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Abstract

This work introduces texture analysis methods that are based on computing the local fractal dimension (or also called the
local density function) and applies them for colonic polyp classification. The methods are tested on 8 HD-endoscopic im-
age databases, where each database is acquired using different imaging modalities (Pentax’s i-Scan technology combined
with or without staining the mucosa) and on a zoom-endoscopic image database using narrow band imaging (NBI). In
this paper, we present three novel extensions to a local fractal dimension based approach. These extensions additionally
extract shape and/or gradient information of the image to enhance the discriminativity of the original approach. To
compare the results of the local fractal dimension based approaches with the results of other approaches, 5 state of the
art approaches for colonic polyp classification are applied to the employed databases. Experiments show that local fractal
dimension based approaches are well suited for colonic polyp classification, especially the three proposed extensions. The
three proposed extensions are the best performing methods or at least among the best performing methods for each of
the employed databases.

The methods are additionally tested by means of a public texture image database, the UIUCtex database. With
this database, the viewpoint invariance of the methods is assessed, an important features for the employed endoscopic
image databases. Results imply that most of the local fractal dimension based methods are more viewpoint invariant
than the other methods. However, the shape, size and orientation adapted local fractal dimension approaches (which
are especially designed to enhance the viewpoint invariance) are in general not more viewpoint invariant than the other
local fractal dimension based approaches.
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1. Introduction

In this paper, texture analysis methods are applied for
the automated classification of colonic polyps in endo-
scopic images under unknown viewpoint and illumination
conditions. Endoscopic images occur with different scales,
orientations or perspectives, depending on the distance
and perspective of the camera to the object. Figure 1
shows some examples for the field of view depending on
the endoscopic viewpoint to the mucosal wall.

The varying viewpoint condition combined with the
large intra-class and small inter-class variations of polyps
make it very difficult to distinguish between different types
of polyps. The viewpoint invariance of the employed meth-
ods is an important feature to at least reduce the problem
with the varying viewpoint conditions.

(Uhl et al., 2011) and (Häfner et al., 2014c) showed that
methods based on fractal analysis are able to combine
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viewpoint invariance with high discriminativity and are
quite suitable for endoscopic image classification.

The term “fractal” was first used by the mathematician
Benoit Mandelbrot as an indication of objects whose com-
plex geometry cannot be characterized by an integral di-
mension. Fractal geometry is able to describe the irregular
or fragmented shape of natural features as well as other
complex objects that traditional Euclidean geometry fails
to analyze. The fractal dimension is the key quantity to
describe the fractal geometry and the heterogeneity of ir-
regular shapes. Roughly spoken, the fractal dimension is
a ratio that compares how the detail of a shape changes
with the scale at which it is measured.

However, the fractal dimension is only one number,
which is not enough to describe an object.

As an extension to the classical fractal analysis, multi-
fractal analysis provides more powerful descriptions. Ap-
plied to image processing, first define a point character-
ization on an image according to some criteria (e.g. the
intensity values of the pixels), then the fractal dimensions
are computed for every point set from this categorization
(e.g. categorize the image pixels by their intensity and ob-
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Figure 1: The field of view (FOV) depending on the endoscopic
viewpoint to the mucosal wall

tain binary images by setting a pixel to 0 if its intensity
value is in the considered set and to 1 otherwise). The
collection of the fractal dimensions of the binary images is
called a multi fractal spectrum (MFS) vector.

Another extension to the classical analysis to provide
a more powerful description is to compute local fractal
features. These features are already the norm in fractal
based image segmentation (Chaudhuri and Sarkar, 1995;
Xia et al., 2006).

In Xu et al. (2009), local fractal based features (we
denote them as local fractal dimensions) are computed
densely followed by applying multifractal analysis to these
features (categorize the local fractal dimensions by their
values, thereby obtain binary images followed by comput-
ing the fractal dimension of the binary images). Another
approach (Varma and Garg, 2007) using the local fractal
dimension (LFD) is pre-filtering the image with the MR8
filter bank obtaining 8 filtered images on which the local
fractal dimensions are computed. Subsequently, the bag
of visual words approach is used to build histograms of
the LFD’s. It has been shown that the LFD is invariant
to bi-Lipschitz transformations, such as local affine or per-
spective transformations and certain smooth, non-linear
transformations (Xu et al., 2009). The LFD is also in-
variant to local affine illumination changes as showed in
Xu et al. (2009).

Roughly speaking, the LFD at an arbitrary location of
an image is computed by summing up intensity values in
disk shaped areas with fixed radii surrounding the con-
sidered (pixel) location followed by analyzing the increase
of the sums for increasing radii. Actually, the scale and
perspective of the object or texture in the image at the
considered location is not taken into account, the radii are
always the same and the areas are always disk shaped. In
Häfner et al. (2014c), a more viewpoint adaptive approach
is presented. This LFD based approach uses ellipsoidal
areas instead of disk shaped areas. The sizes, shapes and
orientations of the ellipsoidal areas are adapted to the local
texture structure by analyzing the shape, size and orienta-

tion of connected components (blobs). Instead of a dense
computation of the LFD’s like in Xu et al. (2009) and
Varma and Garg (2007), the size, shape and orientation
adapted LFD’s in Häfner et al. (2014c) are computed only
for interest points, more precisely only for those points
that are the centers of the area of a blob.

A review about methods using fractal and multifractal
analysis is presented in Lopes and Betrouni (2009).

In this work we compare methods based on the LFD,
compare their classification results on different image
databases, analyze the reasons for those results and ex-
amine the affine invariance of the methods. We will
test the LFD approaches on 9 different endoscopic im-
age databases, which consist of highly detailed endoscopic
images with 9 different imaging modalities. Additionally
we apply the LFD based approaches on a public texture
database with huge viewpoint variations, the UIUCtex
database (S. Lazebnik and Ponce, 2005).

The contributions of this manuscript are as follows:

• We apply 7 LFD based methods for the automated
classification of colonic polyps using 9 different en-
doscopic image databases. 8 databases are gathered
using a HD-endoscope with 8 different imaging modal-
ities (Pentax’s i-Scan in combination with staining the
mucosa) and one database is gathered using a zoom-
endoscope with NBI as imaging modality. To the best
of our knowledge, this is the highest number of endo-
scopic polyp databases that has been used in publica-
tions so far. The results of the LFD based methods
are compared and the differences between the meth-
ods and their impacts to the results are analyzed.

• 5 (non LFD based) state-of-the-art approaches for
colonic polyp classification are applied to the classifi-
cation of our databases to compare their results with
the results of the LFD based methods.

• We present three novel extensions of an LFD ap-
proach. For each database, the results of these exten-
sions are among the best results of all the employed
methods.

• We assess the viewpoint invariance of the methods by
means of the a public texture database, the UIUC-
tex database (S. Lazebnik and Ponce, 2005). Results
imply, that most of the LFD based methods are more
viewpoint invariant than the other methods. The size,
shape and orientation adapted LFD methods are gen-
erally not more viewpoint invariant than the other
LFD based methods.

Already in Häfner et al. (2014c), a LFD-based method
was proposed for the classification of colonic polyps. How-
ever, this publication used only one endoscopic image
database (one of our 8 HD-endoscopic image databases)
and compared the result of the proposed method with only
one other LFD based approach and three non LFD based
approaches. Furthermore, neither the differences between
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the two LFD based approaches were analyzed nor the view-
point invariance of the approaches was tested.

This paper is organized as follows. In Section 2 we
briefly introduce the concept of the computer-assisted di-
agnosis of polyps by the automated classification of mu-
cosa texture patches and review the corresponding state-
of-the-art. In Section 3, we describe the feature extraction
approaches and compare the approaches that are based
on computing the LFD. The experimental setup, the used
databases and the results are presented in Section 4. Sec-
tion 5 presents the discussion and Section 6 concludes our
work. The acronyms used in this work are listed in the
Appendix.

2. Colonic Polyp Classification

Colonic polyps have a rather high prevalence and are
known to either develop into cancer or to be precursors
of colon cancer. Hence, an early assessment of the malig-
nant potential of such polyps is important as this can lower
the mortality rate drastically. As a consequence, a regular
colon examination is recommended, especially for people
at an age of 50 years and older. The current gold standard
for the examination of the colon is colonoscopy, performed
by using a colonoscope. Modern endoscopy devices are
able to take pictures or videos from inside the colon, al-
lowing to obtain images (or videos) for a computer-assisted
analysis with the goal of detecting and diagnosing abnor-
malities.

Colonic polyps are a frequent finding and are usually
divided into hyperplastic, adenomatous and malignant. In
order to determine a diagnosis based on the visual ap-
pearance of colonic polyps, the pit pattern classification
scheme was proposed by (Kudo et al., 1994). A pit pat-
tern refers to the shape of a pit, the opening of a colorectal
crypt. This classification scheme allows to differentiate be-
tween normal mucosa and hyperplastic lesions, adenomas
(a pre-malignant condition), and malignant cancer based
on the visual pattern of the mucosal surface. The removal
of hyperplastic polyps is unnecessary and the removal of
malignant polyps maybe hazardous. Thus, this classifi-
cation scheme is useful to decide which lesions need not,
which should, and which most likely cannot be removed
endoscopically. For these reasons, assessing the malignant
potential of lesions at the time of colonoscopy is important,
as this would allow to perform targeted biopsy.

The various pit pattern types are presented in Figure
3 e–f. The pit pattern classification scheme differentiates
between six types. Type I (normal mucosa) and II (hyper-
plastic polyps) are characteristics of non-neoplastic lesions,
type III-S, III-L and IV are typical for adenomatous polyps
and type V is strongly suggestive to malignant cancer.

To enable an easier detection and diagnosis of the ex-
tent of a lesion, there are two common image enhancement
technologies:

1. Conventional chromoendoscopy (CC) came into clin-
ical use 40 years ago. By staining the mucosa using

(indigocarmine) dye spray, it is easier to find and clas-
sify polyps.

