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Abstract

Various techniques have been developed for an auto-
mated classification of endoscopic images. Besides the clas-
sical methods for endoscopic image capturing, new meth-
ods like the modified immersion technique have been de-
vised and are in use. The impact of specific image captur-
ing techniques for feature extraction and classification in
automated diagnosis is unclear. This work applies several
well tested methods for feature extraction and classification
on images captured with the conventional and the modified
immersion technique. We compare the classification rates
and the impact on feature extraction of each specific cap-
turing technique. We also compare the classification rates
of different duodenal regions. Finally we advise an opti-
mal combination of image capturing technique, duodenal
region and feature extraction methods for automated celiac
disease diagnosis.

1. Introduction

Esophagogastroduodenoscopy (EGD) followed by mul-
tiple biopsies is currently the gold standard for celiac diag-
nosis. Optimal targeting of duodenal biopsies is not trivial.
Automated Classification in a medical context can be used
as a support tool for the physician. Methods that help indi-
cating specific areas for biopsy might improve the reliability
of celiac disease diagnosis.

Multiple types of endoscopic image capturing tech-
niques exist. We compare the efficiency of classification
of images captured by two major imaging techniques, the
modified immersion and the conventional technique. Be-
sides the difference through capturing, the images also vary,
depending on the region of the duodenum that is shown.
This work uses multiple well tested feature extraction and
classification methods that proved feasible in medical pat-
tern recognition. The efficiency of classification of the two
image capturing techniques and the two duodenal regions is
compared. Also a discussion of possible problems related to
the different image types is given. Additionally we define
celiac markers within images that worked best for feature
extraction and classification.

1.1 Automated classification

When implemented as a support tool for the physician,
the classification process has to be fully automated. The
automated process consists of three major steps. The first
vital step is deciding on one or more image regions for ex-
traction that are most representative for the specific classi-
fication problem. We discuss this step in further detail in
Section 2.3. The next step deals with improving the ex-
tracted region’s quality by applying image processing tech-
niques. We discuss preprocessing options in Section 3. In
the last step the discriminative information of the extracted
region for each image is encoded as a numerical feature vec-
tor. Using these feature vectors, each classifier’s optimal
parameters are then estimated. Any unknown feature vector
is finally classified by using the estimated parameters.

2. Image acquisition and preparation

The data set we used for testing consists of images from
two distinct regions of the duodenum (the bulbus duodeni
and pars descendes). The images were taken at the St.
Anna’s Children Hospital using a standard duodenoscope
without magnification. The celiac state of the images was
determined by visual inspection during the endoscopy ses-
sion followed by a biopsy of suspicious areas. Through
a histological examination of the mucosal state of the ex-
tracted tissue the severity of the villous atrophy was de-
fined according to Marsh classification. For each patient,
beside the classical endoscopy technique a new endoscopic
approach, the modified immersion technique, for diagnos-
ing celiac disease was applied.

The captured image data was manually inspected and fil-
tered by several qualitative factors (sharpness, distortions,
visibility of features). As the final step, image regions with
a high specificity for celiac disease, or absence of celiac
disease were extracted. More than half of the images had
to be discarded because they did not satisfy the qualitative
specifications.

2.1 Image capturing techniques

For the endoscopy procedure the patient swallows a
small flexible tube called an endoscope. The endoscope
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transmits a video stream through a data channel to the
physician. The scope is able to insert air and water to ex-
pand existing folds and structures. The conventional im-
age capturing technique involves no special treatment of the
small bowel. A standard camera for duodenoscopy is used.
In contrast, the modified immersion technique is based on
the instillation of water into the duodenal lumen for better
visualization of the villi. The camera is then put into the
water, and images of interesting areas are taken. Studies
[3] show that visualization of villi with the immersion tech-
nique has a higher positive predictive value.

