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Abstract—Methods based on Local Binary Patterns have been
used successfully in a wide range of texture classification tasks. A
restriction shared by all methods based on Local Binary Patterns
is the high sensitivity to signal scale. In recent work we presented
a general framework for scale-adaptive computation of Local
Binary Patterns, improving the accuracy in texture classification
scenarios involving varying texture-scales highly. In this work,
the scale-adaptive methodology is extended by an orientation-
adaptive computation of patterns, leading to a scale- and rotation-
invariant classification. The results suggest that estimating a
global orientation to build orientation-adaptive LBPs is superior
to the previously introduced rotation-invariant encodings. The
proposed framework allows the use of the highly-discriminative
LBPs in less-constrained situations, where both orientation, as
well as scale variations, are to be expected.

I. INTRODUCTION

A big challenge in texture classification scenarios in uncon-
strained environments is dealing with varying scales and ori-
entations. This is especially true in medical image acquisition
such as endoscopy [3]. As a result, research focusing on scale-
and rotation-invariant feature descriptors has been a hot topic
in the recent past.

Methods based on Local Binary Patterns (LBP [9]) have
been successfully used in a wide range of texture classification
scenarios. A restriction shared by all those methods is their
high sensitivity in terms of signal scaling, therefore reducing
their applicability to a constrained environment with only
minor scale variances among textures. The correct alignment
of micro structures in terms of orientation is an essential re-
quirement for the accuracy of the baseline LBP type methods.
Ojala et al. [10] alleviate this restriction by using a special type
of rotation-invariant pattern encoding, leading to a possibly
reduced discriminative power of features. A drawback of that
method is the limited angular resolution. As a consequence
the rotation-invariant encoding is not very well suited in a
scale-adaptive computation. In [2] we proposed a general
scale-adaptive methodology that enables the use of the highly-
discriminative LBPs in less-constrained situations, where scale
variations are to be expected. Experiments have shown that this
scale-adaptive framework improved the accuracy of LBP based
methods in scenarios with varying scales significantly.

In this work we present an extension to this scale-adaptive
framework, alleviating the restriction of correct texture orienta-
tion alignment by utilizing a global orientation-estimate. This
allows the use of highly-discriminative LBPs in a scenario with
varying scales and orientations.

By using multi-scale second moment matrices [7], a global
orientation is estimated at dominant local scales, leading to
a robust orientation estimation in noisy environments with
varying texture scales. By leveraging the already pre-computed
scale-spaces, our proposed orientation estimation approach
integrates naturally with the scale-adaptive LBP framework at
moderate computational cost. Employing the estimated orien-
tation, an orientation-adaptive computation of LBP patterns
is performed. Our results suggest that estimating a global
orientation to build orientation-adaptive LBPs in a scale-
adaptive computation is superior to the previously introduced
rotation-invariant encodings.

In Section II we give a review of the general scale-adaptive
computation that enables the use of LBPs in scenarios with
varying scales. Section III-A describes the orientation-adaptive
methodology. The fusion of the orientation- and scale-adaptive
computation is covered in Section IV. The experiments con-
ducted to evaluate the proposed methodology are described in
Section V, the results presented and discussed in Section VI.
Finally Section VII concludes the paper.

II. SCALE-ADAPTIVE COMPUTATION OF LBP

The scale-adaptive computation is based on a global scale esti-
mation combined with a confidence measure for the estimation.
Based on the estimated scale, the radius of the LBP as well
as the dimension of the sampling area is adapted accordingly.
This methodology allows the use of LBP flavored methods in
a scenario with varying scales.

