =

(
x+ λ(s, l, ρ) cos

(
o+ 2πk

n

)
y − λ(s, l, ρ) sin

(
o+ 2πk

n

))T

.

(13)

The actual computation of LBP then follows the scheme of the scale-adaptive
LBP as depicted in Section 2.4. To accommodate for the ambiguous orientation
of multi-scale SMMs, we compute two patterns with initial sample positions
at o and o + π respectively. Figure 7 illustrates the computation of scale- and
orientation-adaptive LBP schematically. The red sampling points indicate the
initial sample positions.
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Figure 7: Schematic Computation of Scale- and Orientation-Adaptive LBP.

4. SOA-LBP in a Multi-Resolution Feature Representation

The computation of multiple LBP-features (histograms) per image, each in ref-
erence to an individual trained-base-scale, requires the construction of a meta-
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feature-representation for classification. We abstract the set of computed LBP-
features per image as a single SOA-LBP meta-descriptor and define a meaningful
distance function between a pair of such descriptors. A meaningful distance ex-
ists only between LBP-features computed in reference to the same trained-base-
scale. As a consequence, we define the distance between LBP-features computed
at different trained-base-scales as ∞. Experimentation has shown, that LBP-
features computed at incorrectly adapted scales generally yield a significantly
higher intra-class variability as compared to LBP-features computed at correctly
adapted scales. The distance between two meta-descriptors is therefore defined
as the minimum distance between all pairs of LBP-features abstracted by the
descriptors. For two SOA-LBP meta-descriptors M1 and M2, both representing
a set of LBP-features, each computed individually in reference to a texture class
in the training data {H1, . . . , Hn}, the distance is defined as

D(M1,M2) = min{d(Hl,Hk) | Hl ∈ M1 ∧Hk ∈ M2}, (14)

with

d(Hl,Hk) =

1−
N∑
i=1

min
(
Hl(i),Hk(i)

)
, if l = k

∞, if l ̸= k.

(15)

In our implementation the histogram-intersection is used as a measure for sim-
ilarity. A notable drawback of using the meta-descriptor abstraction is, that
it does not easily integrate with all classification methodologies. We therefore
restrict the experimentation in this work to a classification method that allows
for a straight forward integration (a standard k-nearest neighbors classifier).
Ojala and Mäenpää [30] suggest to compute multiple LBP-features, each at
separate fixed LBP-radii, to improve the discriminative power of the feature
representation. Multi-resolution LBP-features are then created from a set of
standard LBP-features by concatenation.

We combine the rotation- and scale-invariant SOA-LBP in a multi-resolution
feature representation, to improve the general discriminative power, by reduc-
ing the required amount of low-pass filtering for adapting the sampling area
and adding the capability of describing underlying micro structures at multiple
scales.

Our experiments have shown, that the discriminative power of the LBP rep-
resentation starts to decrease at radii greater than 5.44 pixels (this corresponds
to LBP-scale 3 in Ojalas multi-resolution approach). We therefore consider radii
within the interval [1; 5.44] to be the most discriminative. To compute scale-
adaptive patterns at multiple resolutions, we use a set of distinct base-radii for
intrinsic-scale adaption ρ = {ρ1, ρ2, ρ3} = {1.5, 3, 4.5}, instead of relying on
a single base-radius. Hence, a multi-resolution SOA-LBP representation com-
puted in reference to texture class l consists of the set of SOA-LBP-features
computed at each of the base-radii and is denoted as Hl = {hl,ρ1 , hl,ρ2 , hl,ρ3}.
Considering the small radius ρ1 = 1.5 as well as the large radius ρ3 = 4.5 it
is likely that either the lower- or the upper-bound on discriminative LBP-radii
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Algorithm 1: Selection of Valid Multi-Resolution Feature Subsets.

Data: Let H1
l and H2

l be the sets of multi-resolution LBP-features
(histograms) computed in reference to texture class l at the base-radii
ρ = {ρ1, ρ2, ρ3} for two images with estimated scales s1 and s2.

H1
l = {h1

l,ρ1
, h1

l,ρ2
, h1

l,ρ3
} and H2

l = {h2
l,ρ1

, h2
l,ρ2

, h2
l,ρ3

}

Result: Valid subsets V1,V2 of features from H1
l and H2

l .

V1 = H1
l and V2 = H2

l

foreach ρi ∈ ρ do
r1 = λ(s1, l, ρi) // intrinsic-scale-adapted LBP-radius of h1

l,ρi

r2 = λ(s2, l, ρi) // intrinsic-scale-adapted LBP-radius of h2
l,ρi

if min(r1, r2) < 1 or
max(r1, r2) > 5.44 or
max(r1, r2) /min(r1, r2) > 3 then

V1 = V1 \ h1
l,ρi

V2 = V2 \ h2
l,ρi

end

end

is violated for a considerable amount of images, which effectively reduces the
discriminative power of the multi-resolution representation. We therefore adap-
tively select the best subset of SOA-LBP-features for constructing the multi-
resolution representation during each computation of the distance between two
SOA-LBP meta-descriptors (see Algorithm 1).

Once the best subset of SOA-LBP-features is identified for a pair of meta-
descriptors, the final multi-resolution representation is constructed by simple
concatenation of the normalized histograms. Note, that as a consequence of
considerably different intrinsic-scales, or a failed scale estimation, the possibility
of V1 = V2 = ∅ exists. In such a case, it is likely that the two SOA-LBP-
features represent different texture classes. We consider such a pair of features
as incomparable in a scale-adaptive sense and define the distance as ∞.

5. Experiments

We evaluate the proposed SOA-LBP in reference to a set of scale- and orientation-
invariant methods, representative for all categories discussed in Section 1. To
assess the reliability of the intrinsic-scale-adaption for a large number of tex-
tures, we rely on four different images sets for experimentation. We specifically
study the scale-invariance properties (Section 5.4) as well as the effects of com-
bined scaling and rotation (Section 5.5 and 5.6). We finally present a runtime
performance analysis of the SOA-LBP (Section 5.7) in relation to the compared
methods.
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Figure 8: Example Images of the Celiac Set.

5.1. Image Data

We perform the experimentation on four image sets with appropriate character-
istics. Table 1 summarizes the most important information about the used data.

Database Classes Images per Scale Scales Training Scale
Celiac 2 102/98 2 Vice Versa
CURET 4 184 2 Mixed
KTH-TIPS 9 81 9 20

Kylberg 25 500 9 20

Table 1: Information on the Image Sets used for Experimentation.

Celiac. The Celiac image set exhibits duodenal tissue, captured during stan-
dard upper endoscopy of patients with indication for celiac disease, using narrow
band imaging (NBI [33]), which allows to enhance the contrast of vascular pat-
terns on the mucosal surface. Sub-images of size 128 × 128 pixels, exhibiting
regions with particular visual indication for the disease or absence of the disease,
were extracted by an expert. As a consequence of the missing scale information,
the data was split manually into two distinct sets (near and far), according to
camera distance (image scale) by an expert. Due to the nature of endoscopic
imagery, the data exhibits a wide variety of different illumination, perspective
and scale. The Celiac set represents a two-class classification problem with
class Marsh-0 indicating healthy duodenal tissue and class Marsh-3 represent-
ing mucosal tissue affected by celiac disease. Figure 8 illustrates representative
textures from the Celiac image set.

CURET. The CURET image set contains data with different viewing and il-
lumination conditions. In a four-class classification scenario, textures at two
different scales are available as 200 × 200 pixel images. The scale difference of
the textures is reported to be approximately 1.7. As a consequence of the sig-
nificant amount of signal noise in the CURET data, this image set provides an
interesting opportunity to evaluate the effects of noise on the proposed method.

KTH-TIPS. The KTH-TIPS [34] image set consists of images from 10 different
materials captured at 9 individual relative scales between 2−1.0 and 21.0 with 9
samples per material. Due to the dimension of the original images of material
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”cracker“ (the texture would only fill half of the images at certain scales), we
could not use this class for simulating rotations and consequently removed the
class in all experiments, leading to a classification scenario with only 9 classes.
Sub-images of size 128×128 pixels were extracted from the center of each image
to be consistent with the orientation evaluation experiments.

Kylberg. The Kylberg texture set [35] consists of 28 materials captured at
a single camera-scale. The data set contains rotated versions of each image
at 30 degree steps within a range of 0 to 330 degrees. The large image size
(576× 576 pixels each) allows to simulate signal scaling without relying on up-
sampling, which leads to a reduced amount of unwanted interpolation artifacts.
We simulated scaling to match the scales of the KTH-TIPS set such that the
scale of the original images is interpreted as the maximum scale 21.0 (KTH-
TIPS scale 1). Sub-images of size 128×128 pixels were then extracted from the
center of the re-scaled images to build the image sets. We created two distinct
sets for experimentation, a training set consisting of 20 unique texture patches
(types a and b) per material and an evaluation sets comprised of 20 unique
texture patches (types c and d) per class. Please note that the texture classes
rice1 and rice2 as well as stone1, stone2 and stone3, respectively show minimal
visual distinction in textural appearance. As a consequence we removed the
texture classes rice2, stone2 and stone3 to improve the interpretability of the
experiments, leading to a classification scenario with 25 classes.

5.2. Compared Feature Extraction Methods

We compare the proposed SOA-LBP to a set of methods, representative for
the four categories of scale- and rotation-invariant methods, as discussed in
Section 1. We believe that the conceptual properties used by these methods
will allow us to establish a comprehensive overview. The used methods are
Category I. DT-CWT with Log-Polar Transform (Log-Polar [1]).
Category II. Dominant Scale (Dominant Scale [10]).
Category III. Fractal Analysis using Filter Banks (MFS MR8 [13]) and Inter-
secting Cortical Model (ICM [17]).
Category IV. Affine Invariant Regions (Affine Regions [25]) and Fisher vector
encoding of dense SIFT descriptors (Dense SIFT [36]). We also compared the
method to a standard, multi-resolution LBP with 3 scales (LBP [30]) and the
proposed scale-invariant LBP representation of Li et al. (Li-LBP [27]).

5.3. Evaluation Protocol and Presentation of Results

We implemented the experiments in a scale-constrained cross-validation scheme
to accommodate for the rather small size of the Celiac and KTH-TIPS image
sets. The scheme is based on two distinct sets for training and evaluation.
Images for training were always selected from a fixed scale (the default training
scale, see Table 1), while the scales for evaluation varied according to the specific
experiment. This approach allows to study the characteristics of each method
in reference to signal scaling at various scale differences.
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Cross-validation was then performed by an iterated random selection (consistent
among all methods) of subsets from the training set (75%) and the evaluation
set (25%). A standard k-nearest neighbors classifier was used for classification
of features extracted from the specific image subsets. The maximum k-value
corresponds to the number of images in each class of the training set (at max-
imum 20). The reported results represent the mean accuracy over all k-values,
averaged in a scale-constrained cross validation with 100 iterations.

We report statistical significance on a per-figure basis to improve the read-
ability. Two-tailed Wilcoxn rank-sum tests were performed at a significance
level α = 0.001, to assess the null-hypothesis, that the population median of the
cross-validation results obtained with the proposed methodology (SOA-LBP)
is equal to the medians of all corresponding methods presented in the specific
figure. An arrow pointing upwards (↑) indicates, that the null-hypothesis could
always be rejected and the SOA-LBP performed significantly better as compared
to all corresponding methods in the figure. An arrow pointing to the right (→)
indicates, that the null-hypothesis could not be rejected at least once but no sig-
nificant difference could be identified. Finally an arrow pointing downwards (↓)
indicates that at least one method performed significantly better as compared to
the proposed method. Note that the markers of each plot are slightly displaced
on the x-axis to improve the readability of the error-bars, which represent the
standard deviations of the individual cross-validation results.

We present the results based on the CURET and Celiac image sets using
asymmetric bar charts (Figures 12 and 15). Each side of a bar represents the
classification accuracy of a single experiment. The slope of the bar gives an
indication of the scale-invariance of each method. The dashed lines represent
the average classification accuracies of both experiments. The arrows indicate
statistical significance in relation to the SOA-LBP (e.g. an arrow pointing
downwards indicates, that the specific method performed significantly worse as
compared to the proposed methodology).

2−1.0 2−0.75 2−0.5 2−0.25 20.25 20.5 20.75 21.0

Relative Scale of Evaluation Data

30

40

50

60

70

80

90

100

SOA-LBP

LBP

Li LBP

KTH-TIPS

Relative Scale of Evaluation Data

30

40

50

60

70

80

90

100

SOA-LBP

LBP

Li LBP

2−1.0 2−0.75 2−0.5 2−0.25 20.25 20.5 20.75 21.0

Kylberg

Figure 9: Classification Accuracy (y-axis) for Evaluation Scales (Scaling only).
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5.4. Studying the Effects of Image Scaling

The first set of experiments is aimed specifically at studying the characteristics
of each evaluated method in regard to image scaling. In these experiments,
we only use the scale-invariant representation of methods that allow a selective
use of rotation-invariant features. This includes LBP, Li-LBP, SOA-LBP and
Dominant Scale. We present the results of the experiments based on the KTH-
TIPS, Kylberg and CURET image sets without rotation in Figures 9, 10, 11
and 12. Images at scale 20 were used for training, images at all other available
scales were used for evaluation (KTH-TIPS and Kylberg).
Based on the CURET data, we follow the experimental setup used by Varma
et al. [37]. Two separate training sets were constructed. The first training set
consists of textures at both scales, while the second training set is based on
textures at a single scale. The evaluation set contains textures at both scales.
The difference between the two experiments give an indication for the scale-
invariance of each method.
Considering the experiments on the KTH-TIPS image set, we observe that the
SOA-LBP performs comparably to the majority of evaluated methods, at eval-
uation scales close to the training scale. No method performed significantly
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Figure 11: Classification Accuracy (y-axis) for Evaluation Scales (Scaling only).
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Figure 12: Classification Accuracy of the Experiments on the CURET Data.

better as compared to the proposed methodology however, which indicates that
the multi-resolution SOA-LBP feature representation is competitive in scenar-
ios with minimal to no scaling. In case of large scale differences (starting at
20.75, 2−0.75) between the training and evaluation data, the SOA-LBP signifi-
cantly outperforms all evaluated methods.

In parallel to the experiments on the KTH-TIPS data, the SOA-LBPs per-
formance is significantly better as compared to all evaluated methods at large
scale differences considering the Kylberg experiments. In contrary to the pre-
vious experiments however, this behavior is already recognized at relative scale
differences of 20.5 and 2−0.5. The results indicate, that the used multi-resolution
representation provides highly discriminative features in the more challenging
classification problem provided by the Kylberg set, even at tiny scale differ-
ences (20.25, 2−0.25). The only method that performed significantly better as
compared to SOA-LBP was the standard multi-resolution LBP at relative scale
20.25, which is caused by a small amount of erroneously estimated image scales of
the proposed method. Interestingly, the Li-LBP method performed significantly
worse even for small scale differences as compared to the standard LBP as well
as the proposed method. We assume this characteristic is caused by the direct
mapping from estimated scale to the LBP-radius (the average intrinsic-scale of
the Kylberg set is higher as compared to the KTH-TIPS data) in combination
with a missing, more powerful, multi-resolution representation.

The experiments on the CURET data indicate a high degree of scale-invariance
of the SOA-LBP. Only the Li-LBP method performed significantly better in the
experiment without required scale-invariance (mixed training scales). The re-
sults on the CURET set show, that the SOA-LBP is suited for classification in
noisy scenarios, outperforming the majority of evaluated methods.

The experiments indicate, that the proposed SOA-LBP provides significantly
improved classification accuracies in scenarios with large scale differences. The
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use of intrinsic-scale-adaption allows the computation of discriminative features
for a variety of different textures, while the multi-resolution representation pro-
vides highly competitive features even in scenarios with tiny scale differences.

5.5. Studying the Effects of Combined Image Rotation and Scaling

The effects of combined rotation and scaling are studied in the second set of
experiments. Feature extraction is based on rotated versions of the Kylberg and
the KTH-TIPS image sets. Images at scale 20 without rotation were used for
training, images at all other available scales were used for evaluation. Subsets of
the evaluation sets (KTH-TIPS 891 and Kylberg 1250 images), rotated in steps
of 30 degrees, in angles between 30 and 330 degrees, were randomly selected
(consistently among all methods) for classification. Only methods providing a
scale- and orientation-invariant feature representation where evaluated. LBP
was used with the rotation-invariant encoding based on uniform patterns [30].
Li-LBP was used with the proposed sub-uniform patterns [27]. The results are
presented in Figures 13 and 14.

