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ABSTRACT

This work proposes a new method for computing the local
fractal dimension for the classification of colonic polyps.
First an image is segmented by an algorithm based on the
idea of the watershed transform. The resultant connected
components (blobs) show the local mucosal structure at local
minima and maxima in the image and model the pit pat-
tern structure of the mucosa. The local fractal dimension
is computed using two different filter masks, an anisotropic
Gaussian filter mask and an elliptic binary filter mask, which
are especially adapted to the shapes and sizes of the blobs.
By specifically fitting shapes and sizes of the filter masks
for each blob, our feature is scale, orientation and viewpoint
invariant. The proposed method outperforms other methods
commonly used for mucosal texture classification.

Index Terms— Local fractal dimension, scale invariance,
colonoscopy, colonic polyps

1. INTRODUCTION

Colonic polyps have a rather high prevalence and are known
to either develop into cancer or to be precursors of colon
cancer. The current gold standard for the examination of the
colon is colonoscopy, performed by using a colonoscope.
Modern endoscopy devices are able to take pictures or videos
from inside the colon, allowing to obtain images (or videos)
for a computer-assisted analysis with the goal of detecting
and diagnosing abnormalities.

In this work we use highly detailed images acquired by
a high definition (HD) endoscope without magnification in
combination with the i-Scan technology and conventional
chromoscopy (staining the mucosa). In particular we use the
i-Scan 2 mode, which includes surface enhancement, contrast
enhancement and tone enhancement. This mode visually
enhances boundaries, margins, surface architecture.

In colonoscopic (and other types of endoscopic) imagery,
mucosa texture is usually found at different scales. This is
due to varying distance and perspective towards the colon
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wall and eventually different zoom factors used during an
endoscopy session. Consequently, in order to design reli-
able computer-aided mucosa texture classification schemes,
the scale and viewpoint invariance of the employed feature
sets could be essential.

Promising texture descriptors that are invariant to scale
and viewpoint conditions and have demonstrated good results
on real world datasets are [1, 2, 3, 4, 5]. Over the last years,
fractal and multifractal geometries were applied extensively
in many signal analysis applications like texture analysis [2,
3, 6, 7] and segmentation [8], including medical applications
[9, 10]. Two of these methods are based on the computation
of the local fractal dimension [2, 3], a viewpoint and scale
invariant feature analyzing the ‘non-uniformity” of the local
intensity distribution by filtering the image or transformations
of the image (MR8 filter responses [3] or directional deriva-
tives (e.g. gradient image) [2]) with disk shaped binary filter
masks.

In this work we propose a novel texture descriptor denoted
as ”Blob-Adapted Local Fractal Dimension“ (BFD), which
is based on computing a local fractal dimension like feature.
The differences between BFD and previous released descrip-
tors based on computing the local fractal dimension are:

• We use ellipsoidal binary filters and Gaussian filters,
whose shapes and sizes are adapted to the local texture
regions. The other descriptors use disk shaped binary
filter masks with predetermined radii.

• We compute the local fractal dimension only for inter-
est points determined by the segmentation of the image
instead of computing it for each pixel of an image re-
spectively transformation of an image.

To compare the results of our proposed method with meth-
ods already proven to be successful, we additionally employ
a number of well known feature extraction methods for the
classification of mucosal texture.

We differentiate between two classes, normal mucosa or
hyperplastic polyps (class Healthy) and neoplastic, adenoma-
tous or carcinomatous structures (class Abnormal) (see Fig. 1



a–d). The various pit pattern types [11] of these two classes
are presented in Fig. 1 e–f.

(a) Healthy (b) Healthy (c) Abnormal (d) Abnormal

(e) Healthy (f) Abnormal

Fig. 1. Example images of the two classes (a–d) and the pit
pattern types of these two classes (e–f)

This paper is organized as follows. Section II describes
the feature extraction methods, especially our new method
based on the local fractal dimension. In section III we de-
scribe the experiments and present the results. Section IV
presents the conclusion.

2. FEATURE EXTRACTION

The proposed feature extraction method BFD consists of a
segmentation step followed by computing the local fractal di-
mension in a locally adapted manner.