A. Scale Estimation

We employ a global scale estimation algorithm which is based
on scale-normalized Laplacian of Gaussian extrema in scale-
space The scale-space theory was first extensively explored in
the field of signal processing by Lindeberg [6]. It presents a
framework to analyze signals at different scales. Let f : R2 �→
R represent a continuous signal, then the linear scale-space
representation L : R2 × R+ �→ R is defined by

L(·;σ) = g(·;σ) ∗ f, (1)

with initial condition L(·; 0) = f . Where σ ∈ R+ is the
scale parameter, g is a Gaussian function and “∗“ denotes
convolution. The scale-space family L is the solution to the
diffusion equation (heat equation):
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∂σL = σ

(
∂2L

∂x2
+

∂2L

∂y2

)
= σ�L. (2)

We construct the scale-space and compute the scale-normalized
Laplacians (σ2 |�L(·;σ)|, denoted as �I(·;σ)) of each image
I at each location x ∈ N

2 at different scales with σ =
c
√
2
k
, k ∈ {−4,−3.75, . . . , 7.75, 8} and c = 2.1214. Note

that the parameter c acts as a scaling factor of the scale-space
and was initially chosen such that the center scale equals a 3
pixel radius. We however found during experimentation that
the intrinsic scale of natural textures tends to be large. We
therefore expanded the scale-space to cover larger scales as
well.

Methods based on scale selection employing the scale-
space abstraction identify image locations which are simultane-
ously a local extremum with respect to both the spatial coordi-
nates and the scale-space parameter (3D maxima), a prominent
example is the Scale Invariant Feature Transform (SIFT [8]).
Experimentation has shown however that the utilization of such
locations for a global scale estimation is unreliable. This can
be seen in Figure 1, comparing the distribution of the responses
of the 3D maxima with the responses of the scale estimation
of textures, the extrema are either at various different scales
or only a small number of extrema is present, leading to
unreliable scale estimations. We therefore use the distribution
of responses of the scale normalized Laplacians to estimate a
global scale. The scale estimation response function ξ is

ξ(t) :=
∑
x,y

�I(x, y; t). (3)

The global scale is identified by searching for the first local
maximum of ξ which is then used as seed point for a least-
squares Gaussian fit. By using the first local maximum we
are capable of consistently estimating the scale of textures ex-
hibiting more than a single dominant scale. The quality of the
estimation is improved by considering only data points within
a certain offset from the seed point. In our implementation an
offset of ±5 scale levels is used to fit the Gaussian function.
Finally the mean value s̃ of the fitted Gaussian function is
interpreted as the dominant level in scale-space. The standard
deviation u of the fitted Gaussian is used as uncertainty of
the estimation. For a given dominant level in scale-space s̃i,

Fig. 2: Scale Estimation of a non-Regular Texture (stone2).

the spatial scale si corresponds to to the scale parameter σi at
the dominant scale level. Figure 2 illustrates the fitted Gaussian
function (dashed line) to the scale estimation response function
(solid line) of three textures at different scales.

The response of the scale-normalized Laplacian of Gaus-
sian (LoG) attains a maximum if the zeros are aligned with a
circular shaped structure. Hence scales estimated, based on the
LoG, correlate strongly with the scale of the dominant circular
shaped structures of a texture. As a consequence, the estimated
scale is highly related to an essential property of each texture,
the intrinsic scale of a texture.

A texture exhibiting pebbles for example and a texture
exhibiting sand, captured at the same distance, might have
equal scales in terms of camera-scale, but different scales in
terms of the scale-space, a consequence of different intrinsic
scales. In contrast, sand and pebbles captured at a different
camera-scales, corresponding to the difference of the textures’
intrinsic scales, are equal in scale in terms of the scale-
space. Scales estimated in the scale-space domain are therefore
always a combination of the intrinsic texture scale and the
camera-scale.

The identification of an intrinsic scale of a general texture
is a non-trivial problem. A requirement on an intrinsic scale
estimation method would be scale-invariance, a property that
the LoG response in scale-space does not provide. The esti-
mated scale in scale-scape is therefore always a combination
of camera-scale and intrinsic texture scale. Please refer to [3]
for more details.

III. ORIENTATION-ADAPTIVE LOCAL BINARY PATTERNS

The correct alignment of micro structures in terms of orienta-
tion is an essential requirement for the accuracy of the baseline
LBP type methods. Ojala et al. [10] alleviate this restriction
by using a special type of rotation-invariant pattern encoding.
The original pattern is shifted circularly until a minimum with
respect to a numeric interpretation of the pattern is found. As
a consequence all patterns are implicitly aligned among each
other.