We observe, that the rotation of the images decreased the general accuracy
of all methods as compared to the previous experiments. The results show the
same trends as recognized in the scaling-only experiments however. Again, the
proposed SOA-LBP provides significantly improved classification rates at large
scale differences between training and evaluation data and performs highly com-
petitive in scenarios with tiny scale differences. The results indicate, that the
proposed orientation-adaptive computation is superior as compared to encoding-
level based approaches used by LBP and Li-LBP. Interestingly, the Li-LBP
method performed worse as compared to the standard LBP method on the Kyl-
berg data even at large scale differences. We assume this is caused by the com-
bination of unsuitable LBP-radii (due to the missing intrinsic-scale-adaption)
combined with the less discriminative sub-uniform encoding.

The experiments show that the proposed orientation-adapted computation
integrates seamlessly into the scale-adaptive LBP. The results are consistent
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Figure 13: Classification Accuracy for Evaluation Scales (Scaling and Rotation).
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Figure 14: Classification Accuracy for Evaluation Scales (Scaling and Rotation).

with the previous experiments (scaling only) and indicate that the extraction-
level alignment improves the discriminative power of the features.

5.6. Endoscopic Data

We finally study the general capability of all methods to adapt to varying texture
scales and orientations, based on a real world problem, the automated diagnosis
of celiac disease. The Celiac set exhibits images at two scales with a multiple
of different perspectives and orientations. We perform two experiments. The
first experiment uses the image set with large camera-scale (close distance to the
mucosa) for training and the images with small camera-scale for evaluation. The
second experiment is performed vice versa. The results of both experiments,
presented in Figure 15 show, that the proposed SOA-LBP again performed
reliably in this difficult scenario and was capable of outperforming the majority
of methods significantly.
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Figure 15: Classification Accuracy of the Experiments on the Celiac Image Set.
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Figure 16: Average Computational Time per Image (KTH-TIPS).

5.7. Runtime Performance Analysis

To study the computational demand of the proposed method, we analyze the
required runtime of all considered methods in a multi-threaded Java implemen-
tation (JDK 8), running on an Intel i5-2500k processor at 4.29GHz. Due to
the nature of the Java programming language (JIT-compilation and garbage
collection), we report the computational demand per image as an average of the
required computation time for 729 images from the KTH-TIPS data set, in a
repeated (20 iterations) experiment (Figure 16). Please note, that the presented
performance should not be considered an exact benchmark, as not all methods
have undergone equal optimization, but is meant to give the reader an idea of
the computational complexity of the proposed methodology.
The results show, that the SOA-LBP is considerably slower as compared to the
lightweight LBP or the Li-LBP method, which is caused by the increased de-
mand of computing the scales-space, performing scale- and orientation-estimation
and the extra amount of feature computation (performing intrinsic-scale-adaption).
Considering the improved classification accuracy in environments with varying
scales and orientations however, we think that the average computational de-
mand of 63 ms per image is an adequate trade-off. This is even emphasized as
the method ranks in the lower middle range among all methods.

6. Conclusion

We presented a generic methodology to compute a scale- and rotation-invariant
feature representation based on LBP, by suitable adaption of the LBP neighbor-
hood. The use of intrinsic-scale-adaption, allowed the computation of features,
independent of the intrinsic-scale of textures and increased the reliability of the
method significantly. This has been shown in experiments based on four different
image sets representing a variety of scenarios. The SOA-LBP was significantly
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superior to all evaluated methods in case of large scale differences. The proposed
multi-resolution feature representation was more than competitive in scenarios
with tiny scale differences. Experimentation based on the noisy CURET data
and the Celiac set, exhibiting real-world endoscopic images showed, that the
proposed methodology provides discriminative and reliable features in difficult
scenarios. Although the computational complexity of the SOA-LBP is signifi-
cantly higher as compared to the very lightweight LBP, we regard the improved
classification accuracies in scenarios with scaling and rotation, as an acceptable
trade-off for many classification tasks. The proposed methodology is easily ap-
plied to a wide variety of LBP based methods [31, 32], providing a robust scale-
and rotation-invariant feature representation.
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[30] T. Ojala, M. Pietikäinen, T. Mäenpää, Multiresolution gray-scale and rota-
tion invariant texture classification with local binary patterns, IEEE Trans.
Pattern Anal. Mach. Intell. 24 (7) (2002) 971–987.

[31] S. Hegenbart, A. Uhl, A scale-adaptive extension to methods based on
lbp using scale-normalized laplacian of gaussian extrema in scale-space, in:
ICASSP, 2014, pp. 4352–4356.

[32] S. Hegenbart, A. Uhl, An orientation-adaptive extension to scale-adaptive
local binary patterns, in: ICPR, 2014, pp. 1–6.

[33] F. Emura, Y. Saito, H. Ikematsu, Narrow-band imaging optical chromo-
colonoscopy: advantages and limitations., World J. Gastroenterol. 14 (31)
(2008) 4867–4872.

[34] E. Hayman, B. Caputo, M. Fritz, J.-O. Eklundh, On the significance of real-
world conditions for material classification, in: ECCV, Vol. 3024, Springer,
2004, pp. 253–266.

[35] G. Kylberg, The kylberg texture dataset v. 1.0, External report (Blue se-
ries) 35, Center for Image Analysis, Swedish University of Agricultural
Sciences, Uppsala University, Uppsala, Sweden (September 2011).

[36] F. Perronnin, C. Dance, Fisher kernels on visual vocabularies for image
categorization, in: CVPR, 2007, pp. 1–8.

[37] M. Varma, A. Zisserman, A statistical approach to material classification
using image patch exemplars, IEEE Trans. Pattern Anal. Mach. Intell.
31 (11) (2009) 2032–2047.

26

A Scale- and Orientation-Adaptive Extension of Local Binary Patterns.



Impact of Endoscopic Image Degradations on LBP
based Features using One-Class SVM for

Classification of Celiac Disease
Sebastian Hegenbart, Andreas Uhl
Department of Computer Sciences

Salzburg University, Austria

Andreas Vécsei
St.Anna Children’s Hospital

Vienna, Austria

Abstract—The prevalence data of celiac disease have been
continuously corrected upwards in the last years. An automated
decision support system could improve the diagnosis and safety
of the endoscopic procedure. An approach towards such a system
is based on a one-class classifier (such as SVM) trained on celiac
data only. By doing so, no special treatment of distorted image
areas is needed. However, the performance of such a system is
highly dependent on the discriminative power of the extracted
features within an unconstrained environment such as the human
bowel. Towards such a system we evaluate how well methods
used in past work perform using a one-class SVM with images
exhibiting common endoscopic image degradations such as blur,
noise, light reflections and bubbles.

I. INTRODUCTION

Most methods used for texture classification are developed
for still images. Modern endoscopes however, transmit an
entire stream of frames. For an automated decision support
in endoscopic treatments, methods are needed to identify
informative frames for classification. The standard approach
towards such a system is therefore based on a stage of
identification of informative frames followed by segmentation
and classification [1]. Hence, the reliability of such as system
is based on the quality of the recognition of informative
frames.

An alternative approach is based on a one-class classifier
(such as SVM) trained on celiac image data. By restricting the
classification method to a single class, all frames of an endo-
scopic image stream can be treated as informative. No method
for distinguishing between distorted and informative frames is
needed. As a consequence, frames showing either distortions
or no celiac specific markers are classified as no celiac and
can therefore be ignored for further processing. This approach
implicitly combines the informative frame identification with
classification.

The accuracy of the second approach is heavily dependent
on the discriminative power of the extracted features. The
features are now required to be discriminative between the
specific classes and to be able to compensate for image
degradations caused by endoscopic distortions.

In recent work [2]–[4] we have shown that the automated
classification of celiac disease based on endoscopic imagery is
feasible using methods based on Local Binary Patterns (LBP)
[5]. However, this work has been based on using a constrained

image set with high quality [2]. Towards a more realistic
scenario, this work is focused on the evaluation of how well
methods based on LBP perform using a one-class SVM in an
unconstrained environment. We focus on the most prominent
types of endoscopic image degradations such as blur, noise,
bubbles and specular reflections. In order to be able to assess
how the specific methods are affected by certain types and
levels of image degradations we simulate the common types
of distortions.

In Section I-B we review the common endoscopic image
degradations, Section II covers the simulation of the distortions
in order to generate a dataset with known ground truth for
evaluation. We discuss the details of feature extraction and
classification in Section III and the details of experimentation
in Section V. Finally, the results are discussed in Section VI
while Section VII concludes the paper.

A. Celiac Disease

Celiac disease is a complex autoimmune disorder caused by
the introduction of gluten containing materials such as wheat,
rye and barley. During the course of the disease, hyperplasia of
the enteric crypts occurs and the mucosa eventually looses its
absorptive villi thus leading to a diminished ability to absorb
nutrients. People with untreated celiac disease, are at risk for
developing various associated complications like osteoporosis,
infertility and other autoimmune diseases including type 1
diabetes, autoimmune thyroid disease and autoimmune liver
disease.

(a) No-Celiac (b) Celiac

Fig. 1. Examples of Duodenal Image Patches

Figure 1 demonstrates two characteristic images showing
healthy mucosal tissue on the left, and the effects of celiac
disease on the right. The only treatment is a life long strict
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(a) Reflections (b) Noise (c) Blur (d) Bubbles

Fig. 2. Examples of Image Degradations

(a) Reflections (b) Noise (c) Blur (d) Bubbles

Fig. 3. Examples of Simulated Image Degradations

gluten free diet which allows the tissue to heal, leading to a
resolution of all symptoms in most cases.

B. Endoscopic Image Degradations

During the endoscopic procedure a small flexible tube (the
endoscope) equipped with a camera and a point light source is
introduced into the human bowel. The camera has a fixed fo-
cus, therefore all areas outside the focal plane appear blurred.
Blur is a known problem in all areas of image processing,
however in the specific case of classification of celiac disease,
blur leads to another associated effect. During the course of the
disease the mucosal villi are lost (villous atrophy). The length
and form of the villi indicate the severeness of the disease.
Depending on the strength of the blur, a healthy mucosa might
be misinterpreted as being affected by celiac disease.

The bowel is illuminated using a point light source on
the tip of the endoscope. Due to the geometric properties of
the bowel a correct exposure can not always be guaranteed.
Underexposure leads to an increase of amplifier noise (which
is mainly based on thermal noise) within the digital image.

Finally, the third and fourth forms of common degradations
are specular reflections and bubbles respectively, visible on
the mucosal tissue. Light is reflected by moist tissue, while
bubbles build up due to the instillation of water and insufflation
of air into the bowel. Figure 2 shows examples of the most
common degradations found in endoscopic imagery.

Another type of distortion is the strong lens distortion. The
impact of this type of distortion on the automated classification
of celiac disease was analyzed in a previous work [6].

II. SIMULATION OF IMAGE DEGRADATIONS

In order to be able to quantitatively assess the impact of
image degradations we need a known ground truth for the level
of image degradations. Therefore the four aforementioned
types of image degradations are simulated. We perform this

TABLE I
DISTRIBUTION OF IMAGE DATA

Class0 Class1 Total
Images

Training Set - 157 157
Evaluation Set 151 149 300

simulation on the evaluation set of images as denoted in
Table I.

Table I shows the distribution of the used images. Class0
consist of images showing no villous atrophy (Marsh-0 type),
while Class1 is comprised of images showing mucosal tissue
affected by celiac disease (Marsh-3 type). Figure 3 shows
examples of simulated distortions.

A. Noise

Amplifier noise is primarily caused by thermal noise. Due
to signal amplification in dark (or underexposed) areas of
an image, thermal noise has a high impact on these areas.
Additional sources contribute to the noise in a digital image
such as shot noise, quantization noise and others. These
additional noise sources however, only make up a negligible
part of the noise and are therefore ignored during this work.

Let P be the set of all pixels in image I ∈ N2, ω =
(ωp)p∈P , be a collection of independent identically distributed
real-valued random variables following a Gaussian distribution
with mean m and variance σ2. We simulate thermal noise as
additive Gaussian noise with m = 0, variance σ2 for pixel p
at position x, y as

N(x, y) = I(x, y) + ωp, p ∈ P, (1)

with N being the noisy image, for an original image I .
Our image data is extracted from an MPEG2 stream. The

compression is based on a discrete cosine transform followed
by a quantization step. The characteristics of thermal noise
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are therefore changed due to the compression. We simulate
this effect by applying a low-pass filter (Gaussian filter) to
the simulated noise prior to adding it to the original image.
Because the lowpass filtering used during compression only af-
fects small high frequency components, this effect is neglected
in case of the other types of distortions.

B. Blur

Out of focus blur is one of the most frequent distortions in
endoscopic images. Blur is mainly caused by a wrong distance
of the camera to the mucosa. Another type of blur is motion
blur which is either caused by peristaltic or rapid movement
of the endoscope. In this work we only consider out of focus
blur. We simulate the point spread function of the blur as a
Gaussian

f(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (2)

which is then convolved with the specific image.

C. Reflections

The light emitted by the endoscope is reflected by moist
tissue. Reflections are usually seen as bright spots in certain
areas of the image. We model the reflections as ellipsoids with
maximum brightness and similar orientation. In natural images
color distortions are seen along the contours of the reflections.
This effect is caused by the arrangement of the RGB color
filters on the CCD chips (Bayer pattern). In this arrangement
the color of a single pixel is interpolated using a neighborhood
of sensors. Therefore reflections lead to high intensity values
in single color channels causing these color distortions along
the borders. We simulate this effect by shifting the reflection in
each color channel by a single pixel. The borders of reflections
are not sharp. We therefore apply a blur to the reflection area to
slightly smooth the borders. The mean length of the ellipsoids
axes is set to 3 and 4 pixels respectively using a random scale
factor with standard deviation of 1.2. This size relates to the
common type of small spot reflections seen in endoscopic
images. We chose to arrange the reflections such that no
overlap happens. This was done to avoid a random factor in
the degree of image degradation caused by the arrangement
of reflections and does not influence the feature extraction
directly.

D. Bubbles

We have shown [2] that the modified immersion technique
for capturing images is beneficial to computer aided diagnosis.
However, due to the instillation of water and the insufflation
of air into the bowel bubbles can build up.

We simulate the appearance of bubbles using a template
created in an image manipulation software resembling the
visual properties of a bubble. As a simplification, bubbles are
treated as circles. This was done to avoid a random factor and
should have a negligible effect on the feature extraction. Due to
soiled water in the bowel, mucosal tissue covered by bubbles
is not clearly visible. We therefore apply a blur to the image
area covered by a bubble. Bubbles influence the mucosal

appearance instead of having a color. We therefore simulate
this effect by considering the luminance component of an
image (using the CIELAB color space). By interpolation of
the image’s luminance information using the bubble template,
the mucosal color information is retained while the mucosal
appearance resembles natural images containing bubbles.

One or more reflections can be observed on bubble surfaces,
this effect is simulated using a single reflection positioned
accordingly. These reflections are generated as discussed in
Section II-C.

III. FEATURE EXTRACTION AND CLASSIFICATION

We use three LBP-based operators, which have shown to
be promising in medical image classification in previous work
[4]. The operators are LBP (Local Binary Patterns [5]), ELBP
(Extended Local Binary Patterns [7]), and a modified version
of the ELBP operator, the ELTP (Extended Local Ternary
Patterns) operator [4].

For each color channel three scales (with the meaning
of [8]) and filter orientations (in case of the extended LBP
based operators: horizontal, vertical and diagonal) are used
to compute the distribution of patterns. This results in 9
histograms for LBP and 27 histograms for ELBP and ELTP.
For each histogram, only a subset of dominant patterns known
as the uniform patterns [9], which make up the majority of
discriminative patterns, is used

A. Local Binary Patterns (LBP)

For a radius r and the number of considered neighbors p,
the LBP operator is defined as

LBPr,p(x, y) =

p−1∑
k=0

2k s(Ik − Ic), (3)

with Ik being the value of neighbor number k and Ic being
the value of the corresponding center pixel. The function s
acts as sign function, mapping to 1 if the difference is smaller
or equal to 0 and mapping to 0 otherwise. The distribution
of patterns is then used as feature for classification. Figure 4
demonstrates the calculation of a pattern.