2.2 Celiac specific markers

Several endoscopic markers indicating celiac disease ex-
ist. Not all show great promise for automatic classifica-
tion. It is important to identify frequent and robust mark-
ers. As stated in [2] markers include mosaic or nodular mu-
cosa, scalloping of duodenal folds and reduction in num-
ber or even absence of duodenal folds (Kerckring’s folds).
The sensitivity of endoscopic markers is highly variable be-
cause of their absence through a possibly lower degree of
villous atrophy. Visible villi structures usually indicate a
normal mucosal state. However a symptom described as
patchy villous atrophy exists, where only parts of the mu-
cosa are affected and show a reduced number or absence
of villi. Hence in automated classification an image region
classified as no celiac is not sufficient to classify the pa-
tient as healthy. Our research shows that the villi structure
and the mosaic or nodular mucosa work best as markers for
classification purposes.

2.3 Duodenal regions and their impact on image
quality and homogeneity

Endoscopic images show a high variance with respect
to sharpness and degree of existent distortions. The bowel
resembles a tube, as a side effect the chosen perspective
changes considerably among images. This leads to prob-
lems, especially within the pars descendens region. Results
show that the extracted image region plays a crucial role
in the classification of endoscopic images. The duodenum
is divided into two parts. The bulbus duodeni and the pars
descendens regions. Textures within images from the bul-
bus region lie in the tangent plane to the surface. This is a
result of the ”flat” form of the bulb. The pars descendens
region shows many duodenal folds. The villi texture within
the pars descendens region varies between a tangential ori-
entation to a perspective that points out of the surface of the
image.

The uniform texture orientation within the bulbus leads
to a higher degree of homogeneity across the images, never-
theless markers like the scalloping of folds or the reduction
in number of folds are not visible in this area. In automated
classification the homogeneity in perspective across the im-
ages is a big advantage and current results show better clas-
sification rates for images from the bulbus region.

Beside villi structures, the folds presented within the pars
descendens show indicators whether the tissue is affected of
celiac disease or not. While manual inspection of this area
might provide better classification results, automated clas-
sification faces a couple of problems when working with
images taken from this region. Markers like scalloping or
reduction in number of folds can not be efficiently repre-
sented and extracted within a frequency spectrum. Also the
anatomic form of the pars descendens is problematic. For
better visibility of celiac markers present on the folds, the
physicians change the camera’s perspective frequently and
hence the textural orientation changes. This causes inhomo-
geneities within the image test sets.

2.4 Image-Region extraction

Not all duodenal image regions show a high specificity
for celiac disease. Even more, only parts of a celiac small
bowel might be affected of villous atrophy. This indicates
that it is of high priority to extract an image region with
the highest specificity. In automatic image-region extrac-
tion, qualitative indicators such as image-blur and image-
distortions could be used to decide on optimal regions.
Methods used within content-based image retrieval might
be applicable here. The relations between eigenvalues of
the windowed image second moment as described in [1]
could be used as an indicator for specific textural regions. In
this project, the step was performed manually, as automated
techniques that deal with choosing appropriate regions are
still subject to further research.

Beside the location of the chosen regions within an im-
age its size plays a crucial role. For classification this size
is fixed within a test set. Larger regions do contain more
specific markers, but also tend to be of lower quality, as the
perspective is more static and distortions are harder to avoid.
Also the accuracy of diagnosis suffers from a larger region
size (patchy villous atrophy). We chose square image re-
gions with 256 × 256 pixels of length for extraction in the
bulbus region. This size proved to be too large for the pars
descendens region. The perspective within the pars descen-
dens limits the size of the extracted square. Results show,
that features extracted from 256× 256 pixel squares are not
discriminative enough. Methods using some sort of feature
subset selection or evolutionary optimization tend to over-
train the classificators and lead to invalid results. To avoid
this problem, we decided to use squares with the length of
128× 128 pixels. Figure 1 gives an intuitive comparison of
the 256× 256 pixel region with the 128× 128 pixel region
for an image from the pars descendens.

2.4.1 Perspective and zoom

The perspective plays a significant role in choosing an ap-
propriate region of the image for classification. The clas-
sification performance is tied to the visibility of a set of
features. As mentioned in Section 2.3 the interesting part
of the mucosa of the bulbus duodeni is flat. Pictures from
this region only differ in the zoom scale. On the other hand,
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Figure 1. Impact of image region size

the pars descendens region is characterized by its form re-
sembling a tube. Images from this region differ heavily in
the form of visible features. Images with a frontal perspec-
tive and high zoom show features comparable to the bulbus
images. For capturing features visible on top of the folds
(e.g. villi structure or scalloping) a lateral perspective is su-
perior to a frontal perspective. Although the features are the
same, the perspective might fool the classification process.
The feature extraction method must be capable of dealing
with differing zoom scales. Images that were captured at
a low zoom level usually lose quality in visibility of tissue
structure.