2. Digital chromoendoscopy is a technique to facilitate
“chromoendoscopy without dyes” (Kiesslich, 2009).
The strategies followed by major manufacturers differ
in this area:

• In Narrow band imaging (NBI, Olympus), nar-
row bandpass filters are placed in front of a con-
ventional white-light source to enhance the detail
of certain aspects of the surface of the mucosa.

• The i-Scan (Pentax) image processing technol-
ogy (Kodashima and Fujishiro, 2010) is a digital
contrast method which consists of combinations
of surface enhancement, contrast enhancement
and tone enhancement.
The FICE system (Fujinon) decomposes images
by wavelength and then directly reconstructs im-
ages with enhanced mucosal surface contrast.
Both systems (i-Scan and FICE) apply post-
processing to the reflected light and thus
are called ”computed virtual chromoendoscopy
(CVC)“.

Previous works for the computer assisted staging
of colon polyps, which are using endoscopes produc-
ing highly detailed images in combination with differ-
ent imaging modalities, can be divided in three cate-
gories: High definition (HD) endoscope combined with
or without staining the mucosa and the i-Scan tech-
nology (Häfner et al., 2014c), high-magnification chro-
moendoscopy (Häfner et al., 2009) and high-magnification
endoscopy combined with NBI (Tamaki et al., 2013;
Gross et al., 2012). In this work we use highly detailed
images acquired by a high definition (HD) endoscope
without magnification in combination with CC and CVC
(the i-Scan technology) and images acquired by a high-
magnification endoscope combined with NBI.

Further examples of approaches for colonic
polyp classification classification are Iakovidis et al.
(2005); Karkanis et al. (2003); Maroulis et al. (2003);
Iakovidis et al. (2006).

In addition to classical endoscopy, endomicroscopy
and wireless capsule endoscopy are used for the exam-
ination of the gastro-intestinal tract. Endomicroscopy
(Jabbour et al., 2012) is a technique to obtain histology-
like images and is also known as ’optical biopsy’. For ex-
ample Andrė et al. (2011) and Andrė et al. (2012) show
state of the art approaches based on semantics and visual
concepts for the automated diagnosis of colonic polyps us-
ing endomicroscopy.

Wireless capsule endoscopy (Iakovidis and Koulaouzidis
(2015); Yuce and Dissanayake (2012)) is mainly used to
examine parts of the gastrointestinal tract that cannot be
seen with other types of endoscopes. The capsule has the
size and shape of a pill and contains a tiny camera. After a
patient swallows the capsule, it takes images of the inside
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(a) Original (b) i-Scan 1 (c) i-Scan 2 (d) i-Scan 3

(e) CC (f) CC-i-Scan1 (g) CC-i-Scan2 (h) CC-i-Scan3

Figure 2: Images of a polyp using digital (i-Scan) and/or conven-
tional chromoendoscopy (CC)

of the gastro-intestinal tract. An example for the auto-
mated detection and classification of colonic polyps using
capsule endoscopy can be seen in Romain et al. (2013).

2.1. HD endoscopy in combination with the i-Scan image
processing technology

In this work, the HD endoscopic images are gathered
using three different i-Scan modes:

• i-Scan 1 includes surface enhancement and contrast
enhancement. Surface enhancement mode augments
pit pattern (see Figure 3) and surface details, pro-
viding assistance to the detection of dysplastic areas.
This mode enhances light-to-dark contrast by obtain-
ing luminance intensity data for each pixel and ad-
justing it to accentuate mucosal surfaces.

• i-Scan 2 includes surface enhancement, contrast en-
hancement and tone enhancement. Expands on i-
Scan 1 by adjusting the surface and contrast en-
hancement settings and adding tone enhancement at-
tributes to the image. It assists by intensifying bound-
aries, margins, surface architecture and difficult-to-
discern polyps.

• i-Scan 3 also includes surface enhancement, contrast
enhancement and tone enhancement. Similar to i-
Scan 2, with increased illumination and emphasis on
the visualization of vascular features. This mode ac-
centuates pattern and vascular architecture.

In Figure 2 we see an image showing an adenomatous
polyp without image enhancement technology (a), ex-
ample images using CVC (b,c,d), an image using CC
(e) and images combining CC and CVC by using the
i-Scan technology to visually enhance the already stained
mucosa (f,g,h).

In our work we use a 2-class classification scheme for our
8 image databases gathered by HD endoscopy in combina-
tion with CC and the i-Scan technology. Lesions of pit

pattern type I and II can be grouped into non-neoplastic
lesions (healthy mucosa) and types III to V can be grouped
into neoplastic lesions (abnormal mucosa). This allows a
grouping of lesions into two classes, which is quite relevant
in clinical practice as indicated in a study by (Kato et al.,
2006). In Figure 3 we see the various pit pattern types
divided into two classes (denoted as class ”Healthy“ and
class “Abnormal”) along with exemplar images of these two
classes obtained by a HD endoscope using CC and i-Scan
mode 2.

(a) Healthy (b) Healthy (c) Abnormal (d) Abnormal

I II

(e) Healthy

III-S III-L VI V

(f) Abnormal

Figure 3: Example images of the two classes (a–d) and the pit pattern
types of these two classes (e–f)

One of the aims of this work is to compare classification
results with respect to using CVC (i-Scan) or CC (stain-
ing). We will also examine the effects of combinations of
CVC and CC on the classification results.

2.2. High-magnification endoscopy in combination with
NBI

NBI (Gono et al., 2003) is a videoendoscopic system us-
ing RGB rotary filters placed in front of a white light
source to narrow the bandwidth of the spectral transmit-
tance. NBI enhances the visibility of microvessels and their
fine structure on the colorectal surface. Also the pits are
indirectly observable, since the microvessels between the
pits are enhanced in black, while the pits are left in white.
In this paper we use the classification scheme of the med-
ical research group of the Hiroshima University Hospital
(Kanao et al., 2008). This classification scheme divides
the microvessel structure in an NBI image into types A, B
and C. In type A microvessels are either not or only slightly
observed (opaque with very low contrast). In type B, fine
microvessels are visible around clearly observed pits. Type
C is divided into three subtypes C1, C2, and C3. In type
C3, which exhibits the most irregular texture, pits are al-
most invisible because of the irregularity of tumors, and
microvessels are irregular and thick, or heterogeneously
distorted. In Figure 4 we see examples from the classes A,
B and C3 (without CC).

It has been shown that this classification scheme
has a strong correlation with histological diagnosis
(Kanao et al., 2008). 80% of type A corresponds to hy-
perplasias and 20% to tubular adenomas. 79.7% of type B
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Figure 4: Example of NBI images of types A (top row), B (middle
row) and C3 (bottom row)

corresponds to tubular adenomas and 20.3% to carcinomas
with intramucosal invasion to scanty submucosal invasion.
100% of type C3 correspond to carcinomas with massive
submucosal invasion. Intramucosal invasion to scanty sub-
mucosal invasion (Pit Pattern type VI) demands further
examinations and carcinomas with massive submucosal in-
vasion (Pit Pattern type VN ) requires surgery. Therefore it
is important to detect type C3 among other types, instead
of differentiating just between the two classes of neoplas-
tic and non-neoplastic lesions. Like in Kanao et al. (2008)
and Tamaki et al. (2013), types C1 and C2 are excluded
from the experiments of this paper.

3. Local Fractal Dimension based Feature Extrac-

tion Approaches

3.1. The Fractal Dimension

As already mentioned in the introduction, the fractal
dimension is the key quantity to describe the fractal ge-
ometry and the heterogeneity of irregular shapes. Funda-
mental to the fractal dimension is the concept of “measure-
ments at scale σ”. For each σ, we measure an object in a
way that ignores irregularity of size less than σ, and we
analyze how these measurements behave as σ goes to 0. A
well-known example to illustrate this concept is the length
of a coastline measured with differently long measuring
sticks (see Figure 5).

For most natural phenomena, the estimated quantity
(e.g. the length of a coast) is proportional to (1/σ)D for
some D. For most natural objects, D is almost the same
for small scales σ. Its limit D for σ → 0 is defined as the
local fractal dimension. In case of an irregular point set E
defined on R

2, the fractal dimension of E is defined as

dim(E) = lim
σ→0

log(N(σ,E))

− logσ
, (1)

(a) 11.5 × 200 =
2300km

(b) 28 × 100 =
2800km

(c) 70 × 50 =
3500km

Figure 5: As the length of the measuring stick is decreasing, the
total length of the coastline measured is increasing.

(a) (b) (c) (d)

Figure 6: Fractal dimension D in 2D space. (a) Smooth spiral curve
with D = 1, (b) the Koch snowflake with D ≈ 1.26 (c) the Sierpinski-
Triangle with D ≈ 1.58 and (d) the checkerboard with D = 2.

where N(σ,E) is the smallest number of sets of diameter
less than sigma that cover E. The set consists of closed
disks of radius σ or squares of side σ. In practice, the frac-
tal dimension is usually computed using the box counting
method (dividing the space with a mesh of quadratic boxes
of size σ×σ, and counting the boxes occupied by the point
set).

The fractal dimension D of any object in 2D space is
between 0 and 2. The fractal dimensions of a point, a
smooth curve or a completely filled rectangle is the same
as their topological dimension (0, 1 and 2). Irregular sets
have a fractal dimension between 0 and 2 (see Figure 6).
For example a curve with fractal dimension very near to
1 behaves similar to an ordinary line, but a curve with
fractal dimension close to 2 winds convolutedly through
space very nearly like a surface.

3.2. The Local Fractal Dimension

Let µ be a finite Borel regular measure on R
2.