Fig. 4. Example of the Local Binary Pattern Operator

B. Extended Local Binary Patterns (ELBP)

Information extracted by the LBP method from the intensity
function of a digital image can only reflect first derivative
information. This might not be optimal, therefore Huang et al.
[7] suggest using a gradient filtering before feature extraction
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Fig. 5. Impact of Blur and Noise on the Classification Accuracy

and call this operator ELBP or extended LBP. By doing this,
the velocity of local variation is described.

C. Extended Local Ternary Patterns (ELTP)

The extended LTP (ELTP) operator is defined consequently
in perfect analogy to the ELBP operator. ELTP is based on the
LTP (Local Ternary Patterns [10]) operator instead of the LBP
operator to suppress unwanted noise in the gradient filtered
data. The LTP operator is based on a thresholding mechanism
which implicitly improves the robustness against noise. The
LTP operator is used to ensure that pixel regions influenced
by these kind of distortions do not contribute to the computed
histograms. The LTP method is based on a thresholded sign
function:

s(x) =


1, if x ≥ Th

0, if |x| < Th

−1, if x ≤ −Th.

(4)

The ternary decision leads to two separate histograms, one
representing the distribution of the patterns resulting in −1,
the other representing the distribution of the patterns resulting
in 1. Both histograms are then concatenated and treated as a
single histogram.

We apply an adaptive threshold based on the spatial image
statistics to make sure that noisy regions do not contribute
to the computed histograms while information present within
high quality regions are not lost due to a threshold which was
chosen too high. The calculation is based on an expected value
for the standard deviation of the image (β). This value was
found based on the training data used during experimentation
and represents the average standard deviation of pixel intensity
values within all training images. The value α is used as
a weighting factor combined with the actual pixel standard
deviation of the considered image (σ) and is used to adapt
the threshold to match the considered image characteristics.
During experimentation we used an α value of 0.05.

Th =

β
1
2

3 + ασ, if σ > β

β
1
2

3 − ασ, if σ ≤ β.
(5)

D. Classification

In this work a one-class Support Vector Machine [11] is
used for classification. The classifier was trained using the
data within the training set as depicted in Table I. We use
parameters found in earlier experimentation. Hence, no further
optimization of SVM parameters was performed.

IV. EXPERIMENTS

The results of the experiments are presented in Figures 5
and 6. The level of distortion by simulated specular reflections
and bubbles is quantified by the percentage of the area of
the original image that was affected by the distortion. In
case of the reflections, 2.3 percent corresponds to 5 simulated
reflections while 12.4 percent correspond to 30 reflections.
A single bubble affects approximately 3 percent of the area
of an image while 5 bubbles correspond to 16.4 percent.
The blur was simulated using Gaussian filters with standard
deviations ranging from 0.4 to 0.7. The noise was simulated
using standard deviations in steps of 5 ranging from 5 to 25.
In order to improve the readability we present the x-axes of
Figure 5 labeled with the corresponding PSNR values.

The optimal feature subset for each texture operator was
found by using the Sequential Forward Selection (SFS, [12])
algorithm. It must be noted that due to a limited number
of image data and the nature of one-class SVM (only a
single class to perform cross validation), the SFS algorithm
was based on the classification accuracy of the undistorted
evaluation set. Therefore the results might be slightly over
fitted towards the evaluation data. Overall however, this should
not have an impact on the analysis as the same feature set was
used for all experiments regarding a specific method.

V. RESULTS

Figure 5 shows how the methods behave when applied to
noisy and blurred data. Considering the classification accu-
racies of the blurred images we already see an effect at a
PSNR of 57 which corresponds to a Gaussian filter standard
deviation of 0.4. We see that the standard operator (LBP) is
most noticeably affected by this type of distortion while both,
ELBP and ELTP, are better suited to handle blur.

Considering noise, the standard LBP operator is not sig-
nificantly influenced by the distortion until a PSNR of 40

Impact of Endoscopic Image Degradations on LBP based Features using One-Class SVM for
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Fig. 6. Impact of Reflections and Bubbles on the Classification Accuracy

(standard deviation of 15). The gradient based operators ELBP
and ELTP are able to tolerate noise with standard deviations
up to 5 (PSNR of 48.8). ELTP performs slightly better in terms
of noise tolerance but both operators fail to achieve reasonable
classification accuracies at higher noise levels.

Figure 6 shows the methods’ classification accuracies on
image data distorted with bubbles and specular reflections.
The figures present the classification accuracies in relation
to the percentage of the affected image area. Concerning
reflections, we see that the accuracy of the standard LBP
operator varies insignificantly. The classification rates are
stable up to a distorted area of 10 percent. In case of ELBP we
see a linear decrease in accuracy considering reflections. For
distorted areas larger than 4.6 percent of the original image
area the classification accuracy drops below 70 percent. The
ELTP method fails completely to classify images distorted
with reflections.

In case of simulated bubbles, we see that, in parallel to the
specular reflection distortions, LBP is only slightly affected.
We do not see classification rates below the 70 percent mark
until an affected area of 9.7 percent. It is interesting that in
contrary to the simulated reflections, the ELBP operator is as
well only mildly affected by this type of distortion. The general
behavior is similar to that of the LBP method. In contrast to
that, the ELTP again fails completely to classify the distorted
images.

VI. DISCUSSION

In general we see from the results that classification in
an unconstrained endoscopic environment using LBP based
features is feasible. In general blur and noise had the highest
impact on the classification accuracy. Especially blur had
the most significant impact to classification accuracy. This
can in general be explained by the characteristic markers
of celiac disease which are lost due to the blur (blurred
villi misinterpreted as villous atrophy). We also saw that the
specific methods, although all based on LBP, react differently
to certain types of image degradations.

A. Local Binary Patterns (LBP)

We saw that the LBP operator was heavily affected by blur.
LBP considers neighborhoods of pixel intensity values which

are all affected by blur. As a consequence, information useful
to the method is lost due to this kind of distortion.

The method is suited best to handle noise. The low-
frequency part of the noise (caused by quantization of DCT
coefficients in the MPEG2 stream) affects entire pixel neigh-
borhoods and therefore does not affect the intra neighborhood
intensity values as much as high frequency noise would.

Bubbles and light reflections only had a small impact on
the classification accuracy. This can be explained by the small
distorted areas that actually affects the LBP operator. In case
of reflections only the border of the reflections affect the
distribution of patterns (inside the reflections all patterns are
255 which relates to no texture information and is ignored in
our implementation). Therefore only a small part of distorted
pixel neighborhoods actually affect the LBP method.

Bubbles had slightly more impact to the classification accu-
racy as compared to reflections. This is related to the blurred
inner part of the bubbles which make up a larger area that
negatively affects the operator due to the general information
loss.

B. Extended Local Binary Patterns (ELBP)

Among all three methods, blur had the least impact on
ELBP. Although small scale gradient information is lost due
to blur, stronger gradients are retained. Due to the method’s
invariance in terms of monotonic grayscale changes, blur has
a lower impact on ELBP as compared to LBP.

On the other hand, the method was significantly affected by
noise. At a noise level of 5, the classification accuracy dropped
rapidly. This can be explained by the properties of the low-
frequency noise we used. Due to the Gaussian filtering of the
noise, entire areas of the degraded image are affected by the
same noise level (see Figure 8). Along the boundaries of these
areas strong gradients exist which influence the operator’s
reliability in terms of classification accuracy.

In case of bubbles we see that the decrease in accuracy is
almost linear. This is in contrast to the LBP method which
was merely affected by this type of distortions and the ELTP
operator which failed to classify images with this kind of
distortions at the lowest level.
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Fig. 7. Absolute Gradient Values of Distorted Images
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Fig. 8. Example of Simulated Amplifier Noise

C. Extended Local Ternary Patterns (ELTP)

The ELTP method behaves similar to the ELBP method in
case of images distorted with blur. The same also applies to
noise with a small improvement as compared to ELBP due to
the noise suppression by thresholding. However this improve-
ment is only seen at low classification rates of approximately
70 percent.

In case of reflections and bubbles the method fails to classify
images at very small levels of affected areas. This is due
to the used thresholding. Considering Figure 7 we see that
light reflections and bubbles introduce high-power gradients.
In combination with thresholding, the smaller gradients caused
by image texture get suppressed to some amount while the
high-power gradients introduced by distortions all contribute
significantly to the extracted features. This behavior could
possibly be relaxed by introducing a second (upper) threshold
to eliminate the contribution of high-power gradients.

VII. CONCLUSION

We evaluated the impact of common endoscopic image dis-
tortions using three LBP-based methods for feature extraction.
A one-class support vector machines classifier, which was
trained using celiac images, was used to classify endoscopic
images with simulated distortions. We saw that the specific
types of distortions have different effects on the methods.

We saw that distorted images can be accurately classified
to some extent. It is interesting to note that bubbles and
reflections have lesser impact on the classification rates than
expected. Blur, the most common distortion, was best classi-
fied using gradient based methods while noise, bubbles and
reflections could be handled well by the basic LBP operator.

We conclude, that the unconstrained classification of celiac
disease based on LBP using a one-class SVM classifier is
feasible to some degree. However, in extreme cases of image

distortions an additional step of informative frame identifica-
tion is unavoidable. By a possible relaxation of the demands on
the frame identification method to extreme cases of distortions
only, the general reliability could be increased.

We assume that by combining beneficial properties of the
evaluated methods a more robust operator could be found to
further improve the reliability of classification.
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Abstract

We have shown in previous work that problems inherent
in the automated diagnosis of standard gastroscopic videos,
such as distortion and noise handling, can be handled im-
plicitly, to some extent, by using a one-class support vector
machine (SVM) classifier. A video sequence of a standard
endoscopic procedure is characterized by rapid changes
of perspective towards an inspected area causing various
shots at different distances as well as non-predictable tran-
sits through gastrointestinal regions. In this work we exam-
ine to what extent a one-class support vector machine com-
bined with features based on local binary patterns (LBP)
variants can be used to implicitly handle varying camera
distances to the mucosa as well as the non-predictable to-
pographical changes during endoscopy.

1. Introduction

The automated diagnosis of endoscopic videos is an
emerging area of active research. In the recent past a lot
of effort was put into the development of techniques to im-
prove the analysis of sequences captured by using wireless
capsule endoscopy. While systems focusing on wireless
capsule endoscopy are mainly used to support the analysis
of image sequences captured by the capsule, supportive sys-
tems (also referred to as computer-aided decision support
systems or CADSSs [8]) are focused on assisting a physi-
cian during an endoscopic procedure.

We have discussed in previous work [5] that several
problems in video classification such as segmentation and
distortion handling could implicitly be solved using a one-
class support vector machine (SVM). Taking this idea a
step further, we investigate two other problems associated
with flexible endoscopy. A video of a standard endoscopic
procedure is characterized by rapid changes of perspective.
In wireless capsule endoscopy, changes in perspectives be-
tween consecutive frames are mainly caused by peristaltic
combined with a low frame rate. In contrast to that, the

(a) No-Celiac (b) Celiac

Figure 1. Celiac Endoscopic Images

rapid changes of perspective during standard endoscopy are
caused by the physician maneuvering the flexible endo-
scope to a desired target within the bowel. On the camera’s
way to it’s desired target a lot of frames at a very far or very
close distance to the mucosa as compared to the regular in-
spection distance are recorded.

Another major difference are non-predictable transits
through gastrointestinal regions. Although we can expect
an endoscopic procedure to start in the esophageal region,
following through the stomach into the duodenum, we often
see that the endoscope is maneuvered from the duodenum
to the stomach and vice versa several times during a single
procedure. This complicates topographic segmentation.

Following the idea of [5], we evaluate to what extent
those two problems can be handled implicitly by using
a one-class support vector machines classifier with LBP
based features.

1.1 Celiac Disease

Celiac disease is one of the most common genetically
based diseases caused by the introduction of food contain-
ing gluten. Prevalence figures for the disease have been
constantly corrected upwards in the recent years. A large
scale multicenter study by Fasano et al. [3] reports that one
in 133 people in the US is affected by the disease. The
untreated disease can cause associated complications such
as osteoporosis and diabetes. During the course of the dis-
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(a) Stomach (b) Esophagus

(c) Healthy Duodenum (d) Celiac Duodenum

Figure 2. Images from Different Gastrointesti-
nal Regions

ease, hyperplasia of the enteric crypts occurs and the mu-
cosa eventually looses its absorptive villi. Once diagnosed,
the only treatment is a life long strict gluten free diet which
helps the mucosal tissue to heal. Severity of villous atrophy
is classified according to the modified Marsh classification
in Oberhuber et al. [11] which is based on the scheme pro-
posed by Marsh [10]. In this work we focus on a two-class
problem consisting of samples exhibiting healthy mucosal
tissue and tissue affected by celiac disease. The severity
of the disease of the affected samples ranges from classes
Marsh-3A to Marsh-3C. Figure 1 compares healthy tissue
with a mucosa affected by celiac disease.

2 Issues with Gastrointestinal Regions and
Camera Distance

Besides the handling of endoscopic distortions, the main
challenges inherent with standard flexible gastroscopy are
rapid changes of perspective and distance to the mucosa as
well as multiple non-predictable transits through gastroin-
testinal regions such as the stomach, the esophagus and the
duodenum. Figures 2 and 3 show sample frames from the
three gastrointestinal regions that are visible during a gas-
troscopic treatment as well as a sequence of frames with
changing distance to the mucosa.

(a) Far (b) Regular (c) Close

Figure 3. Duodenal Sequence with Changing
Distance to the Mucosa

2.1 Impact of Camera Distance

The main indications for celiac disease is villous atro-
phy which reveals itself visible as missing villous struc-
ture. Celiac markers besides villous atrophy are a mosaic
mucosal texture as well as the visualization of underlying
blood vessels. Unfortunately, images recorded from a far
distance to the mucosa can be confused with the main indi-
cation for the disease. This is due to the bad visualization
of structural information from the distance. The same holds
for sequences recorded at a close distance to the mucosa.
Figures 3 illustrates the problems imposed by bad distances
of the endoscopic camera to the tissue.

In previous work [4] we have shown that the modified
immersion technique is beneficial to the automated diagno-
sis of celiac disease. The modified immersion technique
described in [2] is based on the instillation of water into
the duodenal lumen for better visualization of the villi. The
camera is then put into the water to inspect the mucosal tis-
sue. We see in Figure 4 that at the regular distance the cam-
era is put into the instilled water to inspect the tissue. Be-
sides the good visualization of celiac markers, the impact of
endoscopic image degradations such as bubbles and reflec-
tions is generally reduced by using this technique. Frames
exhibiting a farther distance show the mucosa covered with
a water film, the camera however is not put into the water.
Additionally to the problematic visualization of the tissue at
the far distance, endoscopic image degradations are likely
to influence the visibility of celiac markers. Finally the
close distance faces issues with the visualization of struc-
tural changes due to the small field of view combined with
a heavily blurred vision due to the suboptimal focus.

2.2 Impact of Upper Gastrointestinal Re-
gions

During a gastroscopic video many frames exhibit tissue
from either the esophagus or the stomach. The esophageal
tissue usually has a rather smooth texture, sometimes with
increased visibility of the underlying blood vessels. In some
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Figure 4. Schematic Figure of Distances

examples we see tissue in the stomach that resembles the
nodular tissue of a duodenum affect by the disease. In other
cases the stomach tissue is rather flat with a smooth texture.
The smooth texture within the esophagus and the duodenum
is easily mistaken as villous atrophy and might influence the
classification process.

3 Methods

For experimentation we employ feature extraction meth-
ods that have been successfully used in previous work [14,
5]. We chose the LBP (local binary patterns) and ELBP
(extended local binary patterns) method due to the fact that
those methods proved most reliable in terms of noise and
distortion handling (bubbles and specular reflections) in [5].

For each RGB color channel three LBP scales (with the
meaning of [13]) and filter orientations (in case of the ELBP
operator: horizontal, vertical and diagonal) are used to com-
pute the distribution of patterns. This results in 9 histograms
for LBP and 27 histograms for ELBP. For each histogram,
only a subset of dominant patterns known as the uniform
patterns [9], which make up the majority of discriminative
patterns, is used.