2.1. Segmentation
In our segmentation approach, we want to extract the shapes
of the pits and peaks inside of mucosal (gray scale) images.
With pits we denote local areas of the mucosal image with
lower gray values as the surrounding area and with peaks we
mean local areas with higher gray values as the surrounding
area. Our segmentation algorithm is a slight modification of
the algorithm used in [12]:

Generating pit (peak) blobs R by localized region grow-
ing:

1. Scan the image I for a untagged local minimum (max-
imum for peak blobs) x0 with gray value g and create a
blob R consisting of only x0 at the first iteration.

2. Find all neighbors N (4-connectivity) of R with gN =
minx∈N I(x)
(gN = maxx∈N I(x) for peak blobs) and tag them.

3. Two cases are possible:

• g ≤ gN (g ≥ gN for peak blobs):

– R← R ∪ {x ∈ N |I(x) = gN}
– g ← gN

– Return to step 2.

• g > gN (g < gN for peak blobs):

– # (Pixels of R)≥8: use R for the BFD.
– # (Pixels ofR)<8: do not useR any further.

We only use these blobs for further feature extraction
(computing the local fractal dimension) with N ≥ 8 pixels.
In this way we ensure that only these blobs are used that rep-
resent a distinct pit or peak in the mucosal texture structure
and exclude these blobs that evolve of minima or maxima
that are caused by noise. That means that our segmentation
algorithm also acts as interest point detector.

The only difference between our segmentation algorithm
and the one proposed in [12] is, that the algorithm in [12] sets
in step 3, point two (g > gN ) the gray values of the image
I to gN for all pixels being part of the blob R. By resetting
the gray values of the pixels of a blob, an already tagged blob
can be fused with another blob resulting in bigger blobs. In
our algorithm it is impossible that blobs are merged, each blob
represents the surrounding area of a local minima (pit blob) or
maximum (peak blob). This is important for the subsequent
local fractal dimension computation in Section 2.2.

The idea behind this segmentation approach is that the two
classes Healthy and Abnormal have different typical pit pat-
tern types (see Figure 1). By filling up the pits and peaks of
a mucosal image, the resultant blobs represents the shapes of
local structures of the image including the different types of
pit pattern. In that way the shape of the blobs contain informa-
tion that enables an distinction between healthy and abnormal
mucosa (see [12]).

The idea behind our segmentation algorithm is similar to
the watershed segmentation by immersion [13, 14], but the
results are completely different (see Figure 2.

(a) Image (b) Peak blobs (c) Pit blobs

Fig. 2. The extracted peak and pit blobs of the image

2.2. Feature Extraction
Let µ be a finite Borel regular measure on R2. For x ∈ R2,
denote B(x, r) as the closed disk with center x and radius
r > 0. µ(B(x, r)) is considered as an exponential function
of r, i.e. µ(B(x, r)) = c rD(x), where D(x) is the density
function and c is some constant. The local fractal dimension
[2] of x is defined as

D(x) = lim
r→0

logµ(B(x, r))

log r
. (1)



The local fractal dimension measures the “non-uniformity” of
the intensity distribution in the region neighboring the consid-
ered point.

The local fractal dimension D is invariant under the bi-
Lipschitz map, which includes view-point changes and non-
rigid deformations of texture surface as well as local affine
illumination changes [2].

In this work we propose a feature derived from the lo-
cal fractal dimension, which uses ellipsoidal binary filters and
anisotropic, ellipsoidal Gaussian filters fitted to the shape and
size of blobs instead of disks with preassigned radii. To sim-
plify matters, we also denote our feature as local fractal di-
mension.

In the following we describe the derivation of the elliptic
binary filter masks and the ellipsoidal Gaussian filter masks.

Let us consider an image I, and a blob b extracted from
I (it doesn’t matter if it is a pit or peak blob) consisting of
N Pixels with coordinates (xi, yi), i ∈ {1, ..., N} in I and
center of mass (x, y) (x = 1/N ×∑i xi) .

