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Abstract—In this work we investigate whether cross endo-
scopic modality classification of colonic polyps is feasible, i.e.
images of a high-magnification endoscope are used as training
set to classify images of a high-definition endoscope.

In order to compensate the scale differences between the
images acquired with the different imaging modalities we apply
different super-resolution methods to endoscopic high-definition
sequences. We then use a set of feature extraction methods for
the classification of the super-resolution reconstruction results.

To be able to assess whether super-resolution algorithms are
helpful in this scenario, we also compare the results obtained
from these experiments against the classification results based
on original high-definition frames and against classification rates
based on upscaled versions of high-definition frames.

We show that classifying images acquired with a high-
definition endoscope and training the underlying classifier with
images acquired with a high-magnification endoscope is feasible,
but the improvements by using super-resolution algorithms are
highly feature-dependent.

I. INTRODUCTION

Throughout the past years a variety of different methods
for an automated classification of colonic polyps based on
endoscopic images has been developed. The majority of these
works is based on traditional endoscopes. But there also
exists work which is based on imagery acquired using an
endoscope with high magnification capabilities (e.g. [1]). One
advantage of such endoscopes is that they allow to inspect
the colonic mucosa in a magnified manner, thus revealing
the fine surface structure of the mucosa as well as small
lesions. However, throughout the last few years high-definition
(HD) endoscopes got more and more popular. While this type
of endoscopes provides a roughly four times higher image
resolution as compared to many zoom-endoscopes, they are
often not providing optical magnification.

While using HD endoscopes has many benefits, large
scale databases containing this type of imagery enriched
with histopathologic ground truth as required for computer
supported decision support systems based on classification or
retrieval are still missing. On the other hand, such databases
exist for high magnification endoscopes due to their long-
lasting availability. Thus, one interesting question is whether
it is in general possible to classify HD images, while using
high-magnification images for the training process (i.e. mixing
images from different endoscope types). This is especially
interesting since it is a common problem that endoscopy image

databases are quite often rather limited in terms of the images
available [2]. However, one problem with this approach are the
scale differences between the two imaging modalities.

One possible way to deal with this problem would be to
simply downscale the images in a high-magnification database
by a certain factor to obtain more similar resolutions between
the two modalities. This, however, would most likely result
in a substantial loss of details, which is not desirable. An-
other possibility is to use super-resolution (SR) algorithms
to bridge the resolution gap between the two modalities to
some extent. For our application scenario we can potentially
use multiple successive low resolution frames from a video
to construct a high resolution image. While applying super-
resolution algorithms successfully to endoscopic videos poses
different problems [3], we chose the latter option in favor of
loosing potentially important details by simply downscaling.

In recent work, SR algorithms have been evaluated on
endoscopic images [4], [5]. Based on patches, extracted from
HD video frames (termed low- resolution (LR) in our context),
high-resolution (HR) images were created, using a set of
different SR algorithms. The quality of the SR reconstruction
has then been assessed using different image quality metrics.
The outcome of these studies was that, at least for the quality
metrics and SR methods evaluated, there is no real benefit
from applying SR algorithms to endoscopic images in order
to reveal new details.

While, similar to [4], [5], in this work we apply SR
algorithms to HD images, the main aim of the present study
is different. We compare the classification results of the SR
images using a classifier trained on high-magnification images
with the classification results of the original HD images using
a classifier trained on the original HD images or on high-
magnification images. This way we are able to determine
whether it is possible and meaningful to train classifiers with
images of a different endoscopic imaging modality exhibiting
more mucosal detail compared to the images to be classified
and if it makes sense to additionally bridge the resolution
gap by means of SR. We also investigate to which extent
scale invariant methods are able to lower the effect of scale
differences and how these features perform in combination
with SR methods (in terms of overall classification rates).

Figure 1 shows two tubulovillous adenoma, one captured
with a zoom-endoscope and one captured with an HD en-
doscope without optical zoom. We immediately notice the
dramatic difference in terms of the details visible.