3.1 Local Binary Patterns

The local binary patterns (LBP) [12] operator is used
to model a pixel neighborhood in terms of pixel intensity
differences. A pixel neighborhood ν is defined in relation
to a pixel at (x, y) of the image intensity function f as a
sequence of p equidistant points on a circle with radius r
around (x, y):

ϕr,p(x, y, k) :=

x+ r cos
(

2πk
p

)
y − r sin

(
2πk
p

)T

(νk) :=
(
f
(
ϕr,p(x, y, k)

))
k∈{0 ... p−1}

Based on a sign function a weighted sum is computed and inter-
preted as binary label according to the specific pixel neighborhood

intensity relationship:

s(x) :=

{
1, if x ≥ 0

0, if x < 0

For a position (x, y) the local binary pattern of p neighbors and
radius r is computed as:

LBP :=

p−1∑
k=0

2k s(νk − f(x, y)).

The joint distributions of these labels are then used to charac-
terize a texture.

3.2 Extended Local Binary Patterns

Information extracted by the LBP-based operators from the in-
tensity function of a digital image can only reflect first derivative
information. The extended local binary pattern (ELBP, [6]) ex-
tends the LBP method and is based on the partial derivatives of the
underlying intensity function of a specific image. We utilize dif-
ferent ELBP-neighborhoods (ν) as originally suggested by Huang
et al. who used the gradient magnitude:

(νx
k ) :=

(∂f
∂x

(
ϕr,p(x, y, k)

))
k ∈ {0 ... p−1}

(νy
k ) :=

(∂f
∂y

(
ϕr,p(x, y, k)

))
k ∈ {0 ... p−1}

(νxy
k ) :=

(νx
k ) + (νy

k )

2

For a position (x, y) the extended local binary pattern of p
neighbors and radius r is computed as:

ELBPx :=

p−1∑
k=0

2k s
(
νx
k − ∂f

∂x

(
x, y

))

ELBPy :=

p−1∑
k=0

2k s
(
νy
k − ∂f

∂y

(
x, y

))

ELBPxy :=

p−1∑
k=0

2k s
(
νxy
k − 1

2

(∂f
∂x

(
x, y

)
+

∂f

∂y

(
x, y

)))
The partial derivatives of the signal intensity function are ap-

proximated by using Sobel filtering.

3.3 One-Class Support Vector Machine

In this work a one-class support vector machine (SVM, [1]) is
used for classification. The one-class support vector machine is
trained using samples from a single class. The method treats the
origin of the feature space as the only initial member of the second
class and uses relaxation parameters to separate the image of the
trained class from the origin. We use a standard RBF kernel of the
form K(xi, xj) = e−γ||xi−xj ||2 .
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No-Celiac Celiac No-Celiac Celiac
Images Patients

Training-Set 1 157 21
Evaluation-Set 1 151 149 65 19
Training-Set 2 171 40
Regular Evaluation-Set 86 92 74 36
Far Evaluation-Set 61 53 60 22
Close Evaluation-Set 57 50 57 28

Images Patients
Stomach Evaluation-Set 88 88
Esophagus Evaluation-Set 96 96

Table 1. Distribution of Image Data

4 Experiments

To perform the experiments we constructed several different
data sets. Table 1 shows the number of images and patients used
per pathology and specific area of the upper gastrointestinal tract
in the experiments. The data sets labeled as “Training-Set 1“ and
”Evaluation-Set 1“ have been used for experimentation in prior
work and were created by extracting subimages of size 128× 128
from still frames shot during the endoscopic session. Addition-
ally to those data sets we created 6 new data sets to perform the
intended experiments in this work.

These data sets were created by extracting suitable frames from
video sequences captured during the endoscopic sessions. We also
extracted subimages of size 128 × 128 from those frames. To be
able to compare the classification accuracies among the ”Regular“,
”Far“ and ”Close“ sets we searched for suiting sequences showing
the same mucosal area at a regular distance as well as either at the
far or the close distance or both. The assessment of distance was
performed manually based on the visibility of features.

4.1 Interlacing

The endoscopic videos are recorded using an interlaced for-
mat. Methods based on local binary pattern are very heavily influ-
enced by interlacing, we therefore apply a deinterlacing filter to the
videos prior to extracting frames for feature extraction and classi-
fication. We use the Yadif (Yet Another Deinterlacing Filter) as
implemented in the FFMPEG 1 software. The algorithm is based
on an initial prediction which is obtained by spatial interpolation.
Taking the vertical change into consideration as a spatial score the
initial prediction is adjusted using intra frame information. Fi-
nally the prediction is further refined using temporal information
to smooth the pixel intensity variations.

4.2 Parameter Optimization and Feature
Subset Selection

The data sets labeled as “Training-Set 1“ and ”Evaluation-Set
1“ were used to optimize certain parameters of both, the classifi-
cation method as well as the feature extraction methods. This was

1http://www.ffmpeg.org

done to prevent any effects of over-fitting the parameters to the
given evaluation data. We chose this approach because perform-
ing cross-validation on the training set to optimize parameters is
not possible in a one-class support vector machines classification.
Please note, that during all experiments the one-class support vec-
tor machines were trained on samples from the celiac class exclu-
sively.

The optimized parameters for the support vector machines clas-
sification method was the ν parameter which characterizes the
fraction of support vectors and outliers used to construct the hy-
perplane.

The extracted LBP histograms possess a high dimensionality.
We therefore use feature subset selection to reduce the feature di-
mensionality. The applied algorithm for histogram subset selec-
tion was the Sequential Forward Selection algorithm (SFS, [7]).
The optimization criterion for this algorithm was the overall clas-
sification rate (accuracy). The upper bound for the number of se-
lected histograms was 10. To avoid any unwanted over-fitting ef-
fects, the SFS algorithm was also applied using ”Evaluation-Set1“
for evaluation with a support vector machine trained on ”Training-
Set 1“. The best histogram subset combined with the ν value yield-
ing the best accuracy was then used for further experimentation on
the independent data sets.

5 Results

This Section presents the results of the conducted experiments.
To discuss the classification results of the experiments considering
varying distances, we stick to the standard convention of present-
ing the sensitivity (true positive rate, the proportion of celiac im-
ages which are correctly classified as celiac), the specificity (true
negative rate, the proportion of non-celiac images classified cor-
rectly as healthy) as well as the accuracy (the overall proportion of
correctly classified images). The column labeled as ∆ gives the
absolute differences in accuracy between the regular distance with
the far and the close distance respectively.

The classification rates of the experiments focused on the im-
pact of gastrointestinal regions are presented as the absolute num-
ber of correctly classified images and incorrectly classified images.
Additionally we also show the accuracy of correctly classified im-
ages in percent.
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5.1 Distance

Table 2 shows the results of the experiments based on the data
sets created to evaluate the impact of distance to the mucosal tissue
on the classification performance. We see a classification perfor-
mance of 79.2 and 82.9 percent of the LBP and ELBP method in
case of the regular distance. It is noteworthy that the sensitivity of
the LBP method is rather low and reached only 68.5 percent.

Compared to the regular distance we observe a considerable
drop of accuracy when considering the classification performance
of the far distance set. The drop in classification performance of
the LBP method is 14.3 percentage points while the ELBP method
dropped by 9.8 percentage points. It is interesting that the sen-
sitivity of the ELBP method did not decrease significantly while
the sensitivity of the LBP method decreased by 13.8 percentage
points. This property holds while the specificity of both methods
drop by 16.9 (LBP) and 18.9 (ELBP) percentage points.

Considering the classification results of the close distance set
we see that both methods fail to classify the data reliably. The
sensitivity is increased to 94 (LBP) and 100 (ELBP) percent re-
spectively while the specificity drops to 14 (LBP) and 3.5 (ELBP)
percent.

Specificity Sensitivity Accuracy ∆
Regular Distance

LBP 90.7 68.5 79.2
ELBP 86.1 79.4 82.6

Far Distance
LBP 73.8 54.7 64.9 -14.3
ELBP 67.2 79.3 72.8 -9.8

Close Distance
LBP 14.0 94.0 51.4 -27.8
ELBP 3.5 100.0 48.6 -34.0

Table 2. Classification Results with varying
Distances.

5.2 Gastrointestinal Region

Table 3 presents the classification results of the data sets con-
taining images from the stomach and the esophagus. Considering
the results of the stomach we see that every second image was mis-
classified as celiac disease when using LBP features, even more
only 33.0 percent of the images were correctly classified when us-
ing ELBP based features.

This behavior is also observed for images exhibiting
esophageal tissue. The classification accuracy of LBP features
drops to 34.4 percent while the accuracy of ELBP based features
drops to 16.7 percent.

5.3 Discussion

The results show that the camera distance has a significant im-
pact on the reliability of the classification. The results indicate

Correct Incorrect Accuracy
Stomach

LBP 44 44 50.0
ELBP 29 59 33.0

Esophagus
LBP 33 63 34.4
ELBP 16 80 16.7

Table 3. Classification Results of Gastroin-
testinal Regions.

(a) Esophagus (b) Stomach (c) Celiac Duodenum

Figure 6. Comparison of Textures from differ-
ent Gastrointestinal Regions

that the used features are not discriminative enough to distinguish
reliably between celiac tissue and tissue recorded at very close
distances. The increase in sensitivity is associated with the misin-
terpretation of heavily blurred areas as villous atrophy by the clas-
sification method. Figure 5 compares two patches shot from the
regular distance with two patches from a close distance exhibiting
a healthy mucosal tissue as well as tissue affected by the disease.
We see, that through the very limited field of view and the reduced
resolution of the patch, the discriminative power of the textures are
lost.

Considering shots taken from farther distances we saw that
mucosal tissue is classified less reliably as compared to the reg-
ular distance. The loss in accuracy however was not as signifi-
cant as compared to the close distance set. Both the sensitivity
and specificity dropped by approximately 15 percentage points for
the LBP-based features while the sensitivity of the ELBP-based
features stayed constant with a decrease in specificity by approxi-
mately 10 percentage points. We therefore consider the classifica-
tion of far distant shots as feasible to some extent. Referring to the
experiments on the stomach and esophageal image set we learn
that a high amount of samples is misclassified as celiac disease.
In the esophagus this is caused by the missing structure resem-
bling villous atrophy. The same argument holds for the stomach
where smooth tissue is misinterpreted as missing villous structure
as well. Figure 6 emphasizes this problem by comparing patches
from each gastrointestinal region. We clearly see that the visible
differences between those three samples is marginal.
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(a) Regular Celiac (b) Close Celiac (c) Regular No-Celiac (d) Close No-Celiac

Figure 5. Comparison of Regular Textures with Close Textures

6 Conclusion

We conclude that the used LBP based features are not discrimi-
native enough to describe the properties of villous atrophy in a way
that allows to distinguish missing villous structures from villous
atrophy. The support vector machine therefore failed to classify
images shot from a very close distance. The failure of discrimi-
nation indicates that additional effort has to be put into the iden-
tification of blurred, close distance shots. Considering the results
based on the far image set, we saw that the classification might be
feasible under some circumstances. The accuracies of the meth-
ods drop significantly however. Mucosal texture from the stomach
and the esophagus were very frequently misinterpreted as celiac
disease.

Summing up we learned that the problems of varying distances
and varying gastrointestinal regions can not be solved implicitly
to a satisfactory level by using a one-class support vector machine
using features based on local binary patterns. Towards a deploy-
ment of such an automated system for diagnosing celiac disease,
additional effort has to be put into topographic segmentation as
well as the identification of close distance shots.
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Abstract

Interlaced scanning is a technique that has been widely
in use to double the perceived frame rate without increas-
ing the used bandwidth. Interlaced scanning is still in use
by endoscopic video hardware today. Towards the devel-
opment of an automated decision support system we focus
on the evaluation of the impact of de-interlacing techniques
on the accuracy of automated classification of endoscopic
video data with indication for celiac disease. In a large
experimental setup a variety of de-interlacing methods are
evaluated using a set of feature extraction methods from the
fields of pattern recognition and medical image analysis.

1. Introduction

Work targeted towards the development and improve-
ment of automated decision support systems is an ongoing
research topic. The benefits of such systems are manifold.
Besides an improved quality of diagnosis, time and costs
can be saved as well. In case of the esophagogastroduo-
denoscopy (EGD) with indication for celiac disease such a
system could improve the targeting of biopsies and there-
fore both reduce risks and increase the quality of the histo-
logical diagnosis.

Interlacing is a method that has been widely in use
to double the perceived frame rate without increasing the
bandwidth. Cathode ray tube displays (CRT) are natively
capable of displaying interlaced formats. Due to the prop-
erty that interlaced video frames contain data captured at
two different times, the development of new display moni-
tor hardware introduced the need for format conversion, in
particular the conversion from interlaced to progressive for-
mat which is known as de-interlacing. Endoscopic equip-
ment employing interlaced scanning is still in use today.
The benefits of applying de-interlacing techniques on in-
terlaced data with regard to classification accuracy has not

(a) No-Celiac (b) Celiac

Figure 1. Endoscopic Images

been investigated so far. This is the main aim of this paper.
The development of de-interlacing methods is focused

on visual quality as observed by the viewer of a video
sequence often introducing artificial information. More
complex de-interlacing techniques incorporate a significant
computational effort (such as motion vector estimation),
promising better reconstruction quality. It is unclear if the
artificially reconstructed data has a positive effect on the
classification accuracy at all and if more complex meth-
ods have a superior benefit as compared to simpler de-
interlacing techniques.

We therefore evaluate these effects by experimentation,
using the original interlaced data format as well as the con-
verted progressive format, employing various de-interlacing
techniques. To give a comprehensive overview, we use a
wide set of feature extraction methods from the field of pat-
tern recognition and medical image analysis. We apply fea-
ture extraction methods from the spatial domain with and
without special pre-filtering as well as methods based on
the wavelet domain.

2. Celiac Disease

Celiac disease is one of the most common genetically
based diseases and is caused by the introduction of gluten
containing food. Prevalence figures for the disease have
been constantly corrected upwards in the recent years. The

1
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untreated disease can cause associated complications such
as osteoporosis and diabetes. During the course of the dis-
ease, hyperplasia of the enteric crypts occurs and the mu-
cosa eventually looses its absorptive villi. Once diagnosed,
the only treatment is a life long strict gluten free diet which
helps the mucosal tissue to heal. The severity of villous
atrophy is classified according to the modified Marsh clas-
sification as suggested in Oberhuber et al. [1]. In this work
we focus on a two-class problem consisting of samples ex-
hibiting healthy mucosal tissue and tissue affected by celiac
disease. The severity of the disease of the affected sam-
ples ranges from classes Marsh-3A to Marsh-3C. Figure 1
compares healthy tissue with a mucosa affected by celiac
disease.

3. De-Interlacing

De-interlacing methods are used to convert interlaced
video signals to progressive video signals. De-interlacing is
a trivial task in case of stationary pictures. Most video se-
quences, and particular endoscopic video sequences, show
a wide variety of motion however. In endoscopic videos,
motion is caused by the movement of the endoscopic tip by
the operating physician as well as peristaltic. De-interlacing
methods capable of adapting to motion might therefore
be a requirement for successful reconstruction of missing
lines. In general de-interlacing methods can be divided
into two categories, motion compensated and non-motion
compensated techniques. Motion compensated techniques
are based on the detection of motion within a set of con-
secutive frames. Motion compensated techniques use mo-
tion vectors computed by motion estimation to improve the
de-interlacing results. Motion adaptive techniques can be
classified as a sub-category of motion compensated meth-
ods. This category of methods usually does not perform any
type of motion estimation, instead motion detection is per-
formed. Based on detected motion, the best de-interlacing
strategy is then adaptively selected. Non-motion estimated
methods, on the other hand, refrain from any sort of motion
estimation and use the same set of techniques for all types
of scenes (stationary and moving).

Literature in the field of de-interlacing employs the term
field to distinguish between the two subfields in a frame.
The top-field (or odd-field) is the set of lines with odd num-
bers. In analogy the bottom-field (or even-field) is the set of
lines with even numbers.

3.1 Non-Motion Compensated/Adaptive

• Bob De-Interlacing: The bob de-interlacing method
is one of the classic methods used for scan line for-
mat conversion. It can be described as spatial line dou-
bling, in which lines in each field are doubled. The

new line generated can either be just a copy of the
previous adjacent line in the field (scan-line duplica-
tion mode, denoted as Bob1 during the Experiments)
or computed as an average of the lines above and be-
low the missing line (scan-line interpolation mode, de-
noted as Bob2).The bob de-interlacing method retains
the horizontal and temporal information at the expense
of vertical resolution.