Figure 2. Images from the pars descendens
with changing perspective and zoom

2.4.2 Distortions

Most images show regions with a high density of small bub-
bles. This effect was observed more often in images that
were captured using the conventional method. The modi-
fied immersion technique is based on the instillation of wa-
ter into the duodenal lumen. As a benefiting side effect,
no bubbles are below the surface of water and this type of
distortions is less likely to obscure important features. The
instillation of water poses an interesting phenomenon. Most
pictures (depending on the perspective) show a mirrored
version of the captured area at the water surface. This has
not been a problem yet. Even more its redundancy might be
even helpful in automated region extraction. Light reflec-
tions can be frequently observed on the moist tissue, espe-
cially when the images were captured conventionally. The
way the tissue reflects the lights might also be an indicator
for celiac disease. But there has not been any research on
this topic yet.

2.4.3 Blur and exposure

Most endoscopic images are partially blurred. This effect is
a result of the lens losing its focus. This causes the captured

Figure 3. Images with distortions

image to suffer from a loss in sharpness. Blurred tissue re-
gions resemble regions without structural information. Care
has to be taken not to confuse the blurred villi structure with
the absence of villi structure (indicating celiac disease). A
way to avoid using blurred regions, is an algorithm that pro-
vides a measure for existing blur. As proposed in [9] the
spread of edges could be used to identify blurred regions.
Beside blurred regions suboptimal exposure is unavoidable.
Long exposures lead to motion blur, while short exposures
require very good lighting of the specific area. Underex-
posed images can be very noisy. This must not be inter-
preted as existing villi structure. A way to handle uneven
exposure is a local contrast and histogram equalization.

Figure 4. Images with partial blur and subop-
timal exposure

3. Preprocessing

High image quality is crucial for a good classification
performance. To improve the performance we applied an
advanced contrast enhancement technique called CLAHE
(Contrast Limited Adaptive Histogram Equalization) [10]
on a slightly blurred version of the extracted region. The
blurring process uses a Gaussian blur filter with a small
(2x2) kernel. The final step is a sharpening of the image
using Laplace sharpening. To avoid highlighting present
noise, we used a rather large (9x9) kernel for sharpening.

4. Feature extraction and classification

Many well tested methods for feature extraction exist.
To gain a comprehensive view on how the classifications of
different image types perform, we applied several feature
extraction methods that led to promising results in medical
pattern recognition in other works. We used the following
feature extraction and classification methods:

• FFT-kNN Evolutionary Feature Selection, Classic fea-
tures. [10] The FFT is used to transform the image
into it’s frequency spectrum. Multiple ring shaped fil-
ters are then applied to the Fourier spectrum of each
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color channel to select relevant subsets of the most dis-
criminative coefficients. The feature vectors are then
classified by a k-NN classification using the Euclidean
distance.

• FFT-Bayes Evolutionary Feature Selection, Classic
features. [10] Same as above, using a statistical Bayes
classifier for classification.

• FFT-SVM Evolutionary Feature Selection, Classic
features. [10] Same as above, using a non-linear
SVM classifier with radial basis function as kernel
(K(xi, xj) = e−γ|xi−xj |2 ).

• DT-CWT, Weibull Dual-Tree Complex Wavelet Trans-
form, 6 scales, Weibull features [5]. The DT-CWT
is used to decompose the images. The empirical his-
togram of the detail subband coefficient magnitudes is
modelled by two-parameter Weibull distributions. The
Weibull parameters are then arranged into a feature
vector and the Euclidean metric is used for 1-NN clas-
sification.