(a) Zoom (b) HD (c) SR method

Fig. 1. Illustration of the difference between two different imaging modalities
in (a) and (b). And a region of the same size extracted from the outcome of
an SR method applied to (b) in (c).

The remaining part of this work is organized as follows: In
Section II we briefly describe the SR algorithms and feature
extractions methods evaluated. In Section III we describe the
experimental setup used and present the results obtained. We
then conclude the paper in Section IV.

II. METHODS EVALUATED

In the following we briefly describe the SR algorithms and
the feature extraction methods which have been employed for
the experiments in this work.

A. SR Algorithms

The set of SR algorithms chosen for our experiments is the
same as evaluated in [3]. In addition, as indicated in [3], we
face complex motion in endoscopy videos. We therefore use
the optical flow estimation by Black and Anandan [6] (part of
the implementation available for [7]).

In the following yk denotes the k-th LR image from the
input sequence and X̂n denotes the HR estimate after the n-th
iteration of the respective iteration.

• Iterative Back Projection (IBP): The Iterative Back
Projection [8] was chosen for our experiments due to
its simplicity and intuitive nature. Simply stated, this
method computes the pixel-wise difference between yi

and X̂n after applying the respective warp, smoothing,
and downsampling. The difference image is then up-
sampled, followed by computing the gradient image,
and warping back the gradient image to the image
space of X̂n. The final update for X̂n is obtained by
summing up the gradient images pixel-wise for all yi

in and adding the resulting image, multiplied by a
constant factor, to X̂n.

• Robust Super-Resolution (ROBZ): This method,
proposed in [9], is basically a modification to the IBP
method. Instead of summing up the single gradient
images, the authors propose to compute a pixel-wise
median to obtain the update weight for each pixel. By
changing the IBP algorithm this way, outlier pixels are
removed. Such outliers might arise, for example, due
to an inaccurate motion estimation.

• Projection Onto Convex Sets (POCS): The key idea
of POCS-based SR algorithms is to express every
piece of prior knowledge about the solution as a con-
straint in image space. More specifically, the solution
is constrained by convex sets which, according to the
prior knowledge available, impose restrictions on a HR

estimate in order to be a valid one. The experiments in
this work are based on the POCS-approach proposed
in [4] as this method has been developed in the context
of endoscopic imaging.

• Regularized Super-Resolution (RSR): The RSR
method used in this work was proposed in [10]. Since
the SR reconstruction problem is an ill-posed one [11],
regularized approaches aim at finding the desired HR
image in the space of possible solutions by imposing
one or more constraints on the SR reconstruction. The
algorithm proposed in [10] is in some way similar
to the IBP method described, as it also aims at
minimizing the error between an observed LR image
yk and a simulated LR image. But besides a different
cost function, the approach in [10] uses an additional
regularization constraint to compensate for the ill-
posedness nature of SR reconstruction problems. The
constraint used is termed as bilateral total variation
(BTV), which penalizes the total variation within an
image with a spatial decaying effect.

For our experiments the initial HR estimate X̂0 is set to an
upscaled version of y1 in case of IBP, ROBZ, and POCS. For
RSR, X̂0 is set to the pixel-wise mean of all LR images after
registration and upscaling. In addition, in case of RSR, we use
a regularized deconvolution on X̂0 to cope with noise and blur.

Since all the SR methods evaluated work in an iterative
manner, we employ the adaptive termination criterion proposed
in [4] to decide upon termination of the iterative process.

B. Feature Extraction

In this work we evaluated the following set of feature
extraction methods for a subsequent classification. These
methods have been chosen because of their quite different
characteristics to analyze their different behaviors.

