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M. Häfner

Department for Internal Medicine

St. Elisabeth Hospital, Vienna

M. Liedlgruber and A. Uhl

Multimedia Signal Processing and Security Lab

Department of Computer Sciences

University of Salzburg, Austria

{mliedl, uhl}@cosy.sbg.ac.at

Abstract

The main question we try to answer in this work is

whether it is feasible to employ super-resolution (SR) al-

gorithms to increase the spatial resolution of endoscopic

high-definition (HD) images in order to reveal new details

which may have got lost due to the limited endoscope mag-

nification inherent to the HD endoscope used (e.g. mucosal

structures). For this purpose we propose a SR algorithm,

which is based on the Projection onto convex sets (POCS)

approach. This algorithm is able to avoid over-sharpening,

which is often seen with other methods. Since POCS-based

approaches are iterative ones, we also propose an adaptive

iteration scheme.

We compare the quality of the reconstruction of our

method against the quality achieved by other SR methods.

This is done on standard test images as well as on images

obtained from endoscopic video frames.

We show that, while our approach produces competitive

results on standard test images, we are not able to reveal

new details in endoscopic images for various reasons.

1 Introduction

In the past we developed different approaches for the

classification of colonic polyps (e.g. [6, 5, 7, 8]). All these

methods have been developed and evaluated on an image

database obtained with a zoom-endoscope with a magnifi-

cation factor of 150. The advantage of such endoscopes is

obvious as they allow to inspect the colonic mucosa in a

magnified manner, thus uncovering the fine surface struc-

ture of the mucosa as well as small lesions.

The present work, however, is solely based on endo-

scopic images obtained with a HD endoscope. While such

an endoscope provides a roughly four times higher im-
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Figure 1. Illustration of the difference be-

tween two different imaging modalities.

age resolution as compared to the previously used zoom-

endoscope, it provides no zooming capabilities. Hence, the

main question we try to answer in this work is whether it

is feasible to employ SR algorithms in order to increase the

resolution of our HD images in order to reveal new details

which may have got lost due to the limited endoscope mag-

nification inherent to the HD endoscope used (e.g. mucosal

structures). Fig. 1 shows two tubulovillous adenoma, one

captured with a zoom-endoscope (not HD, but zooming-

capabilities) and one captured with a HD endoscope (no

zooming possible). We immediately notice the dramatic dif-

ference between these images in terms of the details visible.

While it would be illusory to expect high-resolution

(HR) images generated by SR techniques, which are com-

parable to the ones obtained with the zoom-endoscope, we

at least hope to be able to increase the level of detail of HD

images.

Up to our knowledge currently there exists only one

work which tries to tackle the SR problem with endoscopic

images [1]. But in this work the authors test their algo-

rithm on low-resolution (LR) images generated from a sin-

gle video frame by shifting it into different directions and

downscaling the shifted frames. Our work, in contrast, aims

at reconstructing a HR image from several successive LR



images which are not synthetically generated.

The remaining part of this work is organized as fol-

lows: in Section 2 we give a brief introduction to super-

resolution and POCS, followed by a description of our pro-

posed method in Section 3. In Section 4 we describe the

experimental setup used and present the results obtained.

We conclude the paper in Section 5.

2 Super-resolution with POCS

2.1 Principles of Super-resolution

Fig. 2 shows the observation model which is usually as-

sumed in case of SR algorithms. The HR image is the im-

age which we aim to reconstruct from multiple LR images.

It is the result of sampling a continuous scene into a dis-

crete image. The HR image is then subject to a warping,

which might be caused for example by camera movements

or motion in the scene captured. Then, the image is usually

degraded by some sort of blurring. This might be due to

motion blur or optical blur inherent to the optics used. In

addition, the image is influenced by the point spread func-

tion (PSF) of the imaging sensor. The PSF describes how

several HR pixels within a certain neighborhood affect a LR

pixel. This usually includes the spatial integration over the

HR pixels as well as a defocus component. For the sake of

simplicity the PSF is usually modeled as a simple spatial

averaging over the HR pixels. Since the LR images have

a lower resolution as compared to the HR image (limited

by the sensor resolution), an implicit downsampling is per-

formed. This is also the point, where aliasing artifacts are

generated. Finally, depending on the sensor used, a certain

amount of noise may be added to the LR image.