• Blend De-Interlacing: The blend method uses tem-
poral information to improve the quality of the recon-
structed lines. A temporal frame is build by blending
(averaging) the fields of two consecutive frames (we
use the current and past frame). Then the bob method
is applied to the temporal frame. In parallel to the no-
tation used for the bob method we denote the blend
method in scan-line duplication mode as Blend1 and
as Blend2 in scan-line interpolation mode.

3.2 Motion Adaptive

• Edge-Based Line Averaging (ELA): The ELA
method [2] is a motion-adaptive de-interlacing algo-
rithm which is based on an edge-based median filter
and an adaptive minimum pixel difference filter. The
method utilizes directional correlation between pixels
to decide the direction of a linear interpolation. ELA
is capable of restoring edges but introduces “salt and
pepper” noise if the edge information is interpreted in
a wrong way.

• Hybrid Motion Detection and Edge-Pattern Recog-
nition (HMDEPR): The HMDEPR method [3] is a
motion-adaptive de-interlacing which employs motion
detection to switch between filtering strategies for pix-
els detected as stationary and pixels detected as part of
a motion. The motion detection is based on a compar-
ison of appropriate pixels locations between different
consecutive frames. Based on detected motion, two
different interpolation strategies are applied. Edge pat-
tern recognition (EPR) is used for intra-field interpola-
tion whereas field insertion is used as inter-field inter-
polator. The EPR interpolator is especially designed to
adapt to textural and edge content and is used to inter-
polate moving textures.

• Vertical Temporal Median (VTMedian): The three
tap vertical temporal median filter [4] implicitly adapts
to motion or edges. The interpolated values are found
as the median of the vertical neighbors in the same
field and the pixel value at the location of the recon-
structed pixel in the previous field. The underlying as-
sumption of the method is that in case of a stationary
scene, the median is expected to be a value between
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the vertical neighbors in the current field, which re-
sults in temporal interpolation. In case of motion on
the other hand the correlation will be highest between
the samples in the current field, therefore intra-field in-
terpolation results.

• Yet Another De-Interlacing Filter (Yadif): The
Yadif method is a popular method and implemented
in the FFMPEG 1 software. The algorithm is based on
an initial prediction which is obtained by spatial inter-
polation. Taking the vertical change into consideration
as a spatial score, the initial prediction is adjusted us-
ing intra frame information. Finally the prediction is
further refined using temporal information to smooth
the pixel intensity variations.

• Motion Adaptive De-Interlacing with Texture De-
tection (MATexture): The MATexture method [5]
classifies missing pixels into four different categories
including moving smooth regions, moving texture re-
gions, stationary smooth regions and stationary tex-
ture regions. The algorithm performs motion detection
by computing pixel differences over three subsequent
fields. The texture detection is based on the compu-
tation of the variance of the missing pixels and the
vertical neighbors. Based on the detection of motion
and texture, four de-interlacing methods are selected
adaptively which are either a vertical temporal filter for
moving smooth regions, a 3D-ELA method for moving
texture regions, a median filter for stationary smooth
regions and a modified-ELA method for stationary tex-
ture regions.

3.3 Motion Compensated

• Five Field Motion Compensated De-Interlacing
Method Based on Vertical Motion (FiveFieldMC):
The FiveFieldMC method [6] is based on bi-
directional motion estimation using two previous and
two subsequent fields. Motion compensation is per-
formed using only good lines in the corresponding
fields. Depending on the vertical displacement of the
motion vector computed for a block of pixels extra in-
formation can be reconstructed. The method employs
a thresholding mechanism to avoid artifacts due to bad
motion vector estimation.

4. Feature Extraction and Classification

To perform the experimental evaluation of de-interlacing
methods and their impact on classification accuracy we em-
ploy a wide set of feature extraction methods that have been

1http://www.ffmpeg.org

used in medical image analysis and pattern recognition. We
assembled a set of methods to cover different aspects of in-
terlaced signal characteristics. We use methods from the
wavelet domain, the log-polar domain as well as the spatial
domain. Statistical features as well as shape features and
pixel based features are used to gain a comprehensive view
on the impact of interlacing to the classification accuracy.

4.1 Spatial Domain Methods without pre-
Filtering

• Intersecting Cortical Model (ICM): The intersect-
ing cortical model (ICM) [7] is a method derived from
Pulse Coupled Neural Networks. Image data from the
spatial domain is used as input to the ICM with a series
of binary images as output. The entropies of the binary
outputs are then used to form a feature vector.

• Blob Features: The method [8] uses a series of flex-
ible threshold planes which are computed for an im-
age to construct a set of binary images. Geometrical
attributes are then used to describe the image texture.
We use the number of identified blobs as well as the
shape of the blobs to form a feature vector.

• Local Binary Patterns (LBP): Local Binary Pat-
terns [9] describe a pixel neighborhood in terms of
pixel intensity differences. The pixel intensity differ-
ences are used to assign a pattern to a neighborhood
according to a sign function. The joint distributions of
patterns are used as features.

• Local Ternary Patterns (LTP): Local Ternary Pat-
terns [10] are based on Local Binary Patterns and use a
modified sign function. The sign function incorporates
a thresholding mechanism to improve the invariance to
changing illumination conditions.

• Extended Local Binary Patterns (ELBP): Huang et
al. [11] suggest using a gradient filtering before fea-
ture extraction employing the Local Binary Patterns
method. By doing this, the velocity of local variation
is described.

4.2 Spatial Domain Methods with pre-
Filtering

• Fractal Analysis: The fractal dimension gives a mea-
sure of how the detail of a pattern changes with the
analyzing scale. We compute the local fractal dimen-
sion [12] using the Laplacian measure on images pre-
filtered using the MR8 filter bank [13]. The local frac-
tal dimensions combined with the bag of visual words
approach is then used to form the feature vector.
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Figure 2. Average Execution Times for a Single Frame

4.3 Statistical Wavelet Domain Methods

• DT-CWT: The dual-tree complex wavelet transforma-
tion [14] is applied prior to computing statistical fea-
tures from the resulting subbands. The mean and stan-
dard deviations of the absolute subband coefficients
are computed and used as features.

• DT-CWT with DCT: The method [15] is based on the
DT-CWT method. The features are computed by ap-
plying the discrete cosine transform DCT across the
scale dimension of a feature vector of the DT-CWT.

• Gabor: The Gabor Wavelet Transform is used with 5
scales and 6 orientations, the mean and standard devia-
tion of the coefficient magnitudes within a subband are
used as features [16].

• Log-Polar Approach: The log-polar method [17]
transforms the image into the log-polar domain which
converts scaling and rotation to translations. The DT-
CWT [14] is then applied which is shift invariant.
Therefore the DT-CWT features are scale invariant in
the log-polar domain. The feature vectors are the sub-
band coefficients’ means and standard deviations.

5. Experiments and Results

The data used for experimentation was compiled from
389 interlaced endoscopic video sequences. Subimages
with the size of 128 × 128 pixels exhibiting specific mark-
ers were extracted manually from appropriate frames within
the video sequences. Only a single subimage was extracted
per frame. Table 1 summarizes the distribution of collected
subimages.

To perform the experiments we created two distinct sets
for training and evaluation. The training set as well as the
evaluation set was created by extracting suitable patches
from the video streams after conversion to progressive for-
mat using the specific de-interlacing technique as indicated
in Table 2. We ensured that no images from a patient were

within both the training set and the test set. To compare the
effects of format conversion to the original interlaced for-
mat, we also performed experiments on patches extracted
from the original interlaced data, exhibiting lines captured
at two different points in time.

The used classifier was a k-nearest neighbor classifier,
which was trained on the specific training set. To give a fair
and comprehensive overview of the classification results we
present the average classification accuracy on the evaluation
set with parameter k ranging from 1 to 20.

No-Celiac Celiac No-Celiac Celiac
Images Patients

Training-Set 122 117 83 26
Evaluation-Set 120 122 82 22

Table 1. Distribution of Image Data

Table 2 lists the average classification accuracies of the
conducted experiments. The rows are sorted by feature ex-
traction method. The columns are sorted by the specific de-
interlacing method. We present the overall classification ac-
curacy in the column labeled as “Original” which indicates
the classification rate of the original interlaced data. We dis-
play the increase and decrease of classification accuracy on
de-interlaced data as relative percentage points (in relation
to the corresponding experiment on the original interlaced
data). A positive value indicates an improvement while a
negative value indicates a degradation of classification ac-
curacy. Values highlighted in bold indicate that the cor-
responding classification result is statistically significantly
different as compared to the corresponding result based on
the interlaced data.We used McNemar’s test [18] for evalu-
ating statistical significance, the chosen significance level
was α = 0.01. The column labeled as “Avg. ∆” lists
the average improvement or degradation of the results as
compared to the original interlaced data. To put the bene-
fit of de-interlacing into relation we additionally performed
an experiment which is based on the interlaced data which
was filtered using a Gaussian filter with σ = 1.5. The re-
sults of this experiments are listed in the column labeled as
“Gauss” and were not considered for the computation of the
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Method Original Bob1 Bob2 Blend1 Blend2 ELA HMDEPR VTMedian Yadif FiveFieldMC MATexture Avg. ∆ Gauss

ICM 79.4 -1.6 3.9 -3.1 -6.4 4.6 -1.1 2.0 4.6 2.9 1.7 0.7 -9.3
Blob Features 77.0 7.2 6.6 3.7 4.4 7.7 -3.2 5.3 7.3 5.8 2.6 4.7 4.2
LBP 80.0 6.5 8.3 1.5 4.1 8.2 -9.2 6.5 7.4 9.4 4.5 4.7 7.1
LTP 80.3 -1.5 -1.4 -6.4 -11.8 -3.0 -4.1 -1.0 -2.9 -0.4 -3.9 -3.6 -18.6
ELBP 75.9 2.3 -0.4 -2.3 -2.6 5.0 -14.3 -1.1 1.7 0.9 1.0 -1.0 6.5
DT-CWT 87.5 0.6 0.6 -3.8 -3.9 0.9 -2.4 1.3 0.6 0.3 1.3 -0.4 1.5
DT-CWT DCT 87.3 1.5 0.8 -2.9 -4.0 1.8 -1.0 2.6 1.8 0.6 0.4 0.2 5.1
Gabor 86.2 0.3 -0.2 -3.9 -4.1 -0.3 -1.4 -0.1 0.1 -0.1 -0.1 -1.0 -1.2
Log-Polar 85.5 -0.5 0.4 -2.5 -3.1 1.0 0.0 0.4 -0.3 0.4 -0.7 -0.5 -0.6
Fractal Analysis 90.4 -2.1 -1.3 -3.8 -4.0 -1.6 -2.3 -0.8 -0.8 -0.7 -1.1 -1.8 -3.4
Average ∆ 1.2 1.7 -2.3 -3.1 2.4 -3.9 1.5 2.0 1.9 0.6 -0.9

Table 2. Average Results of the Experimental Evaluation

“Avg. ∆” column.

5.1 Result Discussion: Feature Extraction

It is interesting to see that de-interlacing does not ben-
efit the classification accuracy as much as expected. De-
interlacing has a significantly positive effect to only three
methods (LBP, Blob Features and ICM). All of these
methods are employed in the spatial domain without pre-
filtering. Due to this property the interlacing artifacts have
a higher impact as compared to other methods. In general,
de-interlacing had the most negative effect to LTP however,
which is interesting because the method also performs in
a pixel based manner in spatial domain. We assume that
the thresholding used in LTP, which is computed adaptively
based on pixel variance information is causing this behav-
ior. An indication for this is that the blend methods and
the Gauss method had the most significant impact on the
classification performance using LTP. Both methods lead to
a significant decrease of resolution and therefore influence
the pixel variance.

Considering the wavelet based methods we see that de-
interlacing had a negligible effect in most cases. Interest-
ingly all wavelet methods’ accuracies decreased when ap-
plied to the de-interlaced data employing the blend meth-
ods. The fractal analysis method also could not benefit
significantly from de-interlacing. In general the method’s
performance decreased using de-interlaced data. We as-
sume that the employed MR8 filters have an implicit de-
interlacing effect (similar to the Gaussian filter) negating
the positive effects of scan line format conversion.

5.2 Result Discussion: De-Interlacing

In general we see that a majority of de-interlacing
methods could increase the average classification accuracy
slightly. Unfortunately the increase is insignificant. We see
that only the ELA method had a significant overall positive
effect on the classification accuracy. The only feature ex-
traction methods with decreasing results using ELA were

LTP and fractal analysis, both methods did not perform
well on the de-interlaced data. On the other hand, by us-
ing the blend methods, the classification accuracy signifi-
cantly decreased for a majority of methods. This behavior
can be explained by the decrease of spatial resolution. The
HMDEPR method showed a significant negative effect on
the LBP based methods. We suppose that the used edge-
pattern recognition algorithm and the adaptive interpolation
schemes used in HMDEPR have a negative effect on the
pixel neighborhoods employed by LBP based methods. We
observe that the motion adaptive and motion compensated
methods do not have a superior benefit as compared to non-
motion compensated/adaptive methods. This might be a re-
sult caused by the different environmental constraints posed
by endoscopic video sequences as compared to the type of
video sequences the methods were developed for. Com-
paring the effects of applying the de-interlacing methods to
the effects of using a pre-filtering with a Gaussian filter we
note that the effects are comparable. Interestingly the Gaus-
sian filtering method performs better compared to the blend
methods.

5.3 Execution Performance

Figure 2 presents the execution performance of the eval-
uated de-interlacing methods. Please consider that all meth-
ods were implemented in Java with performance in mind.
However, no full optimization of the code was performed.
Usually de-interlacing methods are implemented in lan-
guages compiling into native code with a lot of low level
optimization, increasing the performance heavily. There-
fore the execution times should only be considered as a ref-
erence for the reader to compare the complexity between the
methods. We see that a majority of methods are capable of
executing in real-time in our Java implementation (we de-
fine real-time capability as the ability of handling 25 frames
per second). Only the motion compensated method Five-
FieldMC, the Yadif method and the HMDEPR method were
above that threshold. We see that the motion estimation
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used by FiveFieldMC is very expensive in terms of compu-
tational effort. Considering the effects on the classification
accuracy of de-interlacing methods, expensive methods do
not provide any additional gain and can be substituted by
simpler and faster methods without the general loss of clas-
sification accuracy.

6. Conclusion

We saw that de-interlacing does not have a significant
positive effect on the classification accuracy of endoscopic
data with indication for celiac disease in general. Even more
the blend type methods led to a significant decrease of clas-
sification accuracy. The effects of de-interlacing are com-
parable to the effects of applying a Gaussian filter.

We note that de-interlacing only had an overall benefit-
ing effect on methods based in the spatial domain without
pre-filtering. The effects of de-interlacing on methods based
on the wavelet transform were negligible. Pre-filtering of
image data such as applying the MR8 filter bank led to an
implicit form of de-interlacing and corresponding methods
did not gain any additional benefit from de-interlacing.

We have also shown that complex methods employing
motion estimation and motion compensation do not have
a superior benefit as compared to simpler de-interlacing
methods. A de-interlacing method especially designed for
this type of videos might improve the classification accu-
racy. However, considering the computational complexity
of the applied motion compensated methods, we suggest to
use faster and simpler methods instead. We suggest to apply
de-interlacing on endoscopic data with indication for celiac
disease only when using features from the spatial domain
without pre-filtering. The blend type methods should be
avoided in general.

Our results show that an automated decision support sys-
tem based on endoscopic video data can operate on inter-
laced data without significant loss of accuracy.
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Abstract. Multiscale Local Binary Pattern based operators are used to
extract features from duodenal texture patches with histological ground
truth in case of pediatric celiac disease. The multiscale LBP combined
with color channels and possibly other filters lead to a high number of
computed histograms. The impact of histogram subset selection on the
overall classification rates using two feature subset selection algorithms
(SFS and SBS) with three LBP-based operators is analyzed and the
applicability of these techniques validated.