• Local Binary Patterns (LBP): Based on a grayscale
image, this operator generates a binary sequence for
each pixel by thresholding the neighbors of that pixel
by the center pixel value. The binary sequences are
then treated as numbers (i.e. the LBP numbers). In
our case the LBP8,1 operator has been used (i.e. eight
neighbors, radius of one). Once all LBP numbers for
an image are computed, a histogram based on these
numbers is generated and used as feature vector.

• Dual-Tree Complex Wavelet Transform (DT-
CWT): The DT-CWT is used with six scales and six
orientations. Based on the absolute values of the detail
subband coefficients, the statistical features mean and
standard deviation are computed for each subband
[12]. This process is repeated for each color channel.
The resulting values are concatenated to obtain the
final vector.

• FRACTAL: The method proposed in [13] is based on
the computation of fractal features. After a conversion
of an image to grayscale, the image is filtered using
the MR8 filter bank. Subsequently the local fractal
dimension for each pixel of the eight filter responses
is computed. Then a bag-of-visual-words approach is



used to generate a histogram for an image. These his-
tograms are then used as features for the classification.

• Segmented Shape Features (SSF): This method has
been specifically designed for the classification of
colonic polyps. SSF analyzes the shape of connected
components (blobs) from images (after a conversion
to grayscale) segmented by a variation of the fast
level lines transform. But in contrast to the algorithm
proposed in [14], we use a slightly modified algorithm,
which prevents merging of blobs. The final feature
vector of an image consists of the histograms com-
puted from three shape features (convex hull feature,
skeletonization feature, and perimeter feature) and a
contrast feature extracted from the blobs.

• MBFSI: In order to derive multiscale blob features
(MBF) [15], a series of flexible threshold planes (i.e.
blurred versions of the image itself) are applied to
a textured image (after a conversion to grayscale)
and then the topological and geometrical attributes
of the blobs in the obtained binary images are used
to describe image texture. Two features are used to
describe an image, the number of blobs and the shapes
of the blobs. The shape features are invariant to spatial
scaling within a small range, but the number of blobs
changes to some extent. Hence, in order to exploit the
scale invariance as a stand-alone feature, we use the
scale invariant shape features only (MBFSI).

• Edge Features (EF): After a grayscale conversion of
the input image, this method aims at finding regions
which correspond to pits, as typically observed on
a colonic mucosa. Based on these regions, different
features are extracted [16]. In accordance to the work
in [16], the experiments in this work are also based
on a feature selection (the feature selection has been
carried out on the high-magnification images). The
feature selection yielded two different features to be
used in our experiments: the mean image intensity
across all pits detected and the mean irregularity
across all pits detected (the irregularity for one pit
is computed by dividing the maximum radius of the
pit by the minimum radius).

While the DT-CWT method operates in a multi-resolution
fashion, the LBP operator works on small pixel neighborhoods
only. The methods EF, MBFSI, and SSF, in contrast, are
specifically designed to analyze shapes. In addition, to support
bridging the resolution gap, three of our methods are designed
to be scale invariant (i.e. FRACTAL, MBFSI, and SSF). While,
in general, the EF method is not scale invariant, the subset of
features yielded by the feature selection is.

III. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

Each LR sequence used in this work is based on four
successive frames taken from 62 videos acquired during
colonoscopy sessions between the years 2011 and 2013 at
the Department for Internal Medicine (St. Elisabeth Hospital,
Vienna) using an HD colonoscope (Pentax HiLINE HD+ 90i
Colonoscope) with a resolution of 1280×1024 pixels. In order
to acquire the videos, 37 patients underwent endoscopy.

TABLE I. GROUND TRUTH INFORMATION FOR THE LR SEQUENCES

USED IN OUR EXPERIMENTS.

Non-neoplastic Neoplastic Total

LR sequences 19 43 62

Patients 13 35 48

TABLE II. GROUND TRUTH INFORMATION FOR HIGH-MAGNIFICATION

IMAGE DATABASE USED FOR TRAINING IN OUR EXPERIMENTS.