Multiple instances of such LR images are the basis for

the reconstruction of the HR image. For this purpose SR

algorithms are usually based on the scheme shown in Fig.

3. In this figure yk denotes an LR image, p the number

of LR images available, and X the HR image we aim to

reconstruct. The reconstruction basically consists of three

steps:

• Registration

During the registration step the relative motion of each

LR image with respect to a reference image (often the

first LR image) is estimated with sub-pixel accuracy.

As we notice from Fig. 2 this may include translation

and rotation (either local or global).

• Fusion

Based on the estimated motion the LR images are

fused onto a HR grid. That is, the information from

the different LR images is combined into an HR im-

age, matching the resolution of the desired HR image.

• Image restoration

To counteract blurring and noise degradations, usually

an image restoration step is applied to the HR image.

In order to successfully accomplish the SR reconstruc-

tion the estimation of the motion is a crucial step. It is even

imperative that the motion is estimated with sub-pixel ac-

curacy. However, this can get quite complicated, depending

on the motion present in the LR images. Apart from that,

sub-pixel shifts between LR images are needed. If two LR

images are shifted by integer-shifts these images are basi-

cally the same and contain the same information (except

for border pixels). As a consequence an SR algorithm will

not be able to recover additional information from such two

frames. In order to obtain new high-frequency details for

the reconstruction of the HR image we also need aliasing

artifacts within the LR images. Such artifacts arise when

a signal (i.e. the continuous scene, which is considered to

be band-limited) is sampled below the Nyquist rate, which

happens during the undersampling of the scene due to a lim-

ited sensor resolution. While usually such artifacts are un-

wanted in signal processing, for SR reconstruction they are

necessary in order to be able to obtain new image details by

combining different LR images.

Based on the observation model from Fig. 2 the forma-

tion process for an LR image yk based on an HR image X

can be formulated in matrix notation as [3]:

yk = DkBkWkX + η, (1)

where Dk denotes the decimation matrix used for downscal-

ing, Bk is the blur matrix modeling the PSF and all other

types of blur, Wk represents the warp-matrix which repre-

sents the motion between X and yk before downscaling. η

denotes a normally distributed additive noise. The matri-

ces DT
k , BT

k , and WT
k represent the reverse operations, i.e.

upscaling, sharpening, and inverse motion, respectively.

2.2 POCS

The idea of POCS was introduced to image processing

by the work in [13]. For POCS it is assumed that all images

X , represented by one-dimensional vectors, are elements

of a Hilbert space H . The projection PX onto a convex set

C ⊂ H is then defined as

||X − PX|| = argmin
x∈C

||X − x|| ∀X ∈ H. (2)

A set C is said to be convex if it has the following property:

∀X1, X2 ∈ C : X3 ∈ C (3)

with

X3 = λX1 + (1− λ)X2 ∀λ ∈ [0, 1]
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Figure 2. The observation model usually assumed in case of SR algorithms.

Registration
to a reference 
frame (e.g. y1)

y1
y2

yp

Fusion onto
a HR grid

Image 
restoration

(e.g. deblurring,
denoising)

X

Figure 3. The reconstruction scheme common to reconstruction-based SR algorithms.

We now assume that we have m closed convex sets

Ci, i = 1, . . . ,m and the projection operator on Ci is de-

noted by Pi. It has been shown that the iteration

X̂n+1 = PmPm−1 . . . P1X̂
n (4)

will converge to a point X̂∗ inside C0 , ∩m
i=1Ci for an

arbitrary initial image X̂0. However, while convergence is

assured (as long as C0 is not the empty set), the solution X̂∗

is not necessarily unique.

The key idea of POCS-based SR algorithms is to express

every piece of prior knowledge about the solution as a con-

straint in image space H . More specifically, the solution

is constrained by convex sets which, according to the prior

knowledge available, impose restrictions on an HR estimate

in order to be a valid one. Based on such an HR estimate

X̂n we then obtain a new estimate X̂n+1 by projecting X̂n

onto the convex sets according to Equ. (4). Since X̂n+1

lies within C0 it is assured that the new estimate satisfies

all constraints imposed by the convex sets. Hence, X̂n+1 is

one possible solution to the reconstruction problem.

Before the iterative SR reconstruction process can be

started, two important steps are required: first, the closed

convex sets, constraining the HR solution, must be defined.