For the two integer values p, q, the normalized two-
dimensional (p + q)th order central moments µp,q of the
blob b are defined as follows:

µp,q =
∑N
i=1(xi−x)p(yi−y)q

N
p+q+2

2

.
(
µ2,0 =

∑N
i=1(xi−x)2
N2 , µ1,1 =

∑N
i=1(xi−x)(yi−y)

N2

)

From the inertia matrix C =

(
µ2,0 µ1,1

µ1,1 µ0,2

)
, we compute the

eigenvalues λ1 and λ2 (with λ1 > λ2) and the corresponding
eigenvectors v1 and v2. Roughly speaking, the eigenvectors
contain the informations of the orientation of the blob b in the
image and the eigenvalues contain the information about the
dilation of the blob in the eigenvectors direction.

The angle of v1 in the coordinate system is computed by
the arctangent function: α = −atan2(yv1 , xv1), where yv1
is the y-coordinate and xv1 is the x-coordinate of the eigen-
vector v1.The proportion of the eigenvalues is computed as
follows: pλ =

√
λ1/λ2.

Now, the blob can be approximated by an ellipse with
mayor axis v1 and minor axis v2, whereat the proportion of
the mayor axis length to the minor axis length is pλ.

The two eigenvectors span a coordinate system, which is,
compared to the Cartesian coordinate system, twisted by the
angle α . The coordinate (x, y) of the Cartesian coordinate
system can be transformed to the coordinate (x′, y′) of the
eigenvectors coordinate system:

(
x′

y′

)
=

[
cos(α) − sin(α)
sin(α) cos(α)

](
x
y

)

A binary elliptic f × f filter approximating the shape of the
blob b consisting of N pixels can be computed as follows:

Etb(x, y) = Etpλ,N,(x, y) =

{
1 if

√
x′2 + (y′pα)2 <

√
N
π t,

0 otherwise.
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Fig. 3. A patch containing a pit blob b in his center and the bi-
nary elliptic filter masksEtib and elliptic Gaussian filter masks
Gσib adapted to the Blob with parameters ti respectively λi.

The term
√

N
π and the threshold t control the size of the el-

lipse. The term
√

N
π is derived from the computation of the

area A of a disk with radius r: A = r2 ∗ π ⇔ r =
√

A
π .

The x and y coordinates of the filter are integers and range
from−(f − 1)/2 to +(f − 1)/2 (f has to be odd-numbered).

In Figure 3 we see a blob b and the corresponding binary
elliptic filters Etib with the thresholds ti, i ∈ {1, . . . , 8}.

The elliptic Gaussian filter maskGσpλ,α,N, with size f ×f
is computed in a similar way as the binary elliptic filters:

GFσb (x, y) = GFσpλ,N (x, y) = e

−


 x′2+(y′pλ)2

2

(
σ

√
N
π

)2



,

Finally, the Gaussian filter has to be normalized in two steps:

G1σb (x, y) =
GFσb (x, y)∑

GFσb
, Gσb (x, y) = G1σb (x, y)−

∑
G1σb
f2

.

In Figure 3 we see a blob b and the corresponding elliptic
Gaussian filters Gσib with the standard deviations σi, i ∈
{1, . . . , 8}.

So for each blob in the image we generate especially fit-
ted binary elliptic filters E and elliptic Gaussian filters G and
with these filters we now compute the fractal dimension:

For a given Blob b with center position (x, y) in the image
I and the corresponding filters Gσb (Etb analogous) with filter
size f × f , µ is defined as follows:

µ(Gσib ) =

f−1
2∑

x=− f−1
2

f−1
2∑

y=− f−1
2

I(x− x, y − y) Gσib
(
x, y
)



Since µ(Gσib ) can be negative, logµ(Gσib ) would be complex.
We solve this problem by adding a value to the 8 µ(Gσib )’s
(i ∈ {1, . . . , 8}), so that the smallest µ(Gσib ) over all i’s is
one: µ(Gσib ) = µ(Gσib ) + 1−mini∈{1,...8} µ(G

σi
b ).

We define the two local fractal dimensions for a Blob b as:

DE(b) = lim
t→0

logµ(Etib )

log i
,DG(b) = lim

σ→0

logµ(Gσib )

log i
, (2)

where σi and ti are strictly monotonic increasing.
We practically compute the local fractal dimension DE

(DG) for each blob by linear fitting the slope of the line in
a scaling plot of logµ(Etib ) (logµ(Gσib )) against log i with
i ∈ {1, . . . , 8}. σi and ti have the values as shown in Figure
3. That means we locally filter the image I at each position
where a blob b exists with filter masks that are fitted to the
shape and size of the blobs and analyze the degree of increase
or decrease of the filter responses for increasing filter sizes.