• DT-CWT, Classic Dual-Tree Complex Wavelet Trans-
form, 6 scales, Classic features [5, 8]. The DT-CWT is
used to decompose the images. Features are computed
from the mean and standard deviation of the absolute
values of the complex detail subband coefficients. This
is the same setup as it is used in [8], except that we use
the DT-CWT instead of the Gabor Wavelet Transform.
The classification is performed by a 1-NN classifica-
tion using the Euclidean metric.

• DWT, Classic Pyramidal Wavelet Transform, 6 scales,
Weibull features [8]. Same features are extracted as
in [5], but the classic pyramidal wavelet transform is
applied. The features are classified by a 1-NN classifi-
cation using the Euclidean metric.

• Gabor, Classic Gabor Wavelet Transform, 4 scales,
6 orientations, Classic features [8]. The features are
classified by a 1-NN classification using the Euclidean
metric.

• DWT-ES, Pyramidal Wavelet Transform, 6 scales,
Eigen Subband features [6]. Eigen Subbands are com-
puted from the stacked Wavelet detail subbands at
equal positions in the decomposition structure of each
color channel. The corresponding Eigenvalues are ar-
ranged in a feature vector which is then used for 1-NN
classification using the Euclidean metric.

• DT-CWT, ES Dual-Tree Complex Wavelet Transform,
6 scales, Eigen Subband features [6]. The features are
classified by a 1-NN classification using the Euclidean
metric.

• SWT-ES, Stationary Wavelet Transform (á trous), 6
scales, Eigen Subband features [6]. The features are
classified by a 1-NN classification using the Euclidean
metric.

• LDB-WT, Wavelet Decomposition Depth 3, Subband
Energy (over all coefficients) as features [7]. The Lo-
cal Discriminant Basis algorithm is employed to find
an optimal Wavelet decomposition basis with respect
to discrimination between the image classes. After
transforming all images into this basis, for each of the
resulting subbands the energy over all coefficients is
computed for each color channel separately. The en-
ergy values of all channels are then concatenated to
form the feature vectors, which are used in conjunc-
tion with the 1-NN classifier for the classification.

• GMRF-WT, Gaussian Markov Random Fields, Pyra-
midal Wavelet transform, Wavelet Decomposition
Depth 2, Geman neighbourhood of order 5 [4].

The Pyramidal Discrete Wavelet Transform is used to
decompose the images. For the resulting subbands the
Markov parameters are estimated for each color chan-
nel separately, using a Geman neighbourhood of or-
der 5. The concatenated parameters are subsequently
used as feature vectors for the classification by using a
Bayes classifier.

• WTP-SE, Pyramidal Wavelet Transform, Decomposi-
tion Depth 5, Subband Energy (over all coefficients)
as features [7]. The wavelet subbands are used to com-
pute the energy over all coefficients within the sub-
band, which is done for each color channel separately.
The energies of all subbands and color channels are
then concatenated and used for the classification using
the Bayes classifier.

4.1 Multiclassification

Apart from using the methods described in Section 4,
we combine the best methods using a multiclassifier. This
classifier is based on a reliability measure for each single
method, taking into account its classification rate (described
in more detail in [10]). Using the multiclassifier we seek an
optimal combination of methods and the according parame-
ters, with the goal of obtaining a better overall classification
rate.

5. Experimental setup

Our experimental tests distinguish between images cap-
tured with the new modified immersion technique and the
conventional technique. The tests are conducted separately
on images from the bulbus and the pars descendens regions.
The parameter set for each classifier was first computed by
the methods described in Section 4 by using the leave-one-
out cross validation protocol. This was performed sepa-
rately for each duodenal region and imaging technique. The
final results reflect each method’s performance in a leave-
one-out cross validation. Table 1 lists the distribution of
images within the test sets.
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No Celiac Celiac Total
Bulbus Immersion 264 121 385

Bulbus Conventional 116 34 150
Pars Immersion 183 197 380

Pars Conventional 49 35 84

Table 1. Distribution of image data

6. Results

Only results with an overall classification rate better than
80% (for the bulbus) and 73% (for the pars descendens)
are included in the tables. Not all methods are feasible
on grayscale and color images, hence a missing method
does not necessarily indicate a rate below the chosen thresh-
olds. Grayscale and color refer to whether the features
are extracted from each colorchannel separately or from a
grayscale version of the image. The presented numbers are
the percentages of correctly classified images together with
their specificity and sensitivity (TNR and TPR).