Then, based on the convex sets, the projection operators

need to be derived from the definitions of the Ci’s.

Throughout literature several different constraint sets

have been proposed (e.g. [12, 3]). In the following we list

the convex set constraints which are used throughout this

work (along with the respective projection operators):

• Amplitude constraint

This constraint simply limits pixel values within im-

ages in the respective convex set to certain predefined

bounds:

CA = {X : Bmin
p ≤ Xp ≤ Bmax

p , ∀p = 1, . . . ,M},
(5)

where M denotes the number of pixels in X and Bmin
p

and Bmax
p denote the lower and upper bound for the

p-th pixel, respectively. This definition uses sepa-

rate bounds for each pixel and thus allows to impose

spatially-dependent limits on pixel values.

The projection of an image X onto CA is then defined

as

X ′

p = PAXp =







Bmin
p , Xp < Bmin

p

Xp, Bmax
p ≤ Xp ≤ Bmax

p

Bmax
p , Xp > Bmax

p

,

(6)

where X ′

p denotes the p-th pixel value within the pro-

jection of X .

• Data consistency constraint

This constraint is a very important one in SR algo-

rithms since it measures the consistency between ob-

served LR images and a simulated LR image. In its

most general form the respective convex set can be for-

mulated as

CC = {X : ||X − g|| ≤ ǫR}, (7)

where g denotes some reference image and ǫR denotes

the maximum distance allowed between X and g. One



possible projection for this convex set is:

X ′ = PCX =

{

X, ||X − g|| ≤ ǫR
X −∆C(X − g), ||X − g|| > ǫR

(8)

where ∆C denotes a factor, specifying the correction

strength.

In terms of the SR terminology the convex set for the

k-th LR image can be formulated as

Ck
C = {X : ||DkBkWkX − yk|| ≤ ǫR}, (9)

with the projection given in Equ. (10).

As we have seen, a clear advantage of POCS is the

fact that prior knowledge can be formulated conveniently in

terms of convex sets and the associated projections. While

it may not always be trivial to find the Pi’s, it is usually eas-

ier than finding a projection which immediately projects an

arbitrary X onto the solution set C0. Moreover, POCS is

very intuitive since it allows to specify the constraints in the

spatial domain, based on the observation model.

3 Proposed Method

Since the motion, usually observed in endoscopy videos,

is quite complex (e.g. a combination of rotation, zoom,

and non-uniform shifts), we decided to use an optical flow

method to estimate the motion between two images. The

optical flow method we use for our experiments is based

on [10]. This method works in a coarse-to-fine manner by

constructing a Gauss-Laplace image pyramid for the two

images the motion should be estimated between. Then the

motion is estimated at the coarsest pyramid level. The re-

sulting estimate is used as a seed for the estimation at the

next finer level. This is repeated until the motion has been

estimated at the finest level in the pyramids.

In our implementation of the POCS approach we use the

data consistency constraint and the amplitude constraint.

Since our consistency constraint correction step also in-

volves a sharpening of the HR estimate (induced by BT
k

in Equ. (10)), we also employ a correction amplitude con-

straint, which prevents over-sharpening:

Ck
CA = {X : ||X −WT

k DT
k yk|| ≤ ǫCA}, (11)

where ǫCA denotes a parameter which controls the over-

sharpening correction. This constraint simply states that the

pixel-wise differences between the current estimate X and

the LR images (after upscaling and inverse warping) must

not exceed a certain limit. In fact, this constraint is a spe-

cial case of the amplitude constraint with pixel-wise bounds

which are based on the pixels of upscaled and warped LR

images. The respective projection is given in Equ. (12).

In our implementation the initial estimate X̂0 is set to an

upscaled version of y1. Based on Equ. (4) we end up with

X̂n+1 = P
p
AP

p
CAP

p
C · · ·P 1

AP
1
CAP

1
CX̂

n, (13)

where P k
(·) denotes the respective projection onto the k-th

LR image. It must be noted that in our implementation pro-

jections affect only those pixels which need correction (ac-

cording to the respective thresholds).

Since the proposed method is an iterative process, we

need to define a stopping criterion for the iterations. One

possibility would be to simply fix the number of iterations

carried out. But this approach has the drawback that if the

number of iterations is too high this may lead to severe over-

sharpening in case of certain images. If chosen too low, the

resulting HR images may suffer from missing details.