For x ∈ R
2, denote B(x, r) as the closed disk with cen-

ter x and radius r > 0. µ(B(x, r)) is considered as an
exponential function of r, i.e. µ(B(x, r)) = c rD(x), where
D(x) is the density function and c is some constant. As
an example, µ(B(x, r)) could be the sum of all pixel inten-
sities that lie within a closed disk of radius r centered at
an image point x, i.e. µ(B(x, r)) =

∑

||y−x||≤r I(y).

The local fractal dimension (Xu et al., 2009) (or also
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called the local density function) of x is defined as

LFD(x) = lim
r→0

logµ(B(x, r))

log r
. (2)

The LFD measures the “non-uniformness” of the intensity
distribution in the region neighboring the considered point.
In Figure 7 we show examples of values of the LFD for
different intensity distributions. If the intensities decrease
from the center outwards, then the center point has a LFD
< 2. For uniform intensities, the LFD = 2. Finally, if the
surrounding intensities increase from the center outwards,
the LFD of the center point is > 2.

(a) (b) (c)

Figure 7: LFD’s at the center point using µ(B(x, r)) =∑
||y−x||≤r I(y): (a) LFD=1.64, (b) LFD=2 (c) LFD=2.37.

In that way, the pit pattern structure of the mucosa pro-
vide high responses in terms of the LFD. Pits produce high
LFD values and the peaks of the pit pattern structure pro-
duce low LFD values. So the LFD response is highlighting
the pit pattern structure of the mucosa. In Figure 8 (a)
and (b) we see an image of class abnormal and its LFD’s
and in (c) and (d) we see an image of healthy mucosa and
its LFD’s (both images are gathered using a HD endoscope
combined with i-Scan mode 2).

As already mentioned before, the LFD is invariant under
the bi-Lipschitz map, which includes view-point changes
and non-rigid deformations of texture surface as well as
local affine illumination changes (Xu et al., 2009). A bi-
Lipschitz function g must be invertible and satisfy the
constraint c1||x − y|| ≤ ||g(x) − g(y)|| ≤ c2||x − y|| for
c2 ≥ c1 > 0. The core of the proof in Xu et al. (2009)
shows that for an bi-Lipschitz transform g applied to an
image I(x) with I ′(x) = I(g(x)), the LFD of I(x) and
I(g(x)) are identical:

log(c21µ(B(x, r)))

log r
≤ log(µ(B(g(x), r)))

log r
≤ log(c22µ(B(x, r)))

log r
.

Since

lim
r→0

log(c2iµ(B(x, r)))

log r
= lim

r→0

2 log ci
log r

+ lim
r→0

logµ(B(x, r))

log r

for i ∈ {1, 2} and since log 2ci
log r

is zero for r → 0 (log r →
−∞), the fractal dimensions D(x) and D(g(x)) are iden-
tical.

However, the proof shows that the LFD is invariant in
a continuous scenario, but not in case of a discrete sce-
nario (e.g. an image), since r → 0 is not possible for an

(a) Abnormal

1.8

1.9

2

2.1

2.2

2.3

(b) LFD

(c) Healthy

1.85

1.9

1.95

2

2.05

2.1

2.15

(d) LFD

Figure 8: Example images of class abnormal and healthy and their
LFD’s using µ(B(x, r)) =

∑
||y−x||≤r I(y).

image with limited resolution. So the LFD is not proven
to be viewpoint invariant in case of any image process-
ing tasks. Of course, total viewpoint invariance in im-
age processing tasks is impossible since images appear to-
tally different for huge differences in scale. Despite their
missing actually viewpoint invariance, the viewpoint in-
variance of the two approaches using the LFD (Xu et al.,
2009; Varma and Garg, 2007) seems to be sufficient to
achieve high classification rates on the UIUCtex database
(S. Lazebnik and Ponce, 2005), a texture database con-
sisting of texture images which are acquired under quite
different viewpoint conditions.

In practical computation, the LFD at each pixel location
x of an image is computed by linear fitting the slope of the
line in a scaling plot of log µ(B(x, r)) against log r for r =
{1, . . . , 8}. In Figure 9, we visually show the computation
of the LFD for the pixel location x of an image I using
µ(B(x, r)) =

∫

B(x,r)
I(x) dx =

∑

||y−x||≤r I(y).

3.3. Feature extraction methods based on the LFD

3.3.1. The MFS-LFD approach

In the approach of Xu et al. (2009), three different defi-
nitions of µ(B(x, r)) are used, which capture different as-
pects of the structure of textures:

µ1(B(x, r)) =
∫

B(x,r)
I(σ) dx (3)

µ2(B(x, r)) =
∫

B(x,r)

∑4
k=1(fk ∗ (I(σ)2)

1

2 dx (4)

µ3(B(x, r)) =
∫

B(x,r) |Ixx(σ) + Iyy(σ)| dx, (5)

where I(σ) is the Gaussian blurred image I using variance
σ2, Ixx(σ) is the second derivative in x-direction, ” ∗ ” is
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log r

lo
g
 u

(B
(x

,r
))

curve of log u(B(x,r)) against log r

fitted line with slope LFD(x)=2.47

Figure 9: In the image to the left we see the schematic representation
of a pixel location x (orange dot) and the corresponding disks B(x, r)
(yellow). The plot to the right visually shows the computation of the
LFD by linear fitting the slope of the line of log µ(B(x, r)) against
log r.

the 2D convolution operator and {fk, k = 1, 2, 3, 4} are
four directional operators (derivatives) along the vertical,
horizontal, diagonal, and anti-diagonal directions.

Let Eα be the set of all image points x with LFD’s in
the interval α:

Eα = {x ∈ R
2 : LFD(x) ∈ α}.

Usually this set is irregular and has a fractional dimension
f(α) = dim(Eα). The feature vector of an image I consists
of the concatenation of the fractal dimensions f(α) for the
three different measures µk(B(x, r)), k ∈ {1, 2, 3}.

That means the range of values of the LFD’s is splitted
into N equally sized intervals αi, i ∈ {1, . . . , N} (N = 26
in Xu et al. (2009)). So for each of the three measures
µk(B(x, r)), we generate 26 binary images Iαi

b , where
Iαi

b (x, y) = 1 if LFD(x, y) ∈ αi and Iαi

b (x, y) = 0 oth-
erwise. The final feature vector consists of the fractal di-
mensions of the 26 binary images per measure µk(B(x, r)).
So the feature vector of an image consists of 3 ∗ 26 = 78
features per image. We furtherly denote this approach as
the multi fractal spectrum LFD (MFS-LFD) approach.

3.3.2. The MR8-LFD approach

In the approach presented in Varma and Garg (2007),
the images are convoluted with the MR8 filter bank
(Varma and Zissermann, 2005; Geusebroek et al., 2003), a
rotationally invariant, nonlinear filterbank with 38 filters
but only 8 filter responses. It contains edge and bar filters,
each at 6 orientations and 3 scales, as well as a rotation-
ally symmetric Laplacian and Gaussian filter (see Figure
10). Rotation invariance is achieved by taking only the
maximum response over all orientations for each scale of
the edge and bar filters.

The LFD’s are computed for each of the 8 filter re-
sponses fi(I), i ∈ {1, . . . , 8} using the measure

µ(B(x, r)) =

∫

B(x,r)

|fi(I)| dx.

Figure 10: The filters of the MR8 filter bank

So for each pixel of an image there is an 8-dimensional
LFD vector. Finally, the bag of visual words approach is
applied to the LFD vectors. The visual words are learned
by k-means clustering the LFD vectors using 100 cluster
centers per image class. The feature vector of an image
consists of the resulting histograms of the bag of visual
words approach. We furtherly denote this approach as the
MR8-LFD approach.

For both, the MFS-LFD and the MR8-LFD approach,
disks B(x, r) with r = {1, . . . , 8} are used to sum the inten-
sity values I(y) (where I(y) is the Gaussian blurred image
I(σ), the gradient image or the Laplacian of the image in
case of the MFS-LFD approach and one of the 8 MR8 filter
responses in case of the MR8-LFD approach) surrounding
the considered pixel x with ||x− y|| ≤ r. We can interpret
these disks as circle shaped binary filters, with which the
image (respectively its filter responses or its derivatives) is
filtered.

3.3.3. The Blob-Adapted LFD approach

In Häfner et al. (2014c), we proposed a feature extrac-
tion method that is derived from the local fractal dimen-
sion. However, instead of disk shaped filters with preas-
signed radii (B(x, r)), we used ellipsoidal binary filters and
anisotropic, ellipsoidal Gaussian filters fitted to the shape,
size and orientation of the local texture structure. The
shapes, orientations and sizes of the filters are adapted to
the shapes, orientations and sizes of connected components
(blobs).

These blobs are generated by a segmentation algorithm
(Häfner et al., 2014c), that applies local region grow-
ing to the maxima and minima of the image in a sim-
ilar way as the watershed segmentation by immersion
(Vincent and Soille, 1991; Roerdink and Meijster, 2000).

The blobs represent the local texture structures of an
image. We differentiate between blobs evolved from local
minima (pit blobs) and blobs evolved from local maxima
(peak blobs) of an image (see Figure 11). Roughly said, be-
ginning with a local minima (maxima), the algorithm adds
those neighboring pixels to the considered minima (max-
ima), which have the smallest (highest) intensity value of
all neighboring pixels. In this way we generate a blob
and this blob is growing as long as the darkest (bright-
est) neighboring pixel of the blob is brighter (darker) or
equally bright (dark) as the brightest (darkest) pixel of the
blob. If the darkest (brightest) neighboring pixel is darker
(brighter) as the brightest (darkest) pixel of the blob, the
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region growing algorithm stops resulting in a pit (peak)
blob b evolved from the local minima (maxima).

The idea behind this segmentation approach is that dif-
ferent classes of polyps have different typical pit pattern
types (see Figure 3). By filling up the pits and peaks of a
mucosal image, the resultant blobs represent the shapes of
local structures of the image including the different types
of pit pattern. In that way the shape of the blobs contain
information that enables an distinction between healthy
and abnormal mucosa (see Häfner et al. (2014a)).