1 Introduction

Celiac disease is a complex autoimmune disorder in genetically predisposed in-
dividuals of all age groups after introduction of gluten containing food. During
the course of the disease, hyperplasia of the enteric crypts occurs and the mu-
cosa eventually looses its absorptive villi thus leading to a diminished ability to
absorb nutrients. People with untreated celiac disease are at risk for developing
various complications like osteoporosis, infertility and other autoimmune dis-
eases including type 1 diabetes. Endoscopy with biopsy is currently considered
the gold standard for the diagnosis of celiac disease. During endoscopy at least
four duodenal biopsies are taken. Microscopic changes within these specimen
are classified by a histological analysis according to a classification scheme by
Oberhuber et al. [1]. The benefits of an automated support tool for diagnosis are
many. Among them are an improved reliability of diagnosis, supported targeting
of biopsies and more efficient use of time and manpower.

The Local Binary Pattern (LBP) operator is invariant to monotonic inten-
sity variations which is beneficial to texture classification in environments with
varying lighting conditions. This property makes the method interesting for clas-
sifying endoscopic images. In the context of LBP many modifications and related
operators have been suggested over the years. A prominent modification that is
often neglected across the literature is the multiscale approach suggested by
Mäenpää [2]. This approach is based on low-pass filtering combined with appro-
priate filter sizes and operator radii to improve the operators’ spatial support
area. Using this extension, combined with color channels and possibly other
filters, the number of computed histograms is considerably higher than the com-
mon approach of using a combination of two or three different parametrizations

Impact of Histogram Subset Selection on Classification using Multiscale LBP-Operators.
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Image-Set 1 Image-Set 2

Class0 Class1 Total Class0 Class1 Total

Bulbus Duodeni 153 120 273 187 70 257

Pars Descendens 132 164 296 115 58 173

Table 1. Distribution of Image Data

of the operator. It is unclear how a high number of histograms affects the classi-
fication. To study the effects we use two feature subset selection schemes to find
optimal suitable combinations of histograms. We analyze the impact of the sub-
set selection and validate the applicability of these techniques using two distinct
image sets.

2 Materials and Methods

The image test set used, contains im-

(a) (b)

Fig. 1. Images from the Pars Descen-
dens showing the two perspectives.

ages taken during duodenoscopies at
the St. Anna Children’s Hospital us-
ing pediatric gastroscopes without m-
agnification. Images were recorded by
using the modified immersion tech-
nique, which has been shown to be
beneficial to automated classification
by Hegenbart et al. [3]. There are two
duodenal regions with completely dif-

ferent geometric properties, i.e. the duodenal Bulb and the Pars Descendens. Ac-
cordingly, we chose to separate the images into two distinct sets. Texture patches
with a fixed size of 128 × 128 pixels were extracted from the full sized frames,
a size which turned out to be optimally suited in previous experiments [3]. The
ground truth for the texture patches used in experimentation was determined by
histological examination of biopsies from corresponding regions. In the following,
we aim at a two class problem with the classes ’Class0‘ as the class representing
healthy tissue and ’Class1‘ representing texture patches showing villous atrophy.
Table 1 shows the number of images available per considered class. For evalua-
tion two distinct set of images for both duodenal regions denoted as Set-1 and
Set-2 were assembled. This happened at two different points in time, the specific
sets reflect the time intervals where the images were captured.

2.1 Feature Extraction

The basic LBP operator was introduced to the community by Ojala et al. in
[4]. We use three operators that are based on LBP to conduct our experiments.
The operators are LTP (Local Ternary Patterns, [5]), ELBP (extended Local
Binary Patterns, [6]), and the LBP operator combined with a contrast measure
(LBPC, [4]). The entire family of operators is used to model a pixel neighborhood
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in terms of pixel intensity differences. The operators assign a binary label to
each possible pixel neighborhood. The distributions of these labels are then used
as features. The distributions are represented by histograms. We compute the
pattern distributions for each color channel (RGB), each LBP-Scale (1-3) as well
as filter orientation (in case of the extended LBP based operators: horizontal,
vertical and diagonal). In total this is 9-histograms for LTP and LBPC, and 27-
histograms for ELBP. For each histogram, only a subset of dominant patterns
known as the uniform patterns [7] which make up the majority of discriminative
patterns is used. This subset consists of 58-patterns for 8 considered neighbors.

2.2 Histogram Subset Selection

Depending on the specific operator, at least 9 and at maximum 27 histograms
are computed for a single image. A single LBP histogram can be interpreted as
a ’macro‘ feature. Therefore the terms histogram subset selection and feature
subset selection share the same meaning. Feature subset selection techniques are
usually applied for two reasons.
Result Optimization Probably not all parameters combinations are equally
well suited for describing the specific textural properties. Even more, when com-
puting a large number of histograms, this set could contain a few b̈adḧistograms
which reduce the discriminative power.
Reduction of Dimensionality Depending on the chosen classification method
large feature vectors might be suboptimal in terms of computational complexity
and classification performance. Feature subset selection can be used to reduce
the number of considered histograms and therefore the final feature vector di-
mensionality.

The applied algorithms were the Sequential Forward Selection algorithm
(SFS, [8]) and the Sequential Backward Selection algorithm (SBS, [8]). Please
note, that due to the imbalance of image number in the specific classes among
the two image sets we chose the average classification rate of both classes as
optimization criterion.

2.3 Classification

The k-nearest neighbors (kNN) classifier was used for classification. A rather
weak classifier was chosen to give more emphasis on the selected histogram com-
binations. After the histogram subset selection the candidate histograms were
combined and treated as a single histogram. The classification is based on the
histogram intersection distance between two histograms. The optimal k-value
was found in a range from 1 to 25.

3 Results

Tables 2 and 3 demonstrate the effect of using subset selection on the set of
histograms. For each experiment the entire set of histograms was computed
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Image Set-1 Image Set-2

Class0 Class1 Total ∆All ∆Set1 Class0 Class1 Total ∆All ∆Set2

S
B
S

LBPC 97.39 92.50 95.24 –0.36 –1.83 98.04 95.00 96.70 +0.59 –1.74

ELBP 94.12 91.67 93.04 +0.37 –2.56 98.93 94.29 97.67 +0.79 –0.77

LTP 98.69 93.33 96.34 +0.37 –0.36 98.93 84.29 94.94 +0.39 –1.56

Class0 Class1 Total ∆All ∆Set1 Class0 Class1 Total ∆All ∆Set2

S
F
S

LBPC 97.39 92.50 95.24 –0.36 –1.83 96.73 97.50 97.07 +0.96 –1.37

ELBP 94.77 84.17 90.11 –2.56 –6.59 98.40 95.71 97.67 +0.79 –0.77

LTP 96.73 95.83 96.34 +0.37 –1.40 98.93 90.00 96.50 +1.95 +1.56

Table 2. Classification Results of Images from the ’Bulbus‘-Sets

using the specific operator and both image sets (Set-1 and Set-2). The algorithms
mentioned in section 2.2 were then used to select subsets for each image set. The
sets were optimized until no new local maximum considering the classification
rate could be found. The found subsets of Set-1 were then used to classify the
images from Set-2 and vice versa. We compare the overall classification rates of
these experiments with the rates gained by using the entire set of histograms
without performing histogram subset selection (column ∆All) and the rates
gained by optimizing the feature subset for the specific image set the classification
is actually performed on (we expect this to be over fitted, column ∆Set1 or
∆Set2). We denote an increase in overall classification rate with a ’+‘ and a
decrease with a ’–‘.

Image Set-1 Image Set-2

Class0 Class1 Total ∆All ∆Set1 Class0 Class1 Total ∆All ∆Set2

S
B
S

LBPC 66.67 95.12 82.43 –1.35 –3.72 79.55 91.46 86.15 –6.34 –6.91

ELBP 75.76 91.46 84.46 +0.68 –0.34 90.43 82.76 87.86 –0.58 –2.31

LTP 84.85 85.37 85.14 –2.02 –3.04 90.43 86.21 89.02 +0.58 –1.15

Class0 Class1 Total ∆All ∆Set1 Class0 Class1 Total ∆All ∆Set2

S
F
S

LBPC 62.88 92.68 79.39 –4.39 –6.76 79.55 91.46 86.15 –6.34 –6.91

ELBP 73.48 88.41 81.76 –2.02 –4.73 88.70 81.03 86.13 –2.31 –2.31

LTP 73.48 89.02 82.09 –5.07 –6.42 89.57 87.93 89.02 +0.58 –1.73

Table 3. Classification Results of Images from the ’Pars‘-Sets

4 Discussion

We can see that using feature subset selection algorithms to find a reliable subset
of histograms in case of multiscale LBP is reasonable in case of the duodenal
Bulb. The final feature vector dimensionality could be reduced and most clas-
sification rates be improved. The SBS method provides slightly more reliable
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results in terms of classification rates but SFS is more efficient in terms of fea-
ture vector dimensionality reduction. Comparing the results with the optimized
results for the specific datasets, we see that the average loss in classification rate
is approximately 1.86%. This indicates that the optimized subsets are slightly
over fitted. In contrast to the result of the ’Bulbus‘-experiments the results of the
’Pars‘-experiments show a general decrease in overall classification rate. Again
the SBS method provided more reliable results as compared to SFS, however
in general no reliable subsets of histograms could be found to guarantee stable
classification rates. Compared to the ‘Bulbus’-experiments the histogram subsets
are even more over fitted. The average loss in classification rate is over 3.86%
in this case. The ‘Pars’-set contains two different types of images (and perspec-
tives), namely the “classical” perspective perpendicular to the mucosa and the
perspective into the direction of the center of the lumen as shown in Fig. 1.
Clearly the latter perspective cannot be well described by LBP based operators.
This leads to unreliable histograms and affects the subset selection. To overcome
this limitation, we will introduce a pre-classification for the images contained in
the ‘Pars’-set and will classify these two sets separately in future work.

We see that histogram subset optimization can be a feasible option for both,
reducing feature vector dimensionality and improving classification performance.
By using distinct test- and training-sets over fitting can be avoided.
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Abstract. In the context of automated classification of medical images,
many authors report a lack of available test data. Therefore techniques
such as the leave-one-out cross validation or k-fold validation are used
to assess how well methods will perform in practice. In case of meth-
ods based on feature subset selection, cross validation might provide bad
estimations of how well the optimized technique generalizes on an in-
dependent data set. In this work, we assess how well cross validation
techniques are suited to predict the outcome of a preferred setup of dis-
tinct test- and training data sets. This is accomplished by creating two
distinct sets of images, used separately as training- and test-data. The
experiments are conducted using a set of Local Binary Pattern based op-
erators for feature extraction which are using histogram subset selection
to improve the feature discrimination. Common problems such as the
effects of over fitting data during cross validation as well as using biased
image sets due to multiple images from a single patient are considered.

Key words: celiac disease, classification, cross validation, over fitting,
LOPO

1 Introduction

A desirable data setup for experimentation within the field of medical image clas-
sification consists of two distinct sets of image samples with a balanced number
of images and patients among the specific classes. In this case one set is used
for training a classifier as well as performing feature selection and parameter
optimization. A method’s classification accuracy is then evaluated by using the
trained classification method with it’s specific parameters on the other set of data
samples. In the context of automated classification of medical images however,
the available amount of test data is often very limited. Often it is not possible to
build distinct data sets for training and evaluation. This can be due to a limited
number of patients (e.g. a low prevalence of the specific disease), a limited num-
ber of usable images caused by qualitative problems or a high number of classes
used to categorize the pathological changes in relation to the available images. In
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this case, the evaluation and development of methods, is usually based on cross
validation techniques such as the leave-one-out cross validation or k-fold cross
validation. By applying these techniques, a prediction of how well developed
methods for classification and feature extraction will generalize on an indepen-
dent data set, is made. Especially in the context of medical image classification,
care has to be taken when using cross validation techniques. Depending on how
the used sets of image data were created, the leave-one-out or k-fold cross vali-
dation techniques might not be sufficient to assess how well developed methods
will perform in a realistic scenario. In this work we will study how well different
approaches to cross validation perform in the context of classifying celiac disease.
We construct two distinct sets for training and evaluation to validate how well
different cross validation techniques predict this “optimal” case. By using feature
subset selection in combination with Local Binary Pattern (LBP)-based feature
extraction we are able to study the effects of over-fitting and discuss adapted
techniques for their use in the context of medical image classification such as the
leave-one-patient-out cross validation. In particular we will assess how accurate
the predictions of the leave-one-patient-out, leave-one-out and k-fold cross val-
idation techniques are compared to a preferred setup using two distinct image
sets. We will also study two approaches towards feature subset selection and
parameter optimization in combination with cross validation techniques (the so
called inner- and outer-approaches).

In Section 2 we identify common problems of constructing image sets for
experimentation and explain how the image sets used during this work were
constructed. In Section 3 the methods used for feature extraction and classifi-
cation are presented. We also discuss the methods used for feature (histogram)
subset selection. Section 4 deals with methods for cross validation and possible
problems in the context of medical image classification. Also two approaches for
feature subset selection and parameter optimization during cross validation are
discussed. Section 5 presents the results of the conducted experiments. Finally
the results are discussed in Section 6.

2 Image Set Construction

The creation of image data sets for experimentation requires the consideration
of several possible problems:

– An unbalanced number of samples per class can lead to a bias towards the
class with the largest number of samples when using the overall classifica-
tion rate as criterion for feature selection and parameter optimization. As a
consequence the overall classification rate might not be a significant measure
for the performance of developed methods. It is desirable to have a balanced
number of samples among each class.

– Images from a single patient usually have a higher similarity among each
other as compared to images among different patients from a single class (or
at least this might be conjectured). Depending on the classification method,
this could have an impact on the classification outcome.

Systematic Assessment of Performance Prediction Techniques in Medical Image Classification
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Table 1. Distribution of Image Data

Class0 Class1 Total Class0 Class1 Total

Images Patients
Image-Set 1 155 157 312 66 21 87
Image-Set 2 151 149 300 65 19 84

– In some cases, the low number of original images from a specific class requires
the extraction of multiple sub-images from a single parent image. Due to
the common camera perspective and illumination these sub-images usually
have the highest similarity among each other. This also might influence the
classification method.

2.1 Image Data

We construct our image test sets based on images taken during duodenoscopies
at the St. Anna Children’s Hospital using pediatric gastroscopes without magni-
fication (GIF-Q165 and GIF-N180, Olympus, Hamburg). The main indications
for endoscopy were the diagnostic evaluation of dyspeptic symptoms, positive
celiac serology, anemia, malabsorption syndromes, inflammatory bowel disease,
and gastrointestinal bleeding. Images were recorded by using the modified im-
mersion technique, which is based on the instillation of water into the duodenal
lumen for better visibility of the villi. The tip of the gastroscope is inserted into
the water and images of interesting areas are taken. Gasbarrini et al. [2] showed
that the visualization of villi with the immersion technique has a higher positive
predictive value. Hegenbart et al. [3] state that the modified immersion tech-
nique is more suitable for automated classification purposes as compared to the
classical image capturing technique. Images from a single patient were recorded
during a single endoscopic session.

To study the prediction accuracy of cross validation techniques we manually
created an “idealistic” set of textured image patches with optimal quality. The
texture patches have a fixed size of 128× 128 pixels, a size which turned out to
be optimal as reported by Hegenbart et al. [3]. In a fully automated system the
process of frame identification as well as segmentation would be automated as
well. These techniques are beyond the scope of this paper though.

In order to generate the ground truth for the texture patches used in ex-
perimentation, the condition of the mucosal areas covered by the images was
determined by histological examination of biopsies from the corresponding re-
gions. Severity of villous atrophy was classified according to the modified Marsh
classification in Oberhuber et al. [8]. This histological classification scheme iden-
tifies six classes of severity of celiac disease, ranging from class Marsh-0 (no
visible change of villi structure) up to class Marsh-3C (absent villi). In this work
a reduced scheme is considered using Marsh-0 (no celiac disease) and the joint
set of the classes Marsh-3A, Marsh-3B and Marsh-3C (indicating celiac disease).
We will refer to the non-celiac images as Class0 and to the celiac images as Class1
from here on. Figure 1 shows an example of the four interesting Marsh classes.
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(a) Marsh-0 (b) Marsh-3A (c) Marsh-3B (d) Marsh-3C

Fig. 1. Examples of Duodenal Image-Patches used for Experimentation.