Another possibility would be to measure the difference

between a HR estimate X̂n+1 and its predecessor X̂n and

stop the iterative process as soon as the difference drops

below a certain threshold. But again, it is not easy to find

a threshold which works well for different types of images.

Choosing a wrong threshold value may lead to the same

problems as in case of a fixed iteration count.

For the aforementioned reasons we chose to use an adap-

tive termination criterion in this work. Using this criterion,

the iterative process can be outlined as follows:

1. Carry out the first three iterations and keep track of the

differences between X̂n and X̂n−1, where n denotes

the current iteration (starting at 1). The difference is

measured by computing the root mean square:

∆n =

√

√

√

√

1

N

N
∑

i=1

(

X̂n
i − X̂n−1

i

)2

(14)

2. Based on the differences for iterations two and three,

we compute a threshold value ǫiter, which is used later

to decide upon termination of the iterative process:

ǫiter = κ|∆3 −∆2|, (15)

where κ is a multiplier which specifies how much

changes we allow between two successive estimates to

consider a solution to have converged. In our experi-

ments we choose κ = 0.05.

3. Additional iterations are carried out as long as the fol-

lowing equation evaluates to 1:

crit(∆n,∆n−1) =

{

1, |∆n −∆n−1| ≥ ǫiter

0, |∆n −∆n−1| < ǫiter

(16)

In addition we terminate the iterative process as soon

as for two successive iterations the difference values

are growing again.



X ′ = P k
CX =

{

X, ||DkBkWkX − yk|| ≤ ǫR
X +WT

k BT
k D

T
k (∆C(yk −DkBkWkX)) , ||DkBkWkX − yk|| > ǫR

(10)

X ′ = P k
CAX =

{

X, ||X −WT
k DT

k yk|| ≤ ǫCA

X +
(

∆C(W
T
k DT

k yk −X)
)

, ||X −WT
k DT

k yk|| > ǫCA
(12)

Since the value of ∆1 highly depends on the initial HR

estimate, we use the values ∆2 and ∆3 to compute the

threshold ǫiter. The multiplier κ = 0.05 implies that we con-

sider the iterative process to have converged as soon as the

difference of differences falls below 5% of the difference

between ∆2 and ∆3.

4 Experimental Setup & Results

4.1 Experimental Setup

To be able to compare the visual results of our SR

method, we carried out additional experiments using other

methods as well. These are Shift-and-Add (S&A) [2], regu-

larized super-resolution (ROB) [4], iterated back-projection

(IBP) [9], and robust super-resolution (ROBZ) [14]. In case

of color images we apply the SR algorithms to the intensity

component of the images only (in this case the color com-

ponents are simply upscaled using bicubic interpolation).

For our experiments we evaluated the SR algorithms on

different LR image sequences. These sequences can be di-

vided into artificial ones and real-world sequences. In case

of the artificial sets we use well-established test images,

while in case of the real-world sequences we use widely

used sequences as well as sequences extracted from endo-

scopic videos. Two things common to all sequences are the

number of LR images available for each sequence, which

has been fixed to eight for our experiments, and the upscal-

ing factor to obtain the HR results, which has been fixed to

two for our experiments. In case of the artificial sequences

we generated eight LR frames based on a HR image ac-

cording to the observation model in Equ. (1) (the sequences

are subject to shift and rotation). The endoscopic sequences

are based on successive frames of videos acquired during

colonoscopy sessions between the years 2011 and 2012 at

the Department for Internal Medicine (St. Elisabeth Hospi-

tal, Vienna) using a HD colonoscope (Pentax HiLINE HD+

90i Colonoscope) with a video resolution of 1280 × 1024.

To reduce the computational demand for the SR meth-

ods we chose positions from which we manually extracted

256 × 256-pixel patches which serve as LR image (the po-

sition remained the same in case of a single sequence). De-

tails on the LR sequences used can be found in Table 1. In

this table the column “Synthetic” indicates whether the re-

spective LR sequence has been generated from a single HR

Name ID Color Synthetic

Airplane A1 3 3

Boat A2 7 3

Elaine A3 7 3

Chart A4 7 3

Carphone R1 3 7

City R2 3 7

Container R3 3 7

Garden R4 3 7

Endoscopy 1 E1 3 7

Endoscopy 2 E2 3 7

Endoscopy 3 E3 3 7

Endoscopy 4 E4 3 7

Table 1. Details on our LR image sets used.

image.