Non-neoplastic Neoplastic Total

Images 198 518 716

Patients 14 32 46

The high-magnification images, serving as training set, are
based on 327 endoscopic color images (either of size 624×533
pixels or 586×502 pixels) acquired between the years 2005
and 2009 at the Department of Gastroenterology and Hepatol-
ogy (Medical University of Vienna) using a zoom-colonoscope
(Olympus Evis Exera CF-Q160ZI/L) with a magnification
factor of 150. In order to acquire the images, 40 patients
underwent colonoscopy. To obtain a larger set of images, we
manually extracted subimages (regions of interest) with a size
of 256×256 pixels from the original images. This resulted in
an extended image set containing 716 images in total.

Lesions found during colonoscopy have been examined
after application of dye-spraying with indigocarmine, as rou-
tinely performed in colonoscopy. Biopsies or mucosal resection
have been performed in order to get a histopathological diag-
nosis. In case of the HD video sequences, the Pentax i-SCAN
image enhancement has been enabled in addition to the topical
staining (i.e. i-SCAN mode 3, which enhances the visibility of
pit pattern and vascular features).

The ground truth for the LR sequences and, as a conse-
quence, for the SR reconstruction results is given in Table
I. One notices that we carry out a classification between
non-neoplastic and neoplastic polyps. A more fine-grained
classification would theoretically be possible, but this would
potentially lead to rather unstable results due to the quite
limited number of LR sequences available. Inside the colon of
a single patient different types of lesions may develop. Since
such a patient appears in more than one class, the total number
of patients in Table I is higher (48) as compared to the number
of patients who underwent colonoscopy (37).

Table II shows the ground truth information used for the
high-magnification image set. Similar to the LR sequences
ground truth, again the number of patients shown in this table
is slightly higher (46) as compared to the total number of
patients who actually underwent colonoscopy (40).

Although the LR images used are color images, we apply
the SR algorithms only to the intensity component in the
CIELAB color space since this channel usually contributes
most to textural features. The color components of the HR
images are obtained by a simple bicubic upscaling of the first
frame from the respective LR sequence. For the classification
we employ the k-NN classifier with different choices for k
(i.e. k = 1, . . . ,10). The classification setup (i.e. different image
sets for training and evaluation) will be referred to as distinct
sets classification in the remaining part of this work (DS
classification).

We carry out three different types of classification scenar-
ios, based on different evaluation image sets:



Sequence 1 Sequence n

SR Method SR Method

HR Image
Database

Fig. 2. Illustration of the process behind creating the HR image databases.

• SR scenario: We apply the SR algorithms to the LR
sequences. To reduce the computational demand for
the SR methods we chose positions in the original HD
frames from which we manually extracted 256×256-
pixel patches which serve as LR images (the position
remained the same in case of a single sequence). For
the SR reconstruction we use an upscaling factor of
two (resulting in 512 × 512-pixel HR images). We
then extract a 256×256-pixel center patches from the
resulting HR images for the classification (red square
in 2).

• “Normal” scenario: The first frame of each LR
sequence is used to construct the image set for evalu-
ation. Choosing the first LR frame can be justified by
the fact that the first frame is also used as the reference
frame when applying the SR algorithms.

• “Bicubic” scenario: While being similar to “Normal”,
the first LR frame of each sequence is subject to
upscaling using an upscaling factor of two and bicubic
interpolation. The 256× 256-pixel center patches of
the upscaled images are then used to construct the
evaluation set (red square in 2).

It must be pointed out that, by applying the four different
SR methods and by considering the “Normal” and “Bicubic”
scenarios, we end up with a total of six different image
databases for validation. Each of these databases is then subject
to a separate classification. The process of creating a single
HR image database from the video sequences available is
illustrated in Fig. 2. In case of a distinct set scenario, the
training set consists of the high-magnification images.