2.2 Construction of Distinct Data Sets

The constructed image sets originate from 171 patients (131 control patients and
40 patients with diagnosed celiac disease). In order to guarantee an image set of
reasonable size, more than a single texture patch was extracted for each patient
from the original images. In total 753 texture patches met the required qualita-
tive properties. Based on this set of texture patches two distinct sets for training
and evaluation were created. The construction was done in an automated way
such that the number of images is balanced between the non-celiac class Marsh-0
and the celiac classes Marsh-3A to Marsh-3C. While creating the two distinct
sets, care was taken that the number of patches per patient is as evenly balanced
as possible. Also, no images from a single patient are within both image sets. The
actual construction was done using a pseudo random number generator based
on a Gaussian distribution to avoid any bias within the data sets. Table 1 shows
the distribution of images and patients per class.

3 Feature Extraction and Classification

The basic LBP operator was introduced to the community by Ojala et al. [9].
We use three operators that are based on LBP to conduct our experiments. The
operators are LBP (Local Binary Patterns, [11]), ELBP (extended Local Binary
Patterns, [4]), and a modified version of the ELBP operator that is introduced
in this work, the ELTP (extended Local Ternary Patterns) operator. The entire
family of operators is used to model a pixel neighborhood in terms of pixel
intensity differences. The operators assign a binary label to each possible pixel
neighborhood. The distributions of these labels are then used as features, which
are represented by histograms. We compute the pattern distributions for each
color channel (RGB), each LBP-Scale (1-3) (see Section 3.1) as well as filter
orientation (in case of the extended LBP based operators: horizontal, vertical
and diagonal). In total we result in 9-histograms for LBP and 27-histograms
for ELBP and ELTP. For each histogram, only a subset of dominant patterns
known as the uniform patterns [7], which make up the majority of discriminative
patterns, is used. In case of the LBP and ELBP operator this subset consists
of 58-patterns for 8 considered neighbors. In case of the ELTP operator two
histograms with 58-bins are concatenated, therefore the dimensionality of the
ELTP histograms is 116 bins.

Systematic Assessment of Performance Prediction Techniques in Medical Image Classification
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3.1 Local Binary Patterns

For the radius r and the number of considered neighbors p, the LBP operator is
defined as

LBPr,p(x, y) =

p−1∑
k=0

2k s(Ik − Ic), (1)

with Ik being the value of neighbor number k and Ic being the value of the
corresponding center pixel. The s function acts as sign function, mapping to
1 if the difference is smaller or equal to 0 and mapping to 0 else. The basic
operator uses an eight-neighborhood with a 1-pixel radius. To overcome this
limitation, the notion of scale is used as discussed by Ojala et al. in [10] by
applying averaging filters to the image data before the operators are applied.
Thus, information about neighboring pixels is implicitly encoded by the operator.
The appropriate filter sizes for a certain scale is calculated as described in [6].

3.2 Extended Local Binary Patterns and Extended Local Ternary
Patterns with adaptive Threshold

Information extracted by the LBP-based operators from the intensity function
of a digital image can only reflect first derivative information. This might not
be optimal, therefore Huang et al. [4] suggest using a gradient filtering before
feature extraction and call this operator ELBP or extended LBP. By doing this
the velocity of local variation is described by the pixel neighborhoods.

We introduce the extended LTP (ELTP) operator consequently in perfect
analogy to the ELBP operator. ELTP is based on the LTP operator instead
of the LBP operator to suppress unwanted noise in the gradient filtered data.
The Local Ternary Pattern operator (LTP) was introduced by Tan and Triggs
[11]. The modification is based on a thresholding mechanism which implicitly
improves the robustness against noise. In our scenario endoscopic images are
used which usually are noisy as a result of the endoscopic procedure. The LTP
operator is used to ensure that pixel regions that are influenced by these kind
of distortions do not contribute to the computed histograms. The LTP is based
on a thresholded sign function:

s(x) =


1, if x ≥ Th

0, if |x| < Th

−1, if x ≤ −Th.

(2)

The ternary decision leads to two separate histograms, one representing the
distribution of the patterns resulting in a −1, the other representing the distri-
bution of the patterns resulting in a 1.

HI,lower(i) =
∑
x,y

(LBPr,p(x, y) = −i) i = 0, · · · , 2p − 1 (3)
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HI,upper(i) =
∑
x,y

(LBPr,p(x, y) = i) i = 0, · · · , 2p − 1 (4)

The two computed histograms are concatenated and then treated like a single
histogram. Please note that in analogy to the LBP operator, only the uniform
subset of patterns was used in this case. The actual optimal values to use for
thresholding are unknown a priori. We apply an adaptive threshold based on the
spatial image statistics to make sure that noisy regions do not contribute to the
computed histograms while information present within high quality regions are
not lost due to a threshold that was chosen too high. The calculation is based on
an expected value for the standard deviation of the image (β). This value was
found based on the training data used during experimentation and represents
the average standard deviation of pixel intensity values within all images. The
value α is used as a weighting factor combined with the actual pixel standard
deviation of the considered image (σ) and is used to adapt the threshold to
match the considered image characteristics.

Th =

{
β

1
2 + ασ, if σ > β

β
1
2 − ασ, if σ ≤ β.

(5)

3.3 Histogram Subset Selection

Depending on the specific operator, at least 9 (LBP) and at maximum 27 (ELBP
and ELTP) histograms are computed for a single image. A single LBP histogram
can be interpreted as a “macro” feature. Therefore the terms histogram subset
selection and feature subset selection share the same meaning. Feature subset
selection techniques are usually applied for two reasons.
Result Optimization Probably not all parameters combinations are equally
well suited for describing the specific textural properties. Even more, when com-
puting a large number of histograms, this set could contain a few “bad” his-
tograms which reduce the discriminative power.
Reduction of Dimensionality Depending on the chosen classification method
large feature vectors might be suboptimal in terms of computational complexity
and classification performance. Feature subset selection can be used to reduce
the number of considered histograms and therefore the final feature vector di-
mensionality.

The applied algorithm for histogram subset selection was the Sequential For-
ward Selection algorithm (SFS, [5]). The optimization criterion for this algorithm
was the overall classification rate. The upper bound set on the number of se-
lected histograms was 10. This technique of optimizing the feature subset might
be subject to over fitting. We expect the operators computing a larger number
of histograms (ELBP and ELTP) to be at higher risk of being over fitted when
using “outer” optimization (see section 4.2 for a comparison of approaches for
optimization).
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3.4 Classification

The k-nearest neighbors (kNN) classifier was used for classification. A rather
weak classifier was chosen to give more emphasis on the selected histogram com-
binations. After the histogram subset selection the candidate histograms were
combined and treated as a single histogram. To compute the distance (or sim-
ilarity) of two different histograms we apply the histogram intersection metric.
For two histograms (H1,H2) with N bins and bin number i being referenced to
as H(i), the similarity measure is defined as

H(H1,H2) =
N∑
i=1

min(H1(i), H2(i)). (6)

The k-value is subject to parameter optimization and was optimized in the
corresponding cross validations based on the specific training set. By using the
kNN classifier we are also able to study problems caused by multiple images
from the same patient or parent frame within the training and test set.

4 Cross Validation Protocols

Cross validation is used to estimate the accuracy of the general prediction of the
classification method. In 85 articles known to the authors of this work on auto-
mated diagnosis in the field of medical image classification, more than half resort
to either leave-one-out (LOOCV) cross validation or k-fold cross validation.

K-fold cross validation is a generalization of the leave-one-out cross validation
technique. The k-fold cross validation partitions the original set of samples into
k disjoint subsets. The classification uses k − 1 subsets as training input and
classifies samples from the left out subset. This process is repeated k times. The
leave-one-out cross validation can be seen as a k-fold cross validation with k
corresponding to the number of data samples. Therefore each subset consists
of only a single sample. Other approaches of cross validation such as random
sub-sampling are special variations of the k-fold cross validation and were not
considered in this work. When using k-fold cross validation, a balanced number
of samples from each class should be available within the k − 1 subsets used
for training. Theoretically all samples from a single class could be within one
subset, leading to a bad estimation of the classification rate of this class. On
the other hand using a high number of folds leads to small image subsets and
usually brings up the problem that images from a single patient, or even worse
from a single parent image, are within both the training and test data sets.

4.1 Leave-One-Patient-Out Cross Validation

The similarity of images from a single patient can be higher than the similarity
between different patients from a class. A straight forward and clean solution is
to use only a single image of each patient. Unfortunately in practice this is rarely
possible due to a limited number of available data. An approach to take care
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of this problem is the leave-one-patient-out (LOPO) cross validation technique
(also used by André et al. [1]). LOPO cross validation is based on the k-fold cross
validation. The partitioning of the original set of samples however is done such
that each partition contains only images from a single patient. This approach
implies that patient information in some, usually unambiguously anonymized,
form is available. A variation that is closely related to the LOPO cross validation
method is the leave-one-parent-frame out cross validation. In this technique the
partitioning is performed such that each partition consists of all sub-images from
a parent image. This approach can usually be used if no patient information is
available. However, the LOPO cross validation technique should be preferred
over the leave-one-parent-image-out technique whenever possible.

4.2 Feature Optimization Combined with Cross Validation

We distinguish between two approaches to feature subset selection and parameter
optimization in combination with cross validation.

– The outer-approach optimizes features or parameters based on the results of
the cross validation used for predicting the classifier’s accuracy. This means
that the optimization criterion of the feature subset selection method is
based on the estimates of a cross validation on the entire data set. These
estimations are also used as classification rates later.

– The inner-approach optimizes features or parameters within a separate cross
validation based on the k − 1 partitions used for training within the cross
validation used for predicting classification accuracy. This means that the
optimization criterion of the feature subset selection method is based on
a separate cross validation using the training set (k − 1 partitions) of the
current “outer” cross validation. Therefore, for each partition an new feature
subset is selected. The classification rate is the estimation of the “outer” cross
validation.

The outer-approach is the classical and easier approach frequently found
within the literature. This approach however poses the problem that test data
is used for optimizing feature subsets or parameters. This can have an influence
on the optimization and therefore an effect on the prediction of how well the
feature subset or optimized parameters generalize (the optimization over-fits the
model towards the data). By using the inner-approach, the risk of over-fitting is
reduced, the major drawback is that the computational power needed for this
evaluation is considerably higher as compared to the other technique. This is
caused by repeated feature subset selection and parameter optimization which
is usually the most time consuming element in the automated classification chain.

5 Results

This Section presents the results of the experiments. Please note, that we use
subscripts combined with the method names to indicate the type of optimization.

Systematic Assessment of Performance Prediction Techniques in Medical Image Classification
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The inner-approach is indicated by a “I”, while the outer-approach is indicated
by a “O”. All results except the distinct set classification was computed using
the specific cross validation technique on Image-Set1. The abbreviations “Spec.“
and “Sens.“ refer to the Methods’ specificity and sensitivity.

Fig. 2. Overall Classification Rate Estimates of k-FoldO (outer) Cross Validations.

Figures 2 and 3 show the overall classification rates predicted by using k-fold
cross validation. Due to computational issues, the values were computed from 2
to 10 in single steps and from 12 to 112 in steps of 5. The mean classification
rates are: LBP (93.75%, σ = 0.43), ELBP (93.48%, σ = 0.5) as well as ELTP
(93.48%, σ = 0.64) in case of the outer-approach

Fig. 3. Overall Classification Rate Estimates of k-FoldI (inner) Cross Validations.

and LBP (90.98%, σ = 1.08), ELBP (90.48%, σ = 0.91) as well as ELTP
(89.99%, σ = 1.07) in case of the inner-approach. The columns of Table 2 la-
beled as ∆ list the differences of the predictions of the overall classification rates
between the outer- and inner-approach. The experiments based on the inner-
approach used a leave-one-out cross validation as the “inner” cross validation
method in all cases.

Systematic Assessment of Performance Prediction Techniques in Medical Image Classification
- A Case Study on Celiac Disease.



10 Hegenbart, Uhl and Vécsei

Table 2. Cross Validation Estimates using LOOCV and LOPO.

LOOCVO (outer) LOOCVI (inner)
∆

Spec. Sens. Overall Spec. Sens. Overall

LBP 93.63 94.19 93.91 90.38 90.32 90.35 3.56
ELBP 94.27 93.55 93.91 91.67 89.68 90.68 3.32
ELTP 94.27 93.55 93.91 90.32 91.03 90.68 3.32

LOPOO (outer) LOPOI (inner)
∆

Spec. Sens. Overall Spec. Sens. Overall

LBP 85.99 95.48 90.71 82.17 90.32 86.22 4.49
ELBP 91.08 94.19 92.63 81.53 90.97 86.22 6.41
ELTP 89.81 94.19 91.99 79.62 89.68 84.62 7.37

Table 3 compares the results achieved by using the “optimal” distinct set val-
idation (Image-Set1 is used for training, Image-Set2 for evaluation) with the esti-
mates provided by using the mentioned cross validation techniques. The columns
labeled as ∆ show the differences of the specific methods’ overall classification
rates to the overall classification of the distinct set validation. The results with
the closest proximity to the distinct set results are displayed in bold. The columns
labeled as mean and max show the differences to the mean overall classification
rates of the k-fold cross validation as well as the differences to the maximum
classification rates of the k-fold cross validations (which is also the maximum
difference to all classification outcomes of the k-fold cross validation).

Table 3. Results of the Distinct Set Classification using Image-Set1 as Training-Data.

Distinct Sets ∆ ∆ ∆ ∆
Spec. Sens. Overall LOPOO LOPOI LOOCVO LOOCVI

LBP 79.47 87.25 83.33 7.38 2.89 10.58 7.02
ELBP 80.13 92.62 86.33 6.30 -0.11 7.58 4.35
ELTP 79.47 92.62 86.00 5.99 1.38 7.91 4.68

Distinct Sets ∆ Mean ∆ Max ∆ Mean ∆ Max

Spec. Sens. Overall k-FoldO k-FoldO k-FoldI k-FoldI

LBP 79.47 87.25 83.33 10.42 11.22 7.76 9.62
ELBP 80.13 92.62 86.33 7.39 8.22 4.15 6.30
ELTP 79.47 92.62 86.00 7.48 8.55 3.99 5.67

5.1 Performance

Beside to the actual prediction accuracy of each method, the computational com-
plexity plays an important role of how well the method is suited for application
in experimentation. A major part of the computational efforts lies within the
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feature subset selection. The upper bound defined on the number of histograms
used to build the feature vector in this work is 10. The feature subset selection
method exits if no better configuration (in terms of overall classification rate) of
histograms can be found. The maximum number of performed cross validations

is n(n+1)
2 − (n−10)(n−9)

2 for n available histograms. The actual number of compu-
tations is highly dependent on the data. To be able to compare the performance
among the techniques, we limit the upper bound on the histogram count to 1 for
the experiments used for the performance assessment. Table 4 shows the time in
seconds needed for a full cross validation of Image-Set1.

Table 4. Time in Seconds for a Full Validation.

Method Seconds Method Seconds

LOOCV (Outer) 2.8 LOOCV (Inner) 648.7
LOPO (Outer) 8.4 LOPO (Inner) 624.5
Distinct 2.9

6 Discussion

The results show that there is a significant difference between the estimated
rates of the cross validation methods and the distinct set evaluation. The rates
of the outer-optimization indicate some degree of over-fitting during optimiza-
tion. In case of the LOOCV method, the results show that the classification
rates using outer-optimization are approximately 3.5 percentage points above
the inner optimization. In case of the LOPO and the k-fold methods this effect
can also be observed. For the LOPO method, the differences between inner- and
outer-optimizations are even higher as compared to k-fold and LOOCV. We as-
sume that this is due to a combined effect of over-fitting and image set bias of
the LOOCV and k-fold methods. The mean estimates of the k-fold cross valida-
tions are comparable to the LOOCV cross validation. The prediction accuracy
of methods using the outer-optimizations is further off the rates achieved by the
distinct set evaluation as compared to the inner-optimization.

Table 4 shows, that the higher accuracy of the inner-optimization, comes at
the cost of a considerably higher computational effort. The differences in compu-
tational complexity among the cross-validation methods is significantly smaller.
Considering the results we see that the inner-approach is the best suited tech-
nique (if its complexity can be handled) for evaluating methods using features
optimization.