TNR indicates the method’s specificity (True Negative
Rate) i.e. the percentage of correctly classified images actu-
ally showing a normal mucosal state, TPR denotes the sen-
sitivity (True Positive Rate) i.e. the percentage of correctly
classified images showing villous atrophy.

Table 2 shows the results of the specific methods for
the bulbus region. We see, that features extracted from the
color space have a slight advantage over grayscale features.
When comparing single methods, both feature extraction
spaces seem feasible.

Images from the set captured with the immersion tech-
nique have an advantage in classification rate over the clas-
sical images. The difference in the bulbus region is be-
tween 1.4% and 9.9% total percentage points. The sensi-
tivity was considerably higher for all methods classifying
the immersion images from the bulbus, while the specificity
did not show a big difference among the image capturing
techniques.

The best classification rates were achieved by the Fourier
methods. This can be explained by the additional feature
set optimization that took place during the evolutionary op-
timization of its ring-shaped filters. However this optimiza-
tion poses the risk of overtraining the classifier when small
unbalanced image sets are present. Features from the Dual
Tree Wavelet Transform and Markov Random Fields per-
form comparably to the Fourier methods, even without fea-
ture set optimization.

Table 3 presents the classification results of images from
the pars descendens region. Again both feature spaces
provide similar results. As expected, the inhomogeneities
within the test set result in a lower classification rate com-
pared to the bulbus test set, of about 8.5% total percent-
age points for immersion and 15% total percentage points
for conventional images. The difference between immer-
sion and conventional images is also present within the pars
descendens. Classification of the immersion set performs
0.5% to 21% total percentage points better. It is interest-
ing that the worse total classification rates compared to the

bulbus are caused by a decrease of specificity. The sen-
sitivity was stable among the two duodenal regions. The
features extracted from the Dual Tree Wavelet Transform
space perform comparably to the Fourier methods again in
the pars descendens. On the other hand Markov Random
Field methods perform worse, compared to the bulbus re-
gion.

6.1 Results of multiclassification

Tables 2 and 3 show the results by combining the best
methods in the subsection Multiclassification. We searched
the best combination of methods for each image region and
capturing technique. The results that were used for the spe-
cific multiclassifiers are shown in bold in Tables 2 and 3.
Each image type and image region was classified separately.

Multiclassification improved the classification rate of
images from the bulbus by 3% total percentage points for
immersion and 4% total percentage points for conventional.
Immersion images still have a slight advantage over con-
ventional images in the bulbus. The results correspond to
the results of the single methods.

The multiclassification of the pars descendens improved
the classification rate by 4% total percentage points for the
immersion and 8% total percentage points for the conven-
tional images. It is interesting that the multiclassification
of the conventional pars descendens images returned a re-
sult with a superior conventional rate of 3% total percentage
points compared to the immersion images. This is remark-
able as most single classification methods performed better
for the immersion image type.

Our analysis of the results showed some interesting facts.
As shown in Table 1 the image set of the conventional im-
ages from the pars descendens is considerably smaller than
the immersion image set of the pars descendens. A single
conventional image that was correctly classified by the mul-
ticlassification had a significant impact of 1.2% total per-
centage points, compared to only 0.26% total percentage
points for the immersion images.

A high diversity among base classifiers is a necessary
condition for an improvement in the ensemble performance.
The diversity gives a measure how correlated classification
outcomes of the single methods are. We applied several
standard diversity measures to analyze our methods. As a
result the mean diversity among the classifiers of the im-
mersion images was only half compared to the conventional
images. Beside that, the base classifiers’ reliabilities were
lower for the conventional images of the pars descendens.
This caused a decrease in the classification rate of 10% to-
tal percentage points when a highly non-linear version of
the remapping function (controlling how strong the reliabil-
ity of a method influences the result of the multiclassifier)
as explained in [10] was used.