A drawback of this approach is the limited angular resolu-
tion, depending on the number of used LBP-neighbors. For a
standard LBP-neighborhood with 8 neighboring samples, this
angular resolution corresponds to 45 degrees. A side-effect of
the encoding is the decreased number of individual patterns.
The authors propose to use uniform patterns in combination
with the rotation-invariant encoding to improve robustness,
implicitly improving the angular resolution by considering
only special type of micro structures. Uniform patterns are a
subset of patterns with a maximum of two transitions between
1 and 0. The proposed combination of rotation-invariant and
uniform patterns reduces the number of individual patterns
even further. Experiments discussed in Section VI show that
the small number of individual patterns leads to a decreased
classification accuracy if combined with the scale-adaptive
computation. As a consequence we utilize the estimation of a
global orientation to build orientation-adaptive LBP. Following
literature on LBP, we refer to Local Binary Patterns utilizing
the rotation-invariant encoding in combination with uniform
pattern as LBPriu from here on.
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Fig. 1: Distribution of 3D-Maxima compared to the Response of ξ.

A. Orientation Estimation

We utilize the multi-scale second moment matrices [7] of
an image, computed at dominant local scales, for a robust
orientation estimation in noisy environments with varying
texture scales. The second moment matrix (also known as
structure tensor) summarizes the predominant directions of
the gradient in a specific pixel neighborhood of an image. In
contrast to the second moment matrix, the multi-scale second
moment matrix is defined over two scale parameters. It allows
to estimate the shape of visual structures at their dominant
scale, as detected by the scale-estimation algorithm.

The local scale, denoted by t determines the scale in
terms of the scale-space a local structure is analyzed at. The
integration scale i is used as parameter to a Gaussian function g
defining the shape and weights of a specific neighborhood area
in the image over which the gradient response is accumulated.
We compute the multi-scale second moment matrices at each
location x ∈ R

2 of an image I . The local scale t is selected
depending on the estimated texture scale (see Section IV),
the integration scale i =

√
2t depends on the corresponding

detection scale. The second moment matrix for an image
location x at local scale t is then computed as

μ(x; t, i) =

∫
ξ∈R2

(∇I)(x− ξ; t)(∇I)T (x− ξ; t) g(ξ; i) dξ.

(4)
We denote (∇I)(x; t) as the gradient of the scale-space
representation of image I at scale t and position x.

The multi-scale second moment matrix is positive definite,
it therefore has two non-negative eigenvalues which correspond
to the length of the axes of an ellipse (up to some constant fac-
tor). The eigenvectors of the multi-scale second moment matrix
correspond to the orientation of the ellipse. By computing the
angle between the major axis of the ellipse and the vertical
axis we identify the dominant orientation at a specific image
position. Due to the ambiguous orientation of the ellipse, all
angles are treated modulus 180.

Based on the distributions of all orientations at all pixel
locations, a global orientation is estimated for an image. This
is done by fitting a Gaussian function to the distribution of
orientations. To improve the quality of the estimation, we
remove data points with an offset of ±40 degrees from the
maximum prior to the fitting process. Finally, the average value
of the Gaussian is interpreted as the dominant orientation, the
standard deviation of the fitted Gaussian function is interpreted

Fig. 3: Orientation Estimation (pearlsugar1).

as the uncertainty of the estimation. To avoid using invalid ori-
entation estimations, we reject estimations with an uncertainty
above 20. In such a case the estimated orientation is defined
as 0 degrees.

Figure 3 illustrates the fitting of a Gaussian function
(dashed red line) to the distribution of orientations (solid blue
line) of three differently rotated images. The numbers centered
at each Gaussian function relate to the mean value of the
fitted Gaussian function, corresponding to the estimated global
orientation of the specific image.