For further feature extraction (computing the local frac-
tal dimension derived feature), only the blobs with N ≥ 8
pixels are used. In this way it is ensured that only these
blobs are used which represent a distinct pit or peak and
exclude those blobs which evolve of minima or maxima
that are caused by noise. For each resulting blob, the
inertia matrix is computed and from these matrices we
determine the eigenvectors and eigenvalues.

(a) Image (b) Peak blobs (c) Pit blobs

Figure 11: The extracted peak and pit blobs of the image

The orientation and shape of an elliptic filter is derived
from the eigenvectors and eigenvalues of the inertia matrix
of a blob. That means for each blob b, a specific filter is
generated and its shape and orientation is adapted to the
considered blob. The size of the elliptic filters is adapted to
the number of pixels of the corresponding blob (the higher
the number of pixels, the bigger the size of the filter).

Like in the two previous approaches, 8 differently sized
binary filters are used (disks B(x, r) with r = {1, . . . , 8}
in case of the previous approaches). The size of the 8 el-
liptic binary filters is controlled by 8 threshold parameters
ti ×

√

N/π, i ∈ {1, . . . 8} (ti, i ∈ {1, . . .8} is fixed and
strictly monotonic increasing and N is the number of pix-
els of the considered blob). Additionally to the 8 binary
filters Eti

b , 8 Gaussian filters are used, whose shape and
orientation is equally determined as for the binary filters.
Instead of the threshold parameters ti, 8 standard devia-
tions σi ×

√

N/π, i ∈ {1, . . . 8} are used as size-perimeters
for the Gaussian filters Gσi

b (see (Häfner et al., 2014c)),
where σi, i ∈ {1, . . . 8} is fixed and strictly monotonic in-
creasing.

The parameters ti and σi are chosen so that the filters
uniformly gain in size with increasing i.

In Figure 12 we see an image patch containing a blob b
and the corresponding binary and Gaussian filters.

For a given Blob b with center position (x, y) in the
image I and the corresponding filters Gσi

b (Eti
b analogous)

Patch with marked

position of the blob:

Blob b
=0.6
2

=1
3

=1.5
4

=2
5

=2.75
6
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8
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7
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Figure 12: A patch containing a blob b in his center and the corre-
sponding binary elliptic filter masks E

ti
b

and elliptic Gaussian filter
masks G

σi
b

.

with filter size f × f , µ is defined as follows:

µ(Gσi

b ) =

f−1

2
∑

x=− f−1

2

f−1

2
∑

y=− f−1

2

I(x− x, y − y) Gσi

b

(

x, y
)

The LFD derived features are computed separately for
binary and Gaussian filters and only for interest points,
which are defined as the centers of the blobs. The two
local fractal dimensions derived features for a Blob b are
defined as:

LFDE(b) = lim
i→0

logµ(Eti
b )

log i
, LFDG(b) = lim

i→0

logµ(Gσi

b )

log i
,

(6)
where σi and ti are strictly monotonic increasing. Equally
to the original LFD, the practical computation of the
LFDE (LFDG) is done by linear fitting the slope of the
line in a scaling plot of logµ(Eti

b ) (log µ(Gσi

b )) against log i
with i ∈ {1, . . . , 8}.

Since the two features LFDE and LFDG in this approach
are derived from the LFD as defined in the two previous
approaches (MFS-LFD and MR8-LFD), we will further
denote them as blob-adapted LFD (BA-LFD).

The BA-LFD measures the “non-uniformity” of the in-
tensity distribution in the region and neighboring region
of a blob. Starting with the center region of a pit or peak,
it analyzes the changes in the intensity distribution with
expanding region. In that way it analyzes the changing
intensity distribution from the inside to the outside of a
pit or peak in an image. Since size, shape and orientation
of the filters are adapted to the blob representing the pit
or peak, the BA-LFD should be even more invariant to
varying viewpoint conditions as the LFD using disks with
fixed radii (Xu et al., 2009).
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The BA-LFD approach was especially designed to clas-
sify polyps using the CC-i-Scan databases. It finds the
pits and peaks of the pit pattern structure and then filters
the area in and surrounding the detected pits with filters
that are shape, size (= scale) and orientation adapted to
the pits and peaks.

The final feature vector of an image consists of the con-
catenation of the histograms of the LFDE ’s separately
computed for the pit and peak blobs of an image and the
histograms of the LFDG’s separately computed of the pit
and peak blobs of an image. Each of the 4 histograms con-
sists of 15 bins. All parameter values (e.g. the number of
bins per histogram, σi and ti) are taken from the original
approach (Häfner et al., 2014c).

Distances between two feature vectors are measured us-
ing the χ2 statistic, which has been frequently used to
compare probability distributions (histograms) and is de-
fined by

χ2(x, y) =
∑

i

(xi − yi)
2

xi + yi
. (7)

Also the 3 extensions of the BA-LFD approach (see Sec-
tion 3.5) use the χ2 statistic as distance metric. The his-
tograms of the BA-LFD approach (and its 3 extensions)
are not normalized. In case of the experiments using the
NBI database, the values of the histograms of an image are
divided by the number of pixels of the considered image,
to balance the different sizes of the NBI images. This ap-
proach will be further denoted as the BA-LFD approach.

3.4. Closing the gap between LFD and BA-LFD

As already mentioned before, there are major differences
between the LFD and the BA-LFD. Contrary to the LFD,
the filters of the BA-LFD are

• scale-adapted by fitting the size of the filters to the
number of pixels per blob,

• shape and orientation-adapted by fitting the shape
and orientation of the filters to the shape and orien-
tation of the blobs,

• only applied on interest points, which are defined as
the centers of peak and pit blobs that are detected by
an segmentation algorithm,

• partly Gaussian filters and partly binary filters (in-
stead of only binary filters).

To analyze the weak and strong points of the BA-LFD
compared to the LFD and to analyze which of the adap-
tions make sense and which not, we will create methods
that are intermediate steps between the LFD and the BA-
LFD. That means we leave out one or several of the four
adaptation steps that turn the LFD into the BA-LFD. For
a better comparability of the results, for each intermediate
step the histograms of the LFD’s (or BA-LFD’s) are used
as features. It should be noted that the computation of
LFD’s (BA-LFD’s) only on interest points means that we

Adaption
Nr. Scale Shape Int. Points Gaussian Filters
1 x x x x
2 x x x X

3 x x X x
4 x x X X

5 X x X x
6 X x X X

7 X X X x
8 x X X X

9 X X X X

Table 1: The adaptions of each of the 9 intermediate steps beginning
with the DLFD (1) and ending with the BA-LFD (9).

separately compute histograms of the LFD’s (BA-LFD’s)
of pit and peak blobs, whereas a dense computation of the
LFD’s means that we compute only one histogram of the
LFD’s.

Altogether, we analyze 9 methods that are intermediate
steps between LFD and BA-LFD:

1. Dense computation of the LFD’s without any adap-
tion and disk radii r = 1 − 8. We furtherly denote
this approach as dense LFD (DLFD).

2. Like in (1.), but we additionally use isotropic Gaus-
sian filters with standard deviations σi, i ∈ {1, . . .8}
without any scale-adaption.

3. The LFD’s are computed like in (1.), but only on in-
terest points.

4. The LFD’s are computed only on interest points like
in (3.). Additionally Gaussian filters are used (like in
2.)).

5. The LFD’s are computed on interest points and the
sizes of the circle shaped binary filters are adapted to
the number of pixels of the blobs and the thresholds
ti, i ∈ {1, . . . 8}.

6. Like in (5.), but we additionally use non-isotropic (el-
liptic) Gaussian filters whose size is adapted to the
number of pixels of the blobs.

7. Like the BA-LFD approach, but without Gaussian
filters. The difference to (5) is the elliptic shape and
the adapted orientation of the filters.

8. Like the BA-LFD approach, but without the scale
adaption of the binary and Gaussian filters. The dif-
ferences to (4.) are the elliptic shape and the adapted
orientation of the filters and the use of the size pa-
rameters ti, i ∈ {1, . . . 8} instead of the disk radii
r = 1− 8.

9. The BA-LFD approach.

In Table 1, we see which of the 4 major differences be-
tween the LFD and BA-LFD (the adaptions of the BA-
LFD to the LFD) are applied to each of the 9 intermediate
steps between LFD and BA-LFD.
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3.5. Extensions to the BA-LFD approach

In this section we propose three new variations of the
BA-LFD approach.

3.5.1. The Blob-Adapted Gradient LFD Approach

This approach especially analyzes the edge information
of an image. First the BA-LFD approach is applied to
the image. In the second part of the approach we apply
the BA-LFD approach to the gradient magnitude image
IG with

IG =
√

I2x + I2y ,

where Ix is the derivative of I in x-direction and Iy is the
derivative in y-direction. The final feature vector of an
image consists of the concatenation of the four histograms
of the original BA-LFD approach and the four histograms
of the BA-LFD’s from the gradient magnitude image IG.

It should be noted that the segmentation approach gen-
erates a higher number of blobs if it is applied to the gra-
dient magnitude images than if it is applied to the original
image (about 1.5 times as much) and thus the values of
the histograms of the gradient magnitude image are about
1.5 times as high than those of the original image. Since
the histograms are not normalized, the histograms of the
gradient magnitude image have a slightly higher impact on
the classification of the images than those of the original
image.

We will furtherly denote this approach as blob-adapted
gradient LFD (BA-GLFD) approach.

3.5.2. The Blob Shape adapted LFD Approach

Our second approach additionally analyzes the shape
and contrast of the blobs. Already in Häfner et al. (2014a),
we proposed an approach that used the shape and contrast
of the blobs as features for the classification of endoscopic
images. The segmentation algorithm to generate the blobs
in Häfner et al. (2014a) is similar to the segmentation al-
gorithm used in the BA-LFD approach (see Section 3.3.3).