The high diversity combined with the small image set
led to the effect, that the multiclassification yields signifi-
cantly better classification rates than the single methods for
the conventional images from the pars descendens.
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Method Bulbus Immersion Bulbus Conventional
TNR TPR Total TNR TPR Total

Color Features
FFT-SVM 96.67 85.00 93.24 93.97 70.59 88.66
FFT-Bayes 92.42 89.17 91.42 94.83 73.53 90.00
FFT-kNN 95.83 86.67 92.80 95.68 58.80 87.33
DT-CWT, Weibull 90.15 79.17 86.72 85.34 50.00 77.33
DT-CWT, Classic 92.80 87.50 91.15 88.79 55.88 81.33
DT-CWT, ES 86.36 77.50 83.59 88.79 44.12 78.67
DWT, Classic 87.88 74.17 83.59 92.24 64.71 86.00
DWT-ES 82.20 76.67 80.47 85.34 47.06 76.67
SWT-ES 83.33 73.33 80.21 84.48 47.06 76.00
Gabor, Classic 90.91 85.83 89.32 89.66 50.00 80.67
GMRF-WT 92.05 85.00 89.84 91.38 58.82 84.00
LDB-WT 87.88 77.50 84.63 91.38 64.71 85.33
WTP-SE 94.32 75.00 88.28 93.10 55.88 84.66

Grayscale Features
DT-CWT, Weibull 89.02 77.50 85.42 87.93 58.82 81.33
DT-CWT, Classic 94.32 78.33 89.32 91.38 52.94 82.67
DWT, Classic 89.39 75.83 85.16 84.48 47.06 76.00
Gabor, Classic 91.29 82.50 88.54 84.48 58.82 78.66

Multiclassification
Multiclassifier 98.11 90.00 95.57 99.14 76.47 94.00

Table 2. Overall bulbus classification perfor-
mance. The results of the methods used for
the multiclassifier are shown in bold.

Method Pars Immersion Pars Conventional
TNR TPR Total TNR TPR Total

Color Features
FFT-SVM 81.42 83.76 82.63 87.50 79.41 84.14
FFT-Bayes 84.70 82.23 83.42 87.50 76.47 82.93
FFT-kNN 79.78 84.77 82.36 72.92 85.29 78.05
DT-CWT, Weibull 78.14 83.25 80.79 68.75 47.06 59.76
DT-CWT, Classic 82.51 82.74 82.63 64.58 52.94 59.76
DWT-ES 68.85 77.66 73.42 62.50 55.88 59.76
Gabor, Classic 78.69 82.74 80.79 60.42 61.76 60.98
LDB-WT 62.84 82.74 73.15 68.75 55.88 63.41
WTP-SE 80.33 69.04 74.47 45.83 91.18 64.63

Grayscale Features
DT-CWT, Weibull 74.86 87.31 81.32 79.17 41.18 63.42
DT-CWT, Classic 76.50 78.17 77.37 77.08 55.88 68.29
DWT, Classic 73.77 79.70 76.84 68.75 64.71 67.07
Gabor, Classic 75.96 78.68 77.37 64.58 58.82 62.20

Multiclassification
Multiclassifier 84.15 92.39 88.42 91.67 91.18 91.46

Table 3. Overall pars descendens classifica-
tion performance. The results of the methods
used for the multiclassifier are shown in bold.

7. Conclusion

Our results show that the detection performance of vil-
lous atrophy in duodenal images by an automated classifi-
cation is heavily dependent on several factors. Beside the
image capturing technique also the way distortions are han-
dled and regions extracted play a big role. Our results show
that the size of the extracted image region of 256 × 256
pixels is not adequate for both regions. Varying texture ori-
entation and zoom scales can not be compensated by smart
region extraction within the pars descendens. We advise to
use a 128 × 128 pixel region for classifying images from
the pars descendens region, while both 256× 256 pixel and
128× 128 pixel regions seem adequate for the bulbus.

Comparing the image capturing techniques, the modi-
fied immersion technique is superior to the conventional
technique. Beside the better classification rate, the over-

all image quality and utility for classification is superior
to the conventional technique as well. We achieved the
best results by using images from the duodenal bulb us-
ing the modified immersion technique. Features from the
Dual Tree Wavelet Transform, the Fourier Transform and
Markov Random Fields gave the most promising results.
This results could be further improved by combining sev-
eral methods into a multiclassifier.
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