To assess whether differences in classification results are
statistically significant we employ McNemar’s test [17]. For
two methods M1 and M2 this test statistic keeps track of the
number of images which are misclassified by method M1 but
classified correctly by method M2 and vice versa. Throughout
this work we chose a significance level of α = 0.05. This
implies that, if M1 and M2 are significantly different, there
is a confidence level of 95% that the differences between the
outcomes of the methods are not caused by random variation.

B. Results

By investigating the results obtained, we want to answer
different questions. We thus split up the result discussion
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Fig. 3. Comparison of the mean overall classification rates obtained for DS,
reduced DS, and LOPO (in case of “Normal”).

TABLE III. MEAN CLASSIFICATION RESULTS AND THE STANDARD

DEVIATIONS FOR THE DIFFERENT EVALUATION SETUPS.

DS DS (reduced) LOPO DS vs. LOPO

LBP 69.4 ± 0.0 65.8 ± 1.0 67.9 ± 2.8 ✓

DT-CWT 71.1 ± 2.8 70.4 ± 2.4 70.5 ± 1.1 ✗

FRACTAL 63.2 ± 2.5 58.1 ± 5.1 69.8 ± 1.9 ✗

SSF 75.8 ± 1.3 70.0 ± 1.9 72.1 ± 2.4 ✗

EF 64.0 ± 2.7 62.5 ± 2.9 65.2 ± 3.0 ✗

MBFSI 70.8 ± 2.9 70.1 ± 6.4 72.4 ± 1.2 ✓ (-)

in different parts in which we analyze and discuss different
aspects of the results obtained.

1) Is a Classification based on Different Endoscope Types
Feasible?: Figure 3 shows a comparison of the mean overall
classification rates (over all choices for k) for a distinct sets
classification (one time with the original high-magnification
set used as training set, and one time with a reduced high-
magnification image set) for “Normal” (i.e. the original LR
frames have been used for evaluation). To obtain the reduced
high-magnification set we selected 100 random subsets of the
original images in such a way that the number of images per
class corresponds to the LR image set. These subsets have
then been used as training sets for 100 classification runs.
The classification rates for the reduced set shown in Fig. 3
correspond to the mean rates over all 100 classification runs.
In addition we carried out experiments using leave-one-patient-
out cross-validation (LOPO). Both, the training and evaluation
images are taken from the LR image set (with the restriction,
that the training set must not contain an image from the patient,
currently under classification).

It is important to recall that the number of images available
in the high-magnification image set is much higher as com-
pared to the images in the LR images set. This might also have
an effect on the resulting classification rates in case of the DS
classification. This is the reason why additional experiments
have been conducted with the reduced high-magnification set.

From the results in Fig. 3 we notice that for some features
extraction methods the mean classification rates in case of
LOPO are higher as compared to the DS classification, while
other features seem to yield higher classification rates in case
of distinct sets classification. But in most cases the differences
seem to be quite small. As expected, we also notice that the
rates in case of a reduced training set are consistently lower
as compared to the DS rates.

Table III shows the classification results in a more detailed
fashion. The results shown in this table are the mean overall
classification rates over all choices for k, along with the respec-
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Fig. 4. Overview of the results from our experiments.

tive standard deviations. In case of the reduced image set the
mean and standard deviation values have been computed from
all 1000 overall classification rates (i.e. 10 choices for k times
100 classification runs). The last column in this table indicates
whether, according to McNemar’s test, the differences between
the results produced by the different evaluation setups are
statistically significant. For McNemar’s test we fixed the value
for k to 4, since for this value the overall classification rates
are in most cases the highest. A check mark indicates a
significant difference between the results of DS and LOPO
and the sign given in brackets shows whether a DS result is
significantly higher (+) or significantly lower (-) as compared
to the respective LOPO result.