In Häfner et al. (2014a), the following shape features are
computed from a blob b:

• A convex hull feature (CH):

CH(R) =
# Pixels of Convex Hull(b)

# Pixels of b
.

• A skeletonization feature (SK):

SK(R) =
# Pixels of Skeletonization(b)√

# Pixels of b
,

• A perimeter feature (PE):

PE(R) =
# Pixels of Perimeter(b)√

# Pixels of b
.

(a) Convex hull (b) Skeletonization (c) Perimeter

Figure 13: Examples of the blob features

In Figure 13 we see examples of the three shape features.

For each of the three shape features, histograms are com-
puted separately for peak and pit blobs, resulting in 6
shape histograms per image.

Additionally, a contrast feature (CF) for each pixel of a
blob is computed in Häfner et al. (2014a). For each pixel x
contained in a blob b, a normalized gray value is computed
as

CF (x) =
I(x)− meanb(x)(I)

√

varb(x)(I)
, (8)

where b(x) is the blob containing x, meanb(x) and varb(x)
are the mean and the variance of the gray values inside the
considered blob b(x), respectively.

The CF is computed separately for pixels contained in
peak and pit blobs, respectively. This results in two con-
trast feature histograms, computed by scanning all pixels
contained in peak or pit blobs.

The feature vector of an image in Häfner et al. (2014a)
consists of the histograms of the shape and contrast fea-
tures.

In our new approach, the feature vector of an image con-
sists of the concatenation of the BA-LFD features and the
shape and contrast features (using the segmentation algo-
rithm of the BA-LFD approach). Combining the BA-LFD
features with the shape and contrast features makes sense,
since they extract very different informations which com-
pliment each other. The BA-LFD approach extracts the
information about the changes in the intensity distribu-
tion for growing regions centered at the considered point
of interest (the center of a blob), and the BS approach
extracts the information about the shape of the blob and
the contrast inside of the blob. The feature vector of the
BA-LFD approach consists of 60 feature elements (4 his-
tograms with 15 bins per histogram) per image and the
shape and contrast histograms consist of 140 feature el-
ements (6 shape histograms with 15 bins per histogram
and 2 contrast histograms with 25 bins per histogram).
The shape histograms and the BA-LFD histograms have
the same range of values ((the same blobs are used to ex-
tract BA-LFD and shape features), however the contrast
histograms have distinctly higher values. For example, a
blob generates one perimeter feature and one BA-LFD fea-
ture (one for binary filters and one for Gaussian filters),
but each pixel of the blob generates one contrast feature.
So the sum over a contrast histogram divided by the sum

10



over a shape or BA-LFD feature histogram results in the
average number of pixels per blob (peak or pit blob) in an
image. For example the average number of pixels of a blob
over all images of the NBI database is about 49.

As already mentioned before, the distance between 2
feature vectors is measured using the χ2 distance. When
we compare the χ2 distance between two arbitrary values
with the χ2 distance of these values multiplied by a factor
f , then the distance between the 2 values is f times smaller
than the distance between the multiplied values. Since we
use the χ2 distance metric and the histograms are not
normalized, the contrast features would have an inflated
impact to the classification of the images. To balance the
inequality of the range of the feature values, we weight
the BA-LFD features distinctly stronger than the contrast
(and shape) features. We set the weighting to combine the
BA-LFD features and the shape and contrast features to
(10,1). The weighting is applied by multiplying the values
of the BA-LFD histograms with 10. Experimental results
showed that the weighting factor f = 10 is suitable for the
CC-i-Scan databases as well as for the NBI database.

We furtherly denote this approach as blob shape
adapted LFD (BSA-LFD) approach.

The BSA-LFD approach combines the shape and con-
trast information of peaks or pits with the information
about the changes of the intensity distribution from the
center of a pit or peak to the area surrounding the pit or
peak. Since the same segmentation algorithm is used for
the BA-LFD features as well as for the shape and contrast
features, the BSA-LFD approach requires hardly any ad-
ditional computation time compared to the BA-LFD ap-
proach.

To assess the influence of the combined shape and con-
trast features compared to the BA-LFD features to the re-
sults of the BSA-LFD, we additionally compute the shape
and contrast features alone like in Häfner et al. (2014a)
(but with our slight modification of the segmentation al-
gorithm).

We denote this approach, using the six histograms of the
shape features and the two contrast histograms, as Blob
Shape (BS) approach.

3.5.3. The Blob Shape adapted Gradient LFD Approach

This approach combines the BA-GLFD approach with
the BSA-LFD. That means we compute BA-LFD, shape
and contrast histograms of the original image as well as of
the gradient image.

The final feature vector of an image consists of the con-
catenation of the BA-LFD features (of the original and
gradient image) and the shape and contrast features (also
of the original image and the gradient image). Once again,
the BA-LFD features are higher weighted by means of a
multiplication of the BA-LFD features with a factor of 10.
Experimental results showed that the weighting factor 10
is suitable for the CC-i-Scan databases as well as for the
NBI database. We will furtherly denote this approach as
blob shape adapted gradient LFD approach (BSA-GLFD).

3.6. Other methods

In this sections we describe a variety of state of the
art methods for colonic polyp classification used in cor-
responding literature that are not based on the LFD. We
furtherly want to compare the results of these approaches
with the results of the LFD based approaches.

3.6.1. Dense SIFT Features

This approach (Tamaki et al., 2013) combines densely
computed SIFT features with the bag-of-visual-words
(BoW) approach. The SIFT descriptors are sampled at
points on a regular grid. By means of the SIFT descrip-
tors, cluster centers (visual words) are learned by k-means
clustering. Given an image, its corresponding model is
generated by labeling its SIFT descriptors with the texton
that lies closest to it. We use the same parameters that led
to the best results in Tamaki et al. (2013) (grid spacing =
5, SIFT scale 5 and 7, 6000 visual words). In Tamaki et al.
(2013), this approach is used for the colonic polyp classifi-
cation in NBI endoscopy, however, there is no reason why
this approach should not also be suited for other imaging
modalities like the i-Scan technology or chromoendoscopy.
Drawbacks of this method are the huge dimensionality of
its feature vectors (6000 feature elements per feature vec-
tor of an image) and the huge computational effort to learn
the cluster centers.

3.6.2. Vascularization Features

This approach (Gross et al., 2012) segments the blood
vessel structure on polyps by means of the phase symme-
try (Kovesi, 1999). Vessel segmentation starts with the
phase symmetry filter, whose output represents the vessel
structure of polyps. By thresholding the output, a binary
image is generated, and from this image 8 features are
computed that represent the shape, size, contrast and the
underlying color of the connected components (the seg-
mented vessels). This method is especially designed to
analyze the vessel structures of polyps in NBI images and
is probably not suited for imaging modalities that are not
designed to highlighting the blood vessel structure. Hence,
this method is most probably not suited for any other im-
age processing task than endoscopic polyp classification.

3.6.3. Dual-Tree Complex Wavelet Transform (DT-
CWT)

The DT-CWT (Häfner et al., 2009) is a multi-scale and
multi-orientation wavelet transform. The final feature vec-
tor of an image consists of the statistical features mean and
standard deviation of the absolute values of the subband
coefficients (6 decomposition levels × 6 orientations × 3
color channels × 2 features per subband = 216 features
per image). The DT-CWT showed to be well suited for the
classification of polyps for different imaging modalities like
high-magnification chromoendoscopy (Häfner et al., 2009)
or HD-chromoendoscopy combined with the i-Scan tech-
nology (Häfner et al., 2014b).
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3.6.4. LBP

Based on a grayscale image, this operator generates a
binary sequence for each pixel by thresholding the neigh-
bors of the pixel by the center pixel value. The binary
sequences are then treated as numbers (i.e. the LBP num-
bers). Once all LBP numbers for an image are computed,
a histogram based on these numbers is generated and used
as feature vector. There are several variations of the LBP
operator and they are used for a variety of image process-
ing tasks including endoscopic polyp detection and classi-
fication (e.g. Häfner et al. (2012)). Two examples of such
LBP variants are local ternary patterns Tan and Triggs
(2010) and fuzzy local binary patterns Eystratios et al.
(2012). Because of its superior results compared to the
standard LBP operator LBP(8,1) (with block size = 3),
we use a multiscale block binary patterns (MB-LBP) op-
erator (Liao et al., 2007) with three different block sizes
(3,9,15). The uniform LBP histograms of the 3 scales
(block sizes) are concatenated resulting in a feature vector
with 3× 59 = 177 features per image.

4. Experimental Results

We use the software provided by the Center for Au-
tomation Research 1 for the MFS-LFD approach. The
implementations of the BA-LFD approach and the BS
approach are the ones we already used in (Häfner et al.,
2014c). The algorithm of the MR8-LFD approach is cus-
tom implemented following the description in publication
Xu et al. (2009) (using Matlab). We use the implementa-
tion of the phase symmetry filter (Kovesi, 2000) for the vas-
cularization feature approach, the remaining code for this
approach is custom implemented following the description
in Gross et al. (2012) (using Matlab). The SIFT descrip-
tors and the following k-means clustering is done using
the Matlab software provided by the VLFeat open source
library (Vedaldi and Fulkerson, 2008). The DT-CWT is
implemented using the same software as in (Häfner et al.,
2009). The remaining algorithms are specifically devel-
oped for this work using Matlab.

For a better comparability of the results and to put more
emphasis to the feature extraction, all methods are evalu-
ated using a k-NN classifier.