B. Global versus Local Orientation Estimation

As explained in Section III-A a global orientation is computed
for a specific image. In theory however, a texture could consist
of multiple sub textures with different orientations, leading
to potentially worse estimation accuracies. We therefore eval-
uated the performance of a local orientation estimation on
a pixel basis in comparison to the used global orientation
estimation. The local orientation estimation is based on the
same methodology utilizing multi-scale second moment ma-
trices as described for the global orientation estimation. In
contrast to the global orientation however, the estimation is
done per pixel instead of fitting a Gaussian function to the
distribution of orientations to estimate a global orientation.
Figure 4 demonstrates that the accuracy of the local estimation
is inferior as compared to the global estimation. The mean
absolute error of the estimated orientation (vertical axis) was
computed between a reference image without rotation and
the same image with a specific rotation, as depicted by the
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horizontal axis, for all images in the Kylberg database which
was also used for experimentation as explained in Section V.
The mean absolute error was computed for three relative scales
between the reference and the rotated images. We can see that
the global estimation is superior to the local estimation in all
regards. We assume that this is caused by homogeneous pixel
areas which do not allow for a robust estimation of orientation,
introducing a large error. The results also indicate that scaling
of the textures has only a minor impact to the general accuracy
of the orientation estimation method, an important property
for using the method in combination with the scale-adaptive
methodology.

Fig. 4: Global versus Local Orientation Estimation Error.

C. Impact of Signal Noise

Utilizing the multi-scale second moment matrix allows to
estimate the orientation of a visual structure at its dominant
scale, as a benefiting side effect of utilizing the scale-space
data, signal noise is suppressed to some degree. We explicitly
constructed an experiment to evaluate this property. The mean
absolute error of the orientation estimation is computed for
noisy image textures at the same texture scale. Let P be
the set of all pixels in image I ∈ N

2, ω = (ωp)p∈P , be
a collection of independent identically distributed real-valued
random variables following a Gaussian distribution with mean
m and standard deviation σ. We simulate thermal noise as
additive Gaussian noise with m = 0, variance σ for pixel p at
position x, y as

N(x, y) = I(x, y) + ωp, p ∈ P, (5)

with N being the noisy image, for an original image I .
Figure 5 illustrates the effects of Gaussian white noise to the
global orientation estimation. We see that noise only has a
minor impact to the average accuracy of the method, another
welcome benefit of using multi-scale second moment matrices
for orientation estimation.

Fig. 5: The Impact of Signal Noise to the Estimation.

IV. COMBINING THE SCALE-ADAPTIVE COMPUTATION

WITH THE ORIENTATION-ADAPTIVE COMPUTATION

The orientation-adaptive computational approach integrates
very naturally into the scale-adaptive LBP framework. As
a consequence of computing the LoG for scale-estimation
instead of using the Difference of Gaussians approach, the
scale-space data can be re-used for computing the multi-
scale second moment matrices used for orientation estima-
tion. Therefore the Gaussian filtering to compute the local
scale t can be omitted. We adaptively select the local scale
t of the multi-scale second moment matrix, based on the
estimated scale of a texture. By doing so, we guarantee a
robust orientation estimation across different texture scales.
Experimentation has shown that a reasonable value for the
local scale t is half of the estimated texture scale. This is
explained by the property that the estimated scale at a pixel
level highly correlates to the intrinsic scale of a texture, there-
fore leading to rather large estimated scales. Large local scales
however would result in a decreased estimation accuracy. By
re-using the scale-space data, the computation of the multi-
scale second moment matrices only involves the computation
of the first partial derivatives in both image dimensions as
well as a convolution with a Gaussian filter to compute the
integration scale i. Figure 6 illustrates schematically how
the scale- and orientation-adaptive computation is combined.
Based on the estimated texture scale, appropriate LBP radii
and neighborhood sampling area dimensions are chosen. The
ordering of the computation is adaptively chosen depending on
the estimated orientation. Please note that due to the ambiguity
of the orientation, we compute two patterns at each image
location, rotated circularly to accommodate orientations above
180 degrees. This is indicated by the red sampling points
which correspond to the respective starting location of the
computation.