The most important thing we notice from Table III is that,
despite the fact that there are differences in the results between
DS and LOPO, these are not statistically significant for the
majority of the features. Only in case of MBFSI and LBP we
observe statistically significant differences. While in case of
LBP the overall rates are nevertheless equal, MBFSI yields
slightly lower results in case of DS. As a consequence, we
can conclude that classifying the LR images, while using the
high-magnification images for the training, is indeed feasible –
at least for the feature extraction methods and image databases
used. But we have also seen that the number of training images
available makes a difference. Hence, the outcome that the DS
results are sometimes higher as compared to the LOPO results
can partially be explained by the fact that in case of DS the
number of training images is much higher, which is beneficial,
especially when using the k-NN classifier.

2) Can SR Algorithms Help to Bridge the Resolution Gap?:
As we saw, there are almost no statistically significant differ-
ences between a DS classification and a LOPO classification.
We now aim to answer the question whether we are able to
improve the classification results by classifying images after
applying SR algorithms.

Figure 4 gives an overview of the results from the respec-
tive experiments. In this figure the solid line shows the mean
over the overall classification rates obtained with the different
choices for k for one specific combination of SR algorithm
and feature extraction method. The shaded area indicates the
range between the minimum and maximum overall rates over
all values for k for one combination. “Normal” and “Bicubic”
denote the cases where the original and upscaled images are
used for classification, respectively (i.e. the two scenarios as
described in Section III-A). Table IV shows the results in more
detail (the mean rates along with the standard deviations).

TABLE IV. MEAN CLASSIFICATION RESULTS ALONG WITH THE

RESPECTIVE STANDARD DEVIATIONS (GIVEN IN PERCENT).

Normal Bicubic IBP POCS ROBZ RSR

LBP 69.4 ± 0.0 69.4 ± 0.0 33.5 ± 2.4 34.0 ± 2.1 33.4 ± 1.5 63.2 ± 5.2

DT-CWT 71.1 ± 2.8 71.1 ± 2.3 72.4 ± 2.1 74.0 ± 2.3 74.5 ± 1.3 72.1 ± 2.3

FRACTAL 63.2 ± 2.5 74.4 ± 1.4 74.2 ± 1.7 72.4 ± 3.0 73.7 ± 2.6 72.9 ± 1.7

SSF 75.8 ± 1.3 68.1 ± 3.7 73.2 ± 1.4 74.5 ± 1.8 73.1 ± 0.8 71.1 ± 3.1

EF 64.0 ± 2.7 70.0 ± 2.5 73.9 ± 2.6 71.5 ± 1.9 76.6 ± 2.3 69.2 ± 2.6

MBFSI 70.8 ± 2.9 70.2 ± 2.0 72.1 ± 5.2 73.5 ± 5.4 71.8 ± 4.3 65.6 ± 5.3

TABLE V. SIGNIFICANCE TEST RESULTS FOR DS, COMPARING

“NORMAL” AND THE REMAINING SR METHODS (WITH k = 4).

Bicubic IBP POCS ROBZ RSR

LBP ✗ ✓ (-) ✓ (-) ✓ (-) ✗

DT-CWT ✗ ✗ ✗ ✗ ✗

FRACTAL ✓ (+) ✓ (+) ✓ (+) ✓ (+) ✗

SSF ✗ ✗ ✗ ✗ ✗

EF ✗ ✗ ✗ ✓ (+) ✗

MBFSI ✗ ✗ ✗ ✗ ✗

From Fig. 4 we notice that the results are considerably
lower for most SR methods in case of LBP. While in case of
“Normal” and “Bicubic” the rates are equal, SR algorithms
yield lower results in a consistent manner. The main problem
of LBP seems to be that this operator analyzes texture in a
small pixel neighborhood of a fixed size only. Thus the feature
is quite sensitive to scale changes. In addition, in case of
“Normal” and “Bicubic” all images are classified as neoplastic,
which explains the fact that the minimum and maximum mean
overall rates are equal in these cases. Hence, LBP is not suited
for our DS classification. The overall picture is quite different
for the other feature extraction methods evaluated.