4.1. The CC-i-Scan database

The CC-i-Scan database is an endoscopic image
database consisting of 8 sub-databases with 8 different
imaging modalities. Our 8 image sub-databases are ac-
quired by extracting patches of size 256 x 256 from frames
of HD-endoscopic (Pentax HiLINE HD+ 90i Colonoscope)
videos either using the i-Scan technology or without any
CVC (¬CVC in Table 3). The mucosa is either stained or
not stained. The patches are extracted only from regions
having histological findings. The CC-i-Scan database is

1http://www.cfar.umd.edu/˜ fer/website-texture/texture.htm

provided the St. Elisabeth Hospital in Vienna and was
already used e.g. in Häfner et al. (2014b,c).

Table 2 lists the number of images and patients per class
and database.

Classification accuracy is computed using Leave-one-
patient-out (LOPO) cross validation. The advantage of
LOPO compared to leave-one-out cross validation is the
impossibility that the nearest neighbor of an image and
the image itself come from the same patient. In this way
we avoid over-fitting.

In Table 3 we see the overall classification rates (OCR)
for our experiment using the CC-i-Scan database. To
balance the problem of varying results depending on k,
we average the 10 results of the k-NN classifier using
k = 1, . . . , 10. The column ∅ shows for each method the
averaged accuracies across all image enhancement modal-
ities. The highest results for each image enhancement
modality across all methods are given in bold face num-
bers.

As we can see in Table 3, all methods perform distinctly
better without staining the mucosa. But this does not
necessarily mean that the classification is easier without
staining. It could also be based on the fact that the pro-
portion of the number of healthy images to the number of
abnormal images is more unbalanced (in favor to the num-
ber of abnormal images) in case of the 4 image databases
without staining than in case of the 4 image databases
with stained mucosa (see section 5).

The i-Scan modes distinctly enhance the OCR results,
especially the two modes i-Scan 1 and i-Scan 2.

When we compare the results of the original BA-LFD
approach with the results of its three extensions, then we
see that the three extensions perform slightly better. The
two extensions using additional shape information (BSA-
LFD and BSA-GLFD), the approach using only shape in-
formation (BS) and the approach using the MR8 filter
bank (MR8-LFD) perform best in our experiments. How-
ever, we see that there is no method that provides con-
stantly high results over all databases. Altogether, the
differences of the averaged accuracies are quite small be-
tween the methods (except of the vascularization features,
whose averaged accuracy is lower than those of the other
methods), but the differences between the accuracies of
the methods of single databases are partly much higher.
In case of the databases with stained mucosa, the vascular-
ization features provide very poor results because the pits
of the mucosal structure, which are filled with dye, are
wrongly recognized as vessels. The MFS-LFD, the DLFD,
the SIFT and especially the vascularization feature ap-
proach are the methods with the lowest accuracies.

By means of the McNemar test (McNemar, 1947), we
assess the statistical significance of our results. With the
McNemar test we analyze if the images from a database
are classified differently by the various LFD based meth-
ods, or if most of the images are classified identical by
the various LFD based methods (whereat we only differ-
entiate between classifying an image as right or wrong).
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No staining Staining
i-Scan mode ¬CVC i-Scan 1 i-Scan 2 i-Scan 3 ¬CVC i-Scan 1 i-Scan 2 i-Scan 3
Healthy

Number of images 39 25 20 31 42 53 32 31
Number of patients 21 18 15 15 26 31 23 19
Abnormal

Number of images 73 75 69 71 68 73 62 54
Number of patients 55 56 55 55 52 55 52 47
Total nr. of images 112 100 89 102 110 126 94 85

Table 2: Number of images and patients per class with and without CC (staining) and computed virtual chromoendoscopy (CVC)

Methods
No staining Staining

∅
¬CVC i-Scan1 i-Scan2 i-Scan3 ¬CVC i-Scan1 i-Scan2 i-Scan3

DLFD 75 78 78 80 72 67 77 61 74
BA-LFD 74 87 81 79 70 76 85 64 77
BA-GLFD 77 90 78 85 70 73 81 65 78
BSA-LFD 76 86 84 85 68 81 83 69 79

BSA-GLFD 80 89 82 86 68 75 82 68 79

MR8-LFD 77 84 80 81 73 78 82 74 79

MFS-LFD 69 75 80 72 68 77 79 62 73
BS 79 85 87 87 66 77 80 71 79

SIFT 74 82 78 72 65 76 76 65 74
Vasc. F. 64 73 76 72 58 48 63 60 64
DT-CWT 78 84 85 85 70 72 73 68 77
MB-LBP 71 83 80 76 66 74 73 73 75

Table 3: Accuracies of the CC-i-Scan databases.
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Figure 14: Results of the McNemar test. A black square in the plot
means that the two considered LFD based method are significantly
different with significance level α. A white square means that there
is no significant difference between the methods.

The McNemar test tests if the classification results of two
methods are significantly different for a given level of sig-
nificance (α) by building test statistics from incorrectly
classified images. Tests were carried out for two different
levels of significance (α = 0.05 and α = 0.01) using the
i-Scan1 sub-database without staining the mucosa. Re-
sults are displayed in Figure 14. Roughly summarized,
the results of the two methods DLFD and MFS-LFD are
significantly worse than the results of most of the other
LFD based methods.

In Table 4 we show the results of the different stages be-
tween the LFD and BA-LFD approach for the CC-i-Scan
databases. That means we show the results of the DLFD
approach and the BA-LFD approach and the 7 interme-
diate steps between the two approaches like specified in

Section 3.4. In this way, we are able to analyze the ef-
fects on the results of each of the 4 adaption steps that
distinguish the LFD from the BA-LFD approach. Once
again, the column ∅ shows the averaged accuracies over
all databases. The highest result of each image enhance-
ment modality is given in bold face numbers.

We can see in Table 4 that the scale adaption is the
most effective adaptation step in case of the CC-i-Scan
databases. When we compare step 8 and 9, then the scale
adaption improves the averaged results for about 3%. Us-
ing Gaussian filters (+1%) (Nr. 7 → Nr. 9) and filter-
ing only on interest points (+2%) (Nr. 7 → Nr. 9) also
slightly increase the results. The shape and orientation
adaptions neither increases nor decreases the results. How-
ever, these effects don’t appear for each combination of
adaption steps. For example the combinations of the scale
adaption and filtering only on interest points (Nr. 5) does
not improve the results compared to the DLFD approach
(Nr. 1). Furthermore, the improvements of the results
after each adaptation step are rather low.

4.2. The NBI database

The NBI database is an endoscopic image database con-
sisting of 908 patches extracted from frames of zoom-
endoscopic (CF-H260AZ/I, Olympus Optical Co) videos
using the NBI technology. The patches are rectangular
and have sizes between about 100*100 and 800*900 pix-
els. The database consists of 359 images of type A, 462
images of type B and 87 images of type C3. Image la-
bels were provided by at least two medical doctors and
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Adaption No staining Staining
∅

Nr. Scale Shape Int.P. Gauss. ¬CVC i-Scan1 i-Scan2 i-Scan3 ¬CVC i-Scan1 i-Scan2 i-Scan3
1 x x x x 75 78 78 80 72 67 77 61 74
2 x x x X 76 83 81 76 73 74 75 59 75
3 x x X x 72 85 79 79 73 73 83 63 76
4 x x X X 74 85 80 78 73 73 85 60 76
5 X x X x 71 80 82 76 63 78 81 64 74
6 X x X X 76 86 82 82 69 75 81 66 77

7 X X X x 74 85 80 76 68 80 83 63 76
8 x X X X 72 84 80 79 65 68 82 64 74
9 X X X X 74 87 81 79 70 76 85 64 77

Table 4: Accuracies for the of the DLFD approach (Nr. 1) and the BA-LFD approach (Nr. 9) and the 7 intermediate steps between the two
approaches using the CC-i-Scan databases. The columns 2 – 5 show which adaptions are used for each of the 9 methods.

endoscopists who are experienced in colorectal cancer di-
agnosis and familiar with pit pattern analysis and NBI
classifications. The NBI database is provided by the Hi-
roshima University and the Hiroshima University Hospital
and was already used in Tamaki et al. (2013).

In Tamaki et al. (2013), 10-fold cross validation was
used to classify the NBI database. We decided to use a
similar test setup with a higher reliability. Classification
accuracy is computed using a training set and an evalu-
ation set. 90% of the images of each class are randomly
chosen for the training set, the remaining 10% of the im-
ages per class build up the evaluation set. The classifica-
tion results are defined as the averaged result of 100 runs
with randomly chosen training and evaluation sets. So the
main difference between our test setup and 10-fold cross
validation is that we use the averaged results of 100 runs
instead of the averaged results of 10 runs.

To balance the problem of varying results depending on
k, we average the 10 results of the k-NN classifier using
k = 1, . . . , 10. The results given in Table 5 are the averaged
results from 100 runs with k-values k = 1, . . . , 10. The
standard deviations of the results are given in brackets.

Only in case of the SIFT features, we use a 10-fold
cross validation because of the huge computational effort
to learn the cluster centers in each validation run.

As we can see in Table 5, the BA-GLFD, the BSA-
GLFD, the MR8-LFD and the vascularization features ap-
proach provide the highest results. The BS, the MFS-
LFD and the MB-LBP approach are the least adequate
approaches to classify NBI images. Combining LFD based
features with shape and contrast features (BSA-LFD) en-
hances the results, but not as much as additionally ap-
plying the BA-LFD approach to the gradient magnitudes
of the images (BA-GLFD). The combination of both ex-
tensions (BSA-GLFD) is the best performing approach for
the NBI database.