To compensate for possible errors of the orientation esti-
mation as well as unsuitable alignments on the pixel grid, we
compute multiple LBP histograms using a small interval of
different orientations depending on the estimated orientation.
The size of the interval is chosen depending on the uncertainty
measure of the orientation estimation. As a consequence the
chosen interval for an unreliable orientation estimation is wider
and the error is more likely to be compensated. The interval
width chosen for the experiments discussed in Section V was
0.7 times the standard deviation (interpreted in degrees) of the
fitted Gaussian. This value was not optimized and might be
dependent on the given problem however. For each orientation
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Fig. 6: Illustration of the Scale- and Orientation-Adaptive
Computation.
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in the interval (in steps of 5 degrees), a separate LBP histogram
is computed. Finally, the best alignment of orientations is
implicitly chosen during classification by selecting the min-
imum of all distances computed pairwise between all LBP
histograms computed based on the specific orientation within
the intervals of two texture images. Note that this does not
pose an unfair advantage to the classifier, as no information
about class membership is used implicitly or explicitly. This
approach is comparable to the cyclic shift of binary iris features
used to compensate for small rotational alignment errors in
biometric systems for example.

V. EXPERIMENTS

We constructed a large set of experiments to analyze the
performance of the orientation-adaptive extension to the scale-
adaptive LPB framework in a scenario with varying scales and
varying image rotations. We explicitly compare the accuracy
of LBPriu methods employing the scale-adaptive methodology
with the accuracy of the standard LBP methods employing the
proposed scale- and orientation-adaptive framework. Addition-
ally we analyze the performance of non scale-adaptive methods
based on LBPriu in the same scenario.

The used methods are the LBPriu method [10], the Local
Ternary Patterns (LTPriu) operator [11] as well as the Fuzzy
Local Binary Patterns (FLBPriu) method [4]. Please note
that these methods were used in combination with the multi-
resolution Local Binary Patterns extension [10] based on three
scales and 8 neighbors, the best configuration we were able to
find for the given data sets.

The experimentation is based on two independent texture
databases. The KTH-TIPS database [1] exhibits texture images
from 10 different materials captured at 9 different scales with 9
samples per material. Sub-images of size 128×128 pixels were
extracted from the center of each accordingly rotated original
image. The rotation was performed using bilinear interpolation.
We simulated rotations of 30 degrees, 60 degrees 120 degrees
and 180 degrees respectively. Due to the dimension of the
original images of material ”cracker“, this material class could
not be used for simulating rotation without a large black border
within the 128 × 128 image patches. Unfortunately, besides
KTH-TIPS there are no other publicly available high quality
texture databases with an available ground-truth of scales. We
therefore had to resort to a simulation of the scaling of textures.
A subset of the Kylberg texture database [5], consisting of 28
materials with 160 unique texture patches per class, captured
at a single scale, was used for the simulation. The image
database contains rotated versions of each image at 30 degree
steps ranging from 0 to 330 degrees. The high resolution of
each patch (576 × 576 pixels) allowed us to simulate the
scaling without relying on up-sampling, leading to a smaller
amount of interpolation artifacts. The simulation of scaling was
performed according to the scales of the KTH-TIPS database,
interpreting the original image patches as the maximum scale
21.0. Image patches of size 128×128 were then extracted from
the center of the re-scaled patches. Due to the huge number
of samples in the Kylberg database we use a subset consisting
of 20 unique texture patches per class (5 patches per image)
for experimentation.

The experiments were designed to explicitly reflect the
properties of the studied methods. The images from the KTH-

TIPS database at scale 5 without rotations build the training
set for experiments based on the KTH-TIPS database. Respec-
tively the images from the Kylberg database at scale 20 without
rotation are used as training data for experiments based on the
Kylberg database. To evaluate the impact of rotation and scale,
the classification was performed on the corresponding scaled
and rotated version of the data from each of the databases. The
used classification method was a k-nearest neighbors classifier.
The maximum value of k was chosen depending on the number
of samples per material class. In case of the Kylberg database
the maximum value of k was set to 20 while the maximum
value of k was 9 in case of the KTH-TIPS database. To allow
for an unbiased evaluation, all interpreted results are the mean
accuracy over all possible k-values ranging from 1 to the
specific maximum.