Compared to the distinct set evaluation, the LOOCV method is off by a an
average of 8.7 percentage points (outer) as well as 5.35 (inner). The prediction
of the LOPO method seems to be more accurate with an average difference of
6.5 percentage points (outer) as well as excellent 1.39 percentage points (inner).
Considering the results of the k-fold cross validations a significant variance of
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the rates at low number of folds is observed. In general the standard deviation is
below one percentage point for both approaches. If k-fold validation is applied we
suggest using a fixed number of folds for all experiments to avoid an additional
effect of over-fitting. To avoid biased image sets caused by multiple images from a
patient the LOPO method should be preferred whenever possible. In general the
LOPO method combined with inner-optimization seems to be the most adequate
approach if no distinct sets for training and evaluation can be constructed.
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Abstract. Inference of clinically-relevant findings from the visual ap-
pearance of images has become an essential part of processing pipelines
for many problems in medical imaging. Typically, a sufficient amount
labeled training data is assumed to be available, provided by domain
experts. However, acquisition of this data is usually a time-consuming
and expensive endeavor. In this work, we ask the question if, for certain
problems, expert knowledge is actually required. In fact, we investigate
the impact of letting non-expert volunteers annotate a database of en-
doscopy images which are then used to assess the absence/presence of
celiac disease. Contrary to previous approaches, we are not interested in
algorithms that can handle the label noise. Instead, we present compelling
empirical evidence that label noise can be compensated by a sufficiently
large corpus of training data, labeled by the non-experts.

1 Motivation

Many problems in medical imaging involve some sort of decision-making process
based on the visual appearance of images acquired by some modality. Typical
examples include, but are not limited to, computer-aided assessment of various
types of cancer, or the classification of tissue types for subsequent segmenta-
tion. The prevalent paradigm of these approaches is to assume the existence of
expert-annotated data to train a classification system which is then used to make
predictions for new data instances. For segmentation tasks, predictions are typ-
ically made on a pixel level, whereas for computer-aided diagnosis, predictions
are made on suitable representations of images regions or even the full images.

While many approaches demonstrate fairly good performance for the respec-
tive task, classifier training inherently depends on the pristine expert annota-
tions. In practice, though, such annotations are typically hard to obtain, since
the annotation task is often time-consuming and thus expensive. Consequently,
the amount of available training data tends to be rather limited which can lead
to non-conclusive statements about the generalization ability of a system. This
is in contrast to many computer vision problems, where annotation tasks can
typically be “crowd-sourced” easily.
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In this work, we ask the question whether we can circumvent the require-
ment for expert annotations by using a substantially larger corpus of training
data labeled by non-experts. This is an interesting and potentially far-reaching
question, since most works in the literature that assume a certain amount of
label noise either rely on a separate pre-processing step to remove suspect sam-
ples [3], or on learning algorithms that can handle the noise implicitly. Examples
include multiple instance learning [7], robust variants of logistic regression [2], or
SVM formulations that incorporate the possibility for label flipping [13]. Either
way, a change in the classification architecture is required to handle label noise.

In contrast, we do not propose a novel learning algorithm to handle label
noise, but instead study the fundamental question if, in certain cases, the poten-
tially negative impact of noisy training data can be alleviated by simply increas-
ing the number of available training instances. While typical crowd-sourcing sce-
narios are impractical for medical data due to privacy issues, it is still relatively
easy to obtain non-expert annotations from supporting personnel for instance.
In Leung et al. [7], similar advantages have been highlighted when using “ama-
teur” raters for video annotation tasks. It is important to note, though, that such
strategies will only be suitable for certain visual recognition problems where lit-
tle or no domain-specific knowledge is required to achieve reasonable annotation
performance with moderate training effort. Finally, we highlight the difference
to weakly-supervised segmentation problems, such as in [10]. In these problems,
labels are given at the image-level (not the pixel-level) and indicate the pres-
ence/absence of some object of interest (e.g., Crohn’s disease [10]). Nevertheless,
labels are assumed to be correct which corresponds to 100% sensitivity at the
pixel-level. In our case, with noisy image-level labels this is not guaranteed.
Contribution. The contribution of this work is an experimental study on the
impact of noisy, non-expert image labels on the performance of a classification
system to assess the presence/absence of celiac disease in endoscopy imagery.
This is a clinically relevant problem, since it’s relatively easy to acquire images
but expert labels for a large corpus of data are hard to obtain, not least since
consistency with the histopathological diagnosis is required. Based on a study
with eight volunteers, we first establish a basis of what error is to be expected.
By relying on a standard classification architecture and three state-of-the-art
image representations, we then present empirical evidence that a large corpus
of non-expert labeled data can in fact compensate for the potentially negative
impact of label noise.

2 Experimental study

In our experimental study, we consider the problem of automated assessment
of endoscopy imagery for the presence/absence of celiac disease, i.e., a complex
autoimmune disorder caused by the introduction of materials containing gluten
such as wheat, rye and barley. During the course of the disease, hyperplasia of
the enteric crypts occurs and the mucosa eventually looses its absorptive villi.
This leads to a diminished ability to absorb nutrients. Visible celiac-specific
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Fig. 1: Typical and borderline examples of images showing non-celiac (Marsh 0) vs.
celiac disease (Marsh 3A-3C).

markers that are reported [4] to be characteristic for the pathologic changes of
the mucosa include mosaic mucosal patterns, nodular mucosa, scalloping of the
duodenal folds, visualization of underlying blood vessels and villous atrophy.
Dataset. Our dataset consists of images acquired during duodenoscopies us-
ing pediatric gastroscopes without magnification. The main indications for en-
doscopy were the diagnostic evaluation of dyspeptic symptoms, positive celiac
serology, anemia, malabsorption syndromes, inflammatory bowel disease, and
gastrointestinal bleeding. Images were recorded by using the modified immer-
sion technique. The condition of the mucosal areas covered by the images was
determined by histological examination of biopsies from the corresponding re-
gions. Severity of villous atrophy was classified according to the modified Marsh
classification [11]. This histological classification scheme identifies six stages of
severity of celiac disease, ranging from class Marsh 0 (i.e., no visible change of
villi structure) up to class Marsh 3C (i.e., absence of villi). A medical expert
assisted in extracting suitable sub-images with a dimension of 128 × 128 pixels
from the images captured during endoscopy. Each image shows specific mark-
ers for either the absence or presence of celiac disease. While the expert-guided
extraction process slightly biases the results, no domain-specific knowledge is
needed in practice, since the selection of sub-images is only guided by inspection
with respect to certain quality criteria (e.g., sharpness or distortions). Experts
were only involved to establish a ground-truth for evaluation purposes.

Our dataset consists of 1050 images from 320 patients with 592 images (240
patients) categorized (consistent with the histopathology) as normal (Marsh 0)
and 458 images (80 patients) categorized as containing evidence for celiac disease
(Marsh 3A-3C). All images from a single patient have a consistent label. We
focus on this, most clinically-relevant binary categorization, as the distinction
between all six classes is difficult during endoscopy, even for specialists. This
is due to the non-distinct visual appearance of certain classes. A reliable, fine-
grained categorization can only be done using histopathology. Some typical and
borderline cases for Marsh 0 vs. Marsh 3A-3C cases are shown in Fig. 1.

2.1 Performance of non-expert annotators

To assess the performance of human, non-expert annotators, we randomly se-
lected 100 images with a roughly equal split of non-celiac vs. celiac instances
(60/40). These images were then shown to eight non-expert volunteers, after a 10
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Fig. 2: Labeling erros of human ”non-expert“ annotators. Images are grouped by errors
made by single individuals (left) to errors made by all annotators (right). Images are
annotated by their actual ground-truth label.

minute introduction to the annotation problem, where the differences between
celiac vs. non-celiac disease were illustrated on an example of 10 typical images
per category. This introduction was intended to quickly outline (1) how the dis-
ease manifests in architectural changes of the villi and (2) how this affects the
visual appearance. Each person then labeled all 100 images individually, without
knowledge of the class distribution. In addition to the assigned labels, we also
recorded the time spent to annotate each image. Interestingly, the mean annota-
tion time per image was only 1.9 seconds with a low standard deviation of ±0.3
seconds. Table 1 lists the accuracy, sensitivity and specificity, averaged over all
eight annotators. In our setup, sensitivity corresponds to the percentage of true
celiac images actually identified as celiac images by the annotators.

Accuracy Specificity Sensitivity

average 83.8± 3.9 81.3± 6.7 87.5± 9.3
min. 79.0 68.3 70.0
max. 92.0 90.0 97.5

Table 1: Performance (in %) of eight human “non-expert” annotators.

A closer examination of the annotation errors (with respect to the ground
truth) revealed that, out of 100 images, only two images were consistently as-
signed a false label by all annotators, see Fig. 2 (right). Although, the ground
truth label is non-celiac in these cases, the presence of the villi is not clearly
pronounced making these images hard to categorize without substantial domain
knowledge. Some images, falsely labeled by half of the annotators are shown in
Fig. 2 (middle). For the non-celiac cases, the situation is similar as before in
the sense that villi are less pronounced; for the celiac image, the non-typical
scaling is deceiving and suggests the presence of villi. The left-hand side of Fig.
2 shows images which were falsely labeled only by single individuals each. For
these images, the appearance is relatively typical for the respective category.

2.2 Classification architecture & Evaluation protocol

We implement a standard classification architecture with a linear support vector
machine as a discriminant classifier at the end of the pipeline. Three variants
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of image representations are used: (1) the state-of-the-art Fisher vector encod-
ing of [12], computed from SIFT descriptors extracted on a dense 6 × 6 pixel
grid; (2) a standard local-binary pattern (LBP) texture representation [9] with
3 scales, 8 neighbors and uniform patterns [8]; (3) a transform-domain based
approach to statistical texture characterization that uses the mean and stan-
dard deviation of complex (dual-tree) wavelet-subband coefficients (at 6 scales)
for image representation [6]. Fisher vectors represent a generative-discriminative
approach, whereas approaches (2)-(3) are purely discriminative approaches. We
remark that the focus of this paper is not on designing an optimal classification
architecture, but to study the impact of label noise and an increasing amount
of training data within established frameworks.
Implementation. All three approaches are implemented in MATLAB using
vlfeat [14], the linear C-SVM implementation of LIBLINEAR [5] and custom
implementations of [9] and [6]. Gaussian mixture model estimation for Fisher
vectors is done via the standard EM algorithm using diagonal covariance ma-
trices. Component weights, mean vectors and covariances are initialized using
k-means++. In all experiments, we use 8 mixture components. While this is a
relatively low setting, we remark that our problem is only binary. In vision prob-
lems, the number of categories, and consequently the appearance variability, is
often much higher, thus requiring a larger number of components.
Evaluation protocol. All reported results are averaged over 50 cross-validation
(CV) runs. In each CV run, a random split between training and evaluation
image data is selected such that 90% of all patients are used for training and the
remaining patients are used for testing. Although we will restrict the amount
of training data in some experiments, this restriction applies only to the 90%
of the training portion, whereas the evaluation portion remains unchanged. We
will refer to the number of patients used for training by N . Further, we ensure
a balanced class distribution. The SVM cost factor C is cross-validated on the
training splits using an additional 5-fold CV and C ∈ {0.5, 1, 2, 4, 8, 16, 32}.

2.3 Results

Impact of training set size. In our first experiment, we investigate the im-
pact of increasing the amount of training data using expert labels. We start by
randomly selecting 10% of the patients in the training portion of each 90/10 CV
split and evaluate the classification performance. We then successively increase
the amount of data by increments of 10% until all patients of the original train-
ing split are used. As already mentioned, the size of the testing set is unaffected
by these changes. Fig. 3 shows the average CV accuracy as a function of the
fraction of patients used for training.

For all three image representations, it appears that performance starts to level
off as 50% of the patient data is used for training. Given our experimental setup,
this is equivalent to ≈ 144 patients. Interestingly, a Wilcoxn rank-sum test at
α = 0.001 reveals that at 3N to 4N results start to become significantly different
from the results of using all training data (i.e., at 10N). In setups with more
than two classes, we expect the “level-off effect” to occur substantially later, due
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Fig. 3: Impact of increasing the training set size (w.r.t. the # patients), starting from
10% (corresponds to N) of all patients available in the training portion of the data.
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Fig. 4: Impact of different amounts of label noise as a function of the training set size
w.r.t. the #patients (best-viewed in color).

to the increased complexity of the problem. In practice, this means that expert
labels are required for at least ≈ 480 images (since we have 3 images/patient on
avg.) to achieve stable performance.

Impact of artificial label noise. In our second experiment, we study (1) the
impact of increasing label noise to simulate non-expert annotators with grad-
ually decreasing performance, and (2) the impact of increasing the number of
training samples at the same time. This allows to assess if, and to what extent,
compensation of label noise can be achieved. We remark, though, that the sce-
nario of random label flipping is an unrealistic worst case. In fact, as we have
seen in §2.1, labeling errors tend to happen for borderline cases and do not oc-
cur totally random. For better illustration, we select the CV error instead of
accuracy as an evaluation measure in Fig. 4.

We observe that the positive effect of increasing the training corpus is not
mitigated by the introduction of label noise. In fact, up to a certain size of pristine
training labels, we can achieve equal rates by simple increasing the size of the
noisy training corpus. On the example of DT-CWT features for instance, 9N
noisy labels suffice to achieve an error that is comparable to the error achieved by
using 5N pristine labels (in fact, the null-hypothesis of equal population median
cannot be rejected at α = 0.001 with a p-value of 0.09). While the magnitude
of the impact of label noise seems to be dependent on the image representation,
the general behavior remains the same. For the other image representations the
compensation effect is even more pronounced.
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Fig. 5: CV performance as a function of the number of images labeled by non-experts.
The baseline result at L is obtained by taking 50/500 images but training is performed
using the pristine labels; the performance when all 500 pristine training labels are used
is indicated by the top line (best-viewed in color).

Training with non-expert labels. We consider the actual practical scenario
where 500 (randomly chosen) images are labeled by a non-expert, i.e., one vol-
unteer from the experiment in §2.1. The “top annotator” is selected and reaches
89% accuracy on this set. We then compare the classification performance of a
system trained with L = 50 (10%) of the 500 images using pristine labels vs.
systems trained on an increasing number of images with non-expert labels. All
remaining 1050 − 500 = 550 images are used for testing. Results are shown in
Fig. 5. We performed a left-tailed Wilcoxn rank-sum test at α = 0.001 to assess
the null-hypothesis that the population median of the CV results obtained with
L pristine labels is less than the median of the results obtained with non-expert
labels (for each training set size)4. The position at which the null-hypothesis
cannot be rejected is marked by an arrow. For all three representations this
occurs at 6L or earlier (with different p-values).

3 Discussion

Given the presented results, several points are worth discussing. First, as we
have shown in Fig. 3, a small training corpus with pristine labels does not suf-
fice to achieve stable performance, at least not for the considered problem of
celiac disease assessment. In fact, a substantial amount of data is needed until
results stabilize and improvements level-off. This effectively shows that limited
availability of expert data is an actual problem.

Second, we have presented empirical evidence that a large corpus of non-
expert labeled (i.e., noisy) training data can in fact be used to build a classifi-
cation system that performs equally well as a system trained solely on a limited
number of pristine labels. Further, in our particular problem, the relatively good
performance of the non-experts reduces the amount of training data required to
compensate for the noisy labels. Nevertheless, the question obviously arises how
this behavior generalizes to other problems. In our case, visual categories have

4 We correct for multiple comparisons using the Benjamini-Hochberg [1] procedure to
control for FDR.
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relatively distinct appearances which renders the problem appropriate for non-
experts. In situations with more categories or less distinct visual characteristics,
non-experts are likely to perform worse and the amount of data needed to com-
pensate for errors might be larger. However, on difficult problems, the probability
of expert errors is expected to be higher as as well.

Finally, our results indicate that the architecture of existing systems does
not necessarily need to be changed if label noise introduced by non-experts
annotators is expected, as long as enough data is available. In problems where
the task of acquiring images is not the limiting factor, this could substantially
broaden the use of computer-aided diagnosis or decision support systems, due
to the sudden availability of large training corpora.
Acknowledgements. This work has been supported, in part, by the Austrian
Science Fund (project no. 24366).
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corrected texture classification and the impact of scale and interpolation. In ICIAP (2013),
vol. 8156 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 513–522.

[18] GADERMAYR, M., LIEDLGRUBER, M., UHL, A., AND VÉCSEI, A. Shape curvature his-
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(BVM’11) (Lübeck, Germany, 2011), Informatik aktuell, pp. 359 –
363

100

HEGENBART, S., UHL, A., AND VÉCSEI, A. Systematic
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