In Tamaki et al. (2013), the Dense SIFT approach
achieved results of 96% for the same NBI database,
whereas we achieved only 83.5% with the same feature
extraction approach. Both results are achieved using 10-
fold cross validation. The huge difference in the results
is caused by different classification strategies. We simply
average the k-NN classifier results for k = 1, . . . , 10 and

Methods Accuracy

DLFD 86.9 (2.8)
BA-LFD 83.7 (3.8)
BA-GLFD 88.0 (3.2)
BSA-LFD 85.8 (3.6)
BSA-GLFD 88.2 (3.2)
MR8-LFD 87.5 (2.8)
MFS-LFD 80.0 (3.5)
BS 77.0 (4.8)
SIFT 83.5 (2.8)
Vasc. F. 88.1 (3.0)
DT-CWT 82.8 (3.0)
MB-LBP 81.2 (3.9)

Table 5: Accuracies and standard deviations of the NBI database in
%.

use those parameters for the dense SIFT approach that
achieved the best results in Tamaki et al. (2013), whereas
in Tamaki et al. (2013) a variety of different support vec-
tor machine kernels and a variety of different parameters
for the dense SIFT approach were tested and the classifi-
cation rate of 96% was the highest classification rate of all
these combinations.

Since the classification of the NBI database is done us-
ing 100 runs with different training and evaluation sets, the
McNemar test is not adequate to assess the statistical sig-
nificance of the results. Instead of the McNemar test, we
use the Wilcoxon rank-sum test (Fay and Proschan, 2010).
As input parameter for the Wilcoxon rank-sum test, we use
the averaged accuracies of the 10 k’s of the kNN classifier
of two methods (and of course α). The input parameter
of one method is of length 100 (one accuracy for each of
the 100 runs). Tests were carried out for two different lev-
els of significance (α = 0.05 and α = 0.001). Results for
the LFD based methods are displayed in Figure 15. Only
those LFD based methods with quite similar accuracies
(BA-GLFD, BSA-GLFD and MR8-LFD) in Table 5 are
not assessed as significant different.
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Figure 15: Results of the Wilcoxon rank-sum test for the NBI
database. A black square in the plot means that the results of the
two considered method are significantly different with significance
level α. A white square means that there is no significant difference
between the results of the methods.

5. Discussion

5.1. Balancing the number of images per class in the CC-
i-Scan databases

As already mentioned in Section 4.1 and as can be seen
in Table 2, the proportion of the number of healthy images
to the number of abnormal images is in favor to the number
of abnormal images in case of the CC-i-Scan databases, es-
pecially for those databases without staining the mucosa.
This affects the classification results, since it causes the
kNN-classifier to classify more healthy and abnormal im-
ages as abnormal (because of the higher number of train-
ing images of class abnormal), as it would classify with an
equal number of healthy and abnormal images. This effect
is additionally increased by the relative small number of
images of the CC-i-Scan databases.

To avoid this unwanted effect, we recomputed the clas-
sification accuracies using an adaption of the LOPO cross
validation. In case of the “normal” LOPO cross validation,
for a given image, all images from other patients than the
patient of the considered image are permitted as possible
nearest neighbors of the considered image. This of course
leads to a higher number of abnormal images as possible
nearest neighbor than healthy images (because there are
more abnormal images than healthy images in case of the
CC-i-Scan databases).

Our adaption of the LOPO cross validation works as fol-
lows: For a given image of patient A, we count the number
of images per class that are not from patient A. Then one
class will have a lower number of images that are not from
patient A (class healthy) than the other. This number
of images is the number of permitted images per class as
nearest neighbor for the considered image of patient A.
Lets say we have n permitted images per class as nearest
neighbor, then the images that are permitted as nearest
neighbors for the kNN classifier (the training images for
the considered image) are the n images of class healthy
and n randomly chosen images from the images of the
class abnormal that are not from patient A.

Our adaption leads to fairer classification results than
in case of the normal LOPO cross validation. However, it

has the drawback of a lower number of available train-
ing images. This will probably decrease the results of
the adapted LOPO cross validation compared to the nor-
mal LOPO cross validation. However, the results of the
adapted LOPO cross validation should be more meaning-
ful than those of the normal LOPO cross validation.

In Table 6 we can see the results using the adapted
LOPO cross validation. The gray numbers in brackets are
the accuracies using normal LOPO cross validation. Like
expected, the results are lower using the adapted LOPO
cross validation compared to the normal one (except the
SIFT approach). However, the degradations are only quite
small for most of the methods except of those methods that
didn’t even worked so well using the normal LOPO cross
validation (DLFD, MFS-LFD and the vascularization fea-
tures). In case of the i-Scan 3 mode, the results are even
increasing for most of the methods by using the adapted
LOPO cross validation. The best performing methods are
the BA-LFD extensions (especially BSA-LFD), the MR8-
LFD approach and the SIFT approach.

From the results in Table 6 we can conclude that most of
the methods are in fact performing better without stain-
ing the mucosa and by using the i-Scan technology. The
most possible reason why staining the mucosa has a neg-
ative impact to the results is that the colorant flows into
the pits and thus the pits of the mucosa are filled with
colorant whereas the peaks of the mucosa are relatively
unstained. This has the effect that the pit pattern struc-
ture is easier to recognize for the physicians. But it also
changes the intensity distribution between pits and peaks.
Since most of the employed methods analyze this intensity
distribution it is quite possible that these changes in the
intensity distribution make it harder for the methods to
differentiate between healthy and abnormal mucosa.

5.2. Assessing the viewpoint invariance of the methods

As already mentioned in the introduction, viewpoint in-
variance is an important feature for methods classifying
endoscopic image databases. In colonoscopic (and other
types of endoscopic) imagery, mucosa texture is usually
found at different viewpoint conditions. This is due to
varying distance and perspective towards the colon wall
during an endoscopy session. The differences in scale are
for example much higher using HD-endoscopes (especially
because of the highly variable distance) than for using
high-magnification endoscopes, where the distance of the
endoscope to the mucosa is relatively constant. Conse-
quently, in order to design reliable computer-aided mucosa
texture classification schemes, the viewpoint invariance of
the employed feature sets could be essential, especially for
the CC-i-Scan database. In Figure 16 we see examples
of endoscopic images of two different polyps under differ-
ent viewpoint conditions. The images showed in Figure
16 are frames of two of the HD-endoscopic videos (of two
patients), which were used to extract patches for the CC-
i-Scan database.
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Methods
No staining Staining

∅
¬CVC i-Scan1 i-Scan2 i-Scan3 ¬CVC i-Scan1 i-Scan2 i-Scan3

DLFD 72(75) 69(78) 56(78) 71(80) 68(72) 66(67) 70(77) 55(61) 66(74)
BA-LFD 76(74) 83(87) 81(81) 82(79) 69(70) 78(76) 79(85) 64(64) 76(77)
BA-GLFD 81(77) 83(90) 81(78) 85(85) 68(70) 72(73) 80(81) 66(65) 77(78)
BSA-LFD 80(76) 82(86) 85(84) 88(85) 64(68) 82(81) 77(83) 71(69) 79(79)
BSA-GLFD 80(80) 81(89) 83(82) 87(86) 66(68) 76(75) 80(82) 70(68) 78(79)
MR8-LFD 73(77) 80(84) 82(80) 82(81) 75(73) 80(78) 82(82) 76(74) 79(79)
MFS-LFD 69(69) 66(75) 72(80) 61(72) 67(68) 76(77) 75(79) 58(62) 68(73)
BS 79(79) 77(85) 84(87) 88(87) 58(66) 73(77) 77(80) 75(71) 76(79)
SIFT 74(74) 83(82) 79(78) 85(72) 74(65) 81(76) 80(76) 77(65) 79(74)
Vasc. F. 66(64) 64(73) 63(76) 60(72) 55(58) 43(48) 55(63) 51(60) 57(64)
DT-CWT 76(78) 76(84) 81(85) 82(85) 74(70) 73(72) 75(73) 73(68) 76(77)
MB-LBP 71(71) 77(83) 78(80) 78(76) 68(66) 78(74) 74(73) 77(73) 75(75)

Table 6: Accuracies of the CC-i-Scan databases using adapted LOPO cross validation. The gray numbers in brackets are the accuracies using
normal LOPO cross validation.

Figure 16: Two polyps shown under varying viewpoint conditions.

In this section we assess the viewpoint invariance of the
employed methods by means of a public texture database,
the UIUCtex database. Contrary to the endoscopic im-
ages, where images of same classes often look very different
and often have quite different texture structures, the im-
ages of the classes of the UIUCtex database are half-way
homogeneous (apart from the viewpoint and illumination
conditions). The higher homogeneity, the huge differences
of the viewpoint conditions and the high number of image
classes (25) are the reasons why we choose the UIUCtex
database to estimate the viewpoint invariance instead of
an endoscopic image database. We estimate the viewpoint
invariance of the methods by comparing the classification
accuracies and by image retrieval.

The UIUCtex database (S. Lazebnik and Ponce, 2005)
is a public texture database consisting of 25 different tex-
ture classes with 40 images per texture class. The res-
olution of the images is 640*480. Significant viewpoint
changes are present within each class, and illumination
conditions are uncontrolled. Additional sources of variabil-
ity can be the non-planarity of textured surfaces, signifi-
cant non-rigid deformations, inhomogeneities of the tex-
ture patterns and viewpoint dependent appearance varia-
tions. In Figure 17 we see an example image of each of the
25 texture classes and an example of the differences of the
viewpoint conditions.

(a) Examples of the 25 texture classes of the UIUCtex
database.

(b) Examples of the different viewing conditions of the UIUC-
tex database (by means of the texture class brick).

Figure 17: The UIUCtex database

5.2.1. Classifying the UIUCtex database

Classification accuracy is computed using a training set
and an evaluation set. A fixed number of images per class
(1–20) is randomly chosen to build up the training set,
the remaining images build up the evaluation set. Like in
Xu et al. (2009) (MFS-LFD) and Varma and Garg (2007)
(MR8-LFD), a k-NN classifier is used with k = 1.