VI. RESULTS

Figure 7 presents the results of the experiments. The horizontal
axis denotes the relative scale difference between training data
and evaluation data while the vertical axis corresponds to the
classification accuracy. The bold lines show the mean classifi-
cation accuracy over all image rotations (5 different rotations
for the KTH-TIPS set and 12 for the Kylberg database). We
visualize the minimum and maximum classification accuracy
over all rotations with error bars in case of the KTH-TIPS
database as well as a smaller error bar with the corresponding
area in case of the Kylberg database.

Methods utilizing the proposed scale- and orientation-
adaptive methodology are abbreviated as SOA and the respec-
tive name of the used LBP based method, the scale-adaptive
method. Methods utilizing the scale-adaptive methodology in
combination with the rotation-invariant encoding are abbrevi-
ated as SA and the specific method’s name. The name of the
methods based on LBP are used as known from literature.

The difference in mean classification accuracy between the
proposed scale- and orientation-adaptive (SOA) framework and
the scale-adaptive (SA) framework using the rotation invariant
encoding is reflected by the upper row of numbers. The lower
row of numbers label the difference between the scale-adaptive
framework based on LBPriu with the respective standard
method.

Figure 7 shows that the mean classification accuracy of
methods utilizing the scale- and orientation-adaptive method-
ology (SOA) are superior in terms of classification accuracy
and variance as compared to methods utilizing the scale-
adaptive (SA) framework with rotation-invariant encoding.
Comparing the results with prior experiments in [2], we see
that the accuracy of the standard methods decreased due to
the rotation invariant encoding. This is reflected by the fact
that the maximum results are below the results in [2]. In
general we observe a minor degree of variation caused by
the different orientations across the results. Interestingly the
methods employing the scale-adaptive framework (SA) exhibit
the highest degree of variance, a property we expected due to
the reduced discriminative power as discussed in Section III.
Methods utilizing the proposed scale- and orientation-adaptive
(SOA) framework show the smallest degree of variance with
respect to orientation. Additionally the mean classification
accuracy is clearly above the accuracy of traditional methods as
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Fig. 7: Mean Overall Classification Accuracies over all Rotations.

well as methods utilizing the scale-adaptive (SA) approach in
combination with the rotation-invariant encoding. Concerning
the results based on the KTH-TIPS database, we can see
that the variation caused by rotation is considerably higher
across all methods. The smallest variations caused by rotation
is again observed for methods utilizing the proposed scale-
and orientation-adaptive (SOA) methodology. In parallel to the
Kylberg database, methods based on the SOA framework show
the highest mean accuracy. We observe the highest amount of
variance of methods utilizing the SOA methodology at small
relative scales. We assume this is caused by the higher impact
of the orientation estimation error for textures at a smaller
relative scale. In general, the trends observed for the Kylberg
database are confirmed by the results based on the KTH-TIPS
database.

VII. CONCLUSION

In this work, we presented an orientation-adaptive extension
to the scale-adaptive LPB framework. By leveraging the
already pre-computed scale-spaces, our proposed orientation
estimation approach integrates naturally with the scale-
adaptive LBP framework at moderate computational cost.
In particular, using multi-scale second moment matrices,
computed at dominant local scales, leads to 1) robust
orientation estimation in noisy environments and 2) scenarios
with varying texture scales. Our experiments suggest that
estimating a global orientation to build orientation-adaptive
LBPs is superior to the previously introduced rotation-invariant
encodings; this is reflected by less variance in classification
accuracy as well as superior mean accuracy over multiple
orientations. In summary, the proposed framework enables
the use of the highly-discriminative LBPs in less-constrained
situations, where both orientation as well as scale variations
are to be expected.
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