When comparing the SR rates with the “Normal” rates for
the remaining features, we see that in most cases applying
an SR method yields at least slightly higher mean overall
classification rates. Only in case of SSF there is no gain from a
higher resolution in terms of the classification rates. In case of
DT-CWT, FRACTAL, EF, and MBFSI the classification rates
for HR images are mostly higher as compared to “Normal”.
But we also notice, that the improvement of the classification
rates are rather small in case of some features, when comparing
the respective SR rates with “Bicubic”. This is especially
noticeable for the FRACTAL feature. While for this feature
the SR rates are much higher as compared to the “Normal”
rate, the “Bicubic” rate is even higher than the SR rates. For
all features, except for FRACTAL, there are quite often SR
methods which are able to increase the classification rates. The
clearly higher rates using SR or bicubic upscaling compared
to ”Normal“ in case of the two methods FRACTAL and
EF indicate that these two methods are not scale invariant,
although they are designed to be scale invariant.

Table V shows which combinations of feature extraction
methods and SR algorithms are able to yield a statistically
significant different results as compared to “Normal”. Again,
the results shown have been obtained by fixing k to 4.

From this table we notice that there are only three features
which deliver significantly different results as compared to
“Normal”. As already seen in Fig. 4, the “LBP” feature in most
cases yields lower mean classification rates when applying an
SR method. This can also be seen from Table V, where three
out of the four SR methods yield significantly lower overall
classification rates. In case of the FRACTAL feature, almost
all SR methods yield significantly higher overall classification
rates. However, as already mentioned earlier, even “Bicubic”
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Fig. 5. Comparison of the mean overall classification rates for DS, DS
reduced, and LOPO-CV for “Normal”.

yields much higher mean overall rates as compared to “Nor-
mal”. Thus, we can conclude for this feature that it would be
sufficient to apply a bicubic upscaling and that applying an SR
method in case of this feature has no additional benefit. Only
the EF feature seems to really benefit from applying an SR
method. Although this is only the case for the ROBZ method,
we also notice from Fig. 4 that in case of this combination
the mean overall classification rate is considerably higher as
compared to “Normal” and “Bicubic”.

3) Summary of Results: Figure 5 summarizes our experi-
mental results. The solid lines show the mean overall classi-
fication rates obtained by DS (red) and reduced DS (green).
The dashed line shows the mean overall classification rates
obtained for a LOPO classification for “Normal” (i.e. when
classifying LR frames without applying SR algorithms and
without using a separate image set for training). We see that
for DT-CWT, FRACTAL, and EF applying SR algorithms and
using a DS classification provides consistently higher mean
overall classification rates as compared to LOPO/“Normal”.
But for some of these feature extraction methods we notice
that, when using a reduced DS classification, the classification
rates drop below the LOPO/“Normal” rates. Only in case of
EF it doesn’t really matter whether we use reduced DS or DS
– in both cases the rates remain above the LOPO/“Normal”
rates. In case of SSF and MBFSI only a few SR methods are
able to deliver higher rates as compared to LOPO/“Normal”.
For LBP this is never the case.

IV. CONCLUSION

In this work we have shown that classifying images ac-
quired with an HD endoscope and training the underlying
classifier with images acquired with a high-magnification en-
doscope is feasible.

We have also shown that by applying SR algorithms we are
even able to increase the overall classification rates for some
feature extraction methods. But from the experiments carried
out it is also evident that the improvements are sometimes
only marginal. Apart from that, the improvements quite often
vanish as soon as the training set in case of a DS classification
is reduced. In other words, the improvements observed in case
of DS can partially be explained by the fact that the number
of images available for training is much higher when using
high-magnification images.

We have also seen that it is highly feature-dependent
whether there is a benefit from bridging the resolution gap with

SR algorithms or not. While LBP completely fails to benefit
from SR algorithms, other methods (e.g. EF and FRACTAL)
seem to benefit quite well from higher image resolutions.
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