Since we have no reference HR image in case of endo-

scopic images, we use a reference-free quality metric. The

metric used is called BRISQUE [11]. It is a so-called nat-

ural scene statistics-based approach. It fits a statistical dis-

tribution to features extracted from different images. Once

the features for training images have been obtained, sup-

port vector regression (ǫ-SVR) is used to learn a mapping

from feature space to quality scores. The learned model is

then used to predict the quality score for an image with an

unknown quality.

Since the quality metric relies on training data for SVR,

we generated a different set of sequences (similar to the one

in Table 1). This set has been rated by eight human raters.

Based on these ratings, the differential mean opinion score

(DMOS) was computed (we use the median instead of the

mean to be resistant against outlier ratings). The DMOS

values have then been used to train the metric. A higher

score returned by BRISQUE means a higher quality, where

the score is usually in the range between 0 and 100 (there

might be some outliers leaving this range).

4.2 Results

From the results presented in Table 2 we notice that our

method is in many cases able to produce a higher score as

compared to the interpolation result (the first LR frame after

upsampling, using bicubic interpolation). But in case of the

endoscopy sequences our method fails to produce a higher



ID INT HR S&A IBP ROB ROBZ Proposed

A1 46.8 67.3 45.2 60.5 5.8 60.6 47.5

A2 50.6 81.6 60.2 57.1 44.3 58.6 62.1

A3 47.6 101.4 50.0 78.5 59.8 77.3 66.3

A4 19.8 2.6 8.8 21.5 45.4 16.3 24.4

R1 51.3 - 45.0 62.0 52.4 65.5 63.0

R2 32.6 - 47.1 40.3 26.5 42.8 43.2

R3 28.6 - 12.8 36.0 -9.3 37.5 34.9

R4 52.4 - 48.6 23.5 14.6 30.3 34.2

E1 49.2 - 45.9 31.3 32.9 41.9 30.1

E2 48.4 - 35.5 24.3 37.5 36.1 23.8

E3 49.8 - 49.0 25.1 51.4 29.3 25.1

E4 49.3 - 52.7 26.6 56.5 37.0 27.1

Table 2. Detailed metric results for the SR al-

gorithms (INT denotes interpolation and HR

denotes the ground truth).

score than interpolation. The picture is similar for the other

SR algorithms: while in quite a few cases these methods

are able to produce an image with a higher score in case of

artificial and real-world sequences, they fail almost always

in case of the endoscopy sequences. It is also no surprise

that almost all methods fail to produce a higher quality as

compared to the HR images. Only in case of the “Chart”-

sequence (A4), all methods produce a higher quality than

the original HR image. This may be due to the fact that this

sequence is made of monochrome images, resulting in very

sharp SR results.

The proposed approach is able to outperform all other

methods in case of the “Boat”-sequence (A2). In case of

some other sequences (i.e. Chart, Carphone, City, and Gar-

den) our method outperforms quite a few other methods.

But in case of the endoscopy sequences it is almost always

inferior as compared to the other methods.

5 Conclusion

In this paper we proposed a POCS-based algorithm for

super-resolution. We showed that the results are in many

cases better or at least competitive as compared to other SR

algorithms. But we also showed that all SR algorithms (in-

cluding the proposed one) almost always fail to improve the

visual quality of endoscopic images. This may be due to

the fact that these sequences are extracted from compressed

videos which show a high amount of compression artifacts

(i.e. blocking). Apart from this, the endoscopy frames do

not contain very much high frequency content.

In future work we will therefore evaluate the SR algo-

rithms also on uncompressed endoscopy video frames. In

addition we will investigate whether applying deblocking

algorithms allows to improve the quality of the SR results.

Since in this work we relied on a single metric only for the

assessment of the visual quality of the SR results, we will

also investigate additional metrics.
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[5] M. Häfner, R. Kwitt, A. Uhl, A. Gangl, F. Wrba, and

A. Vécsei. Computer-assisted pit-pattern classification in

different wavelet domains for supporting dignity assessment

of colonic polyps. Pattern Recognition, 42(6):1180–1191,

Sept. 2008.
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