The results given in Figure 18 are the averaged results
of 100 runs with randomly chosen training and evaluation
sets. Only in case of the SIFT features, we use the result of
only one run with randomly chosen training and evaluation
set because of the huge computational effort to learn the
cluster centers for each validation run (the computation
for one run takes more than a week using a Quad-Core
PC).
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Figure 18: Classification results of the UIUCtex database (best
viewed in color).

As we can see in Figure 18, the extension of the BA-LFD
using additionally blob-shape features (BSA-LFD) as well
as the extension additionally applying the BA-LFD ap-
proach to the gradient image (BA-GLFD) both improve
the results for the UIUCtex texture database, compared
to the original BA-LFD approach. The combination of
both extensions (BSA-GLFD) provides slightly worse re-
sults than those of the BSA-LFD approach, which is the
best performing BA-LFD based approach. The shape and
contrast features of the gradient image decrease the re-
sults of the BSA-LFD approach. Without these features,
the BSA-GLFD approach would outperform the BSA-LFD
approach. The MR8-LFD approach provides the best re-
sults, DLFD and all not LFD based approaches provides
worse results than the BA-LFD based approaches.

The BA-LFD approach in Häfner et al. (2014c) was es-
pecially developed for classifying polyps using the CC-i-
Scan databases and not for general texture recognition. It
finds the pits and peaks of the pit pattern structure and
then filters the area in and surrounding the detected pits
with filters that are shape, size and orientation adapted
to the pits and peaks. Maybe the BA-LFD approach and
its extensions need to be adapted for classifying texture
databases, however the results for the UIUCtex database
are quite respectable. By adapting the BA-LFD based
approaches to general texture recognition, most likely the
results of these approaches would even be higher.

We did not test the vascularization features on the
UIUCtex database, since this approach is not suited for
texture classification and so it would be pointless to com-
pare its results with the other methods.

The results presented in the original publication of the
MR8-LFD approach are slightly higher than the results of
our reimplementation of the original MR8-LFD approach
(the accuracies are about one percent higher in the original
publication). This is probably caused by minor implemen-
tation differences and by the fact that we use all 8 filter
responses instead of a feature subset selection using only 5
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Figure 19: Result of the Wilcoxon rank-sum test for the UIUCtex
database. A black square in the plot means that the results of the
two considered method are significantly different with significance
level α = 0.01. A white square means that there is no significant
difference between the results of the methods.

of the 8 filter responses like proposed in the original pub-
lication.

Like for the NBI database, the statistical significance of
the tests for the LFD based methods is assessed using the
Wilcoxon rank-sum test. Contrary to the NBI database
we use the results for k = 1 of the kNN classifier per run
instead of the averaged results over k = 1, . . . , 10 per run.
Results are displayed in Figure 19 for significance level
α = 0.01 and 10 training images per class.

As we can see in Table 19, the results of the LFD based
methods are all significantly different except of the BSA-
LFD and the BSA-GLFD approach.

5.2.2. Assessing the viewpoint invariance

As already mentioned before, significant viewpoint
changes are present within each class of the UIUCtex
database. It is very hard to develop a texture descrip-
tor that is able to identify two images from one class as
images from the same class, if the images are acquired
under quite different viewpoint conditions. Of course it
is much easier if the images are acquired under similar
viewpoint conditions. For a given image of the evaluation
set, the nearest neighbor classifier only needs to find the
image of the training set that has the closest distance to
the considered image and then the evaluation set image
is classified to the class the training image belongs to. If
there are several images per class in the training set, then
there will probably be a training set image of the same
class than the considered evaluation set image with similar
viewpoint conditions. That means, the higher the number
of training images per class, the lower the required view-
point invariance of a method. That means especially for
a higher number of training images per class, the feature
expressiveness probably dominates the issue of viewpoint
invariance. So if there is a high difference between the
classification results using 1 and 20 training images per
class for classifying the UIUCtex database, then this is
an indicator that the considered method is not viewpoint
invariant.

Additionally to the classification results, the viewpoint
invariance of the methods is assessed by image retrieval.
Image retrieval is done as in Xu et al. (2009). Given a
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Figure 20: Image retrieval results of the UIUCtex database (best
viewed in color).

query image, the other images of the database are sorted
in an increasing order of distance to the query image, i.e.
from the most similar to the least similar. Each image
of the UIUCtex database is used once as a query image,
and the performance is summarized as a plot of average
recall vs. the number of retrieved images. Average recall
is defined as the number of images retrieved from the same
class as the query image divided by the number of images
in the class minus one (40 -1 (the query image) =39) av-
eraged over all queries. For example, perfect performance
for a given class would correspond to an average recall of
100 % after 39 retrieved images. Scale and viewpoint in-
variance is essential for good retrieval results in case of the
UIUCtex database, since the distances from the query im-
age to the other images from the same class as the query
image should be smaller than the distances to images of
other classes, no matter how big the viewpoint differences
are between the query image and the remaining images
from the same class.

In Figure 20 we see the retrieval results of the UIUCtex
database and in Figure 18 we see the classification results
for all numbers of training images per class between 1 and
20.

As we can see in Figure 20 and Figure 18, the results
of the average recall are visually similar to the classifica-
tion results. The methods performance compared to each
other is nearly similar for image retrieval and classification
(except of the SIFT approach).

The clearly lowest recall rates and the clearly lowest
classification rates (especially for low numbers of training
images per class) of the MB-LBP approach imply that
the MB-LBP approach is less viewpoint invariant than the
other approaches.

When we compare the results of the DLFD and the DT-
CWT approach, we can observe two facts which together
imply that the DLFD approach is more viewpoint invari-
ant than the DT-CWT approach. First, we see that the

accuracies of the DLFD approach are higher than those
of the DT-CWT for lower numbers of training images per
class and lower for higher numbers of training images per
class. Second, the recall rates of the DLFD approach are
higher than those of the DT-CWT approach.

The recall and classification curves of the BA-LFD-
based approaches and the BS approach are similar which
indicates that these approaches are similarly viewpoint in-
variant. Based on the recall and classification curves, the
only approach that is more viewpoint invariant than those
approaches is the MR8-LFD approach.

The results of the two plots (Figure 20 and Figure 18)
imply, that the BA-LFD based methods are not generally
more viewpoint invariant than the approaches based on
the original LFD. So the adaption of the shape, size and
orientation of the filters of the BA-LFD does not increase
the viewpoint invariance of the BA-LFD based approaches
compared to the approaches based on the original LFD.
However, since the BA-LFD based methods are amongst
the best methods for each of the tested databases, the
adaptions of the BA-LFD increase the feature expressive-
ness. When we compare the results of the BA-LFD and
the DLFD approach, we see that the 4 adaptions of the
BA-LFD approach (viewpoint adaption, computation only
on interest points and Gaussian filters additional to the bi-
nary filters) distinctly improve the results for all databases
except of the NBI database.

Results imply that at least most of the LFD based ap-
proaches are more viewpoint invariant than the other ap-
proaches.

Generally, since the ranking of the methods with re-
spect to their accuracy for lower numbers of training im-
ages (viewpoint invariance should be an advantage) and
higher number of training images (viewpoint invariance is
not essential) as well as the ranking of the methods with
respect to their recall rate (viewpoint invariance should
definitely be an advantage) is nearly identical (except of
the SIFT feature), it seems that even for the UIUCtex
database, a database with huge viewpoint variations, the
feature expressiveness is more important than the view-
point invariance.

The accuracy curve of the SIFT feature is the lowest of
all methods whereas the recall curve is amidst the other
curves. This is caused by the fact that in case of the clas-
sification, the dictionary is build using only the images of
the training set, whereas in case of image retrieval, the
dictionary is build using all images of the image database
(including the query image). The accuracy curve of the
SIFT feature is not smooth since we used the result of
only one run instead of the average result of 100 runs in
case of the other methods (more noise).

6. Conclusion

In this work we showed that methods based on com-
puting the LFD and BA-LFD are well suited for colonic
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BA-GLFD ... Blob-adapted gradient local fractal dimension
BA-LFD ... Blob-adapted local fractal dimension
BSA-GLFD ... Blob shape adapted gradient LFD
BSA-LFD ... Blob shape adapted local fractal dimension
CC ... Conventional chromoendoscopy
DLFD ... Dense local fractal dimension
CVC ... Computed virtual chromoendoscopy
DT-CWT ... Dual-tree complex wavelet transform
HD ... High definition
kNN ... k nearest neighbor
LBP ... Local binary patterns
LFD ... Local fractal dimension
LOPO ... Leave-one-patient-out
MB-LBP ... multiscale block binary patterns
MFS-LFD ... Multi fractal spectrum local fractal dimension
MR8-LFD ... Maximum response 8 local fractal dimension
NBI ... Narrow band imaging
OCR ... Overall classification rate

Table 7: Acronyms and their meaning in alphabetical order.

polyp classification. When we compare the results of the
employed methods for the 8 CC-i-Scan databases and the
NBI database, we see that the proposed extensions of the
BA-LFD approach are the best performing methods or at
least among the best performing methods. The extension
using additionally shape and contrast information (BSA-
LFD) as well as the extension using additional gradient
information (BA-GLFD) enhance the results, but the com-
bination of both extensions (BSA-GLFD) is the best suited
method to classify polyps on our databases. Also in case
of the UIUCtex texture database, the BA-LFD extensions
are amongst the best performing methods.

In case of the HD-endoscopic databases, it has been
shown that most of the employed methods are perform-
ing better without staining the mucosa and by using the
i-Scan technology.

Most of the LFD based approaches are more viewpoint
invariant than the other approaches. The scale, shape
and orientation adaptions of the BA-LFD approach and
its extensions do not improve the viewpoint invariance
compared to the approaches based on the original LFD.
However, the 4 adaptions of the BA-LFD approach (scale,
shape and orientation adaption, computation only on in-
terest points and Gaussian filters additional to the binary
filters) distinctly improve the results for all databases ex-
cept of the NBI database.
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