The local fractal dimension measures the “non-uniformity”
of the intensity distribution in the region and neighboring re-
gion of a blob. Beginning with the center region of a pit or
peak, it analyzes the changes in the intensity distribution with
expanding region. In that way it analyzes the changing inten-
sity distribution from the inside to the outside of a pit or peak
in an image. Since size and shape of the filters are adapted to
the blob representing the pit or peak, our version of the local
fractal dimension is even more invariant to varying scales,
orientations and viewpoint conditions as the original fractal
dimension using disks with fixed radii [2].

The final feature vector of an image consists of the his-
tograms (15 bins) of the local fractal dimensions DE as well
as DG, separately computed for pit and peak blobs (60 fea-
tures per feature vector).

Distances between two feature vectors are measured using
the χ2 statistic.

2.3. Other Methods
Additionally, we employ a number of well known feature
extraction methods used for mucosal image classification to
compare their results with our BFD method and also to have
a higher number of methods resulting in more reliable con-
clusions with respect to the suitability of our BFD method for
the automated mucosal texture classification:

Segmented shape features (SSF) [12] uses a similar seg-
mentation algorithm as in our work, with only one difference
that is pointed out in Section 2.1. The feature vector of an
image consists of the histograms of three features describing
the shape of the blobs and of one histogram of a feature de-
scribing the contrast inside of the blobs.

DT-CWT [15] is a multi-scale and multi-orientation
wavelet transform. The final feature vector of an image
consists of the statistical features mean and standard devi-
ation of the absolute values of the subband coefficients (6
decomposition levels × 6 orientations × 3 color channels ×
2 features per subband = 216 features per image).

Methods BFD SSF DTCWT LBP FA
Accuracies 84.6 79.6 73.1 72.8 82.3

Table 1. Accuracies of the methods in %

LBP [16] is a texture operator which labels the pixels of
an image by thresholding the neighborhood (8 neighbors per
pixel, radius=1) of each pixel and considers the result as a
binary number.

Fractal analysis (FA) [3] is a scale invariant method that
pre-filters an image using the MR8 filterbank and then com-
putes the local fractal dimensions of the (8) filter outputs fol-
lowed by building models of the image using the Bag of Vi-
sual Words approach.

3. EXPERIMENTAL SETUP AND RESULTS

Our image databases is acquired by extracting patches of size
256 x 256 from frames of HD-endoscopic (Pentax HiLINE
HD+ 90i Colonoscope) videos. The patches are extracted
only from regions having histological findings. The database
consists of 94 patches, 32 patches of class Healthy (from 23
patients) and 62 patches of class Abnormal (from 52 patients).
Before segmentation and feature extraction, the images are
Gaussian blurred with σ = 2.

For a better comparability of the results, all methods are
evaluated using a k-NN classifier.

The results presented in Table 1 are the mean values of the
10 results of the k-NN classifier using Leave-one-patient-out
(LOPO) cross validation with the k-values k=1–10. In that
way we avoid the problem of varying results depending on
the number of nearest neighbors of the k-NN classifier. The
advantage of LOPO compared to leave-one-out cross valida-
tion (LOOCV) is the impossibility that the nearest neighbor
of an image and the image itself come from the same patient.
In this way we avoid overfitting. As we see in Table 1 the
results of our proposed method are better than the results of
the other methods.

4. CONCLUSION

With our BFD approach we have shown that the local fractal
dimension, adapted to the shape of local texture structures, is
particularly suitable for mucosal texture classification.

It was already shown in [12], that the shape of the blobs,
generated by local region growing starting with local extrema,
is a good indicator to discriminate between healthy and abnor-
mal mucosa.

In this work we showed that analyzing the changes in the
intensity distribution of an expanding region centered at a pit
or peak of an image, whose shape and and size is adapted
to the blob representing the pit or peak, seems to be an even
better indicator for polyp classification.
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