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Abstract

We evaluate different cross-validation (CV) protocols

for an automated classification of colonic polyps. For

this purpose we select six previously developed methods

which achieved promising results already in the past. We

then evaluate the methods using the cross-validation pro-

tocols leave-one-image-out (LOO-CV), leave-one-parent-

image-out (LOPIO-CV), leave-one-lesion-out (LOLO-CV),

and leave-one-patient-out (LOPO-CV).

We show that, in general, the more restrictive cross-

validation protocols lead to high results drops. While in

case of LOO-CV the accuracies are rather high across all

methods evaluated, the picture changes the more strictness

a cross-validation mode imposes on the set of training im-

ages.

1 Introduction

Colonic polyps have a rather high prevalence and are

known to either develop into cancer or to be precursors of

colon cancer. Hence, an early detection of such polyps is

important as this can lower the mortality rate drastically.

The current gold standard for the examination of the

colon is colonoscopy, performed by using a colonoscope.

Modern endoscopy devices are able to take pictures from

inside the colon, allowing to obtain images for a computer-

assisted analysis with the goal of detecting abnormalities.

To be able to acquire highly detailed images a magnifying

endoscope can be used [1]. Such an endoscope represents
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a significant advance by providing images which are up to

150-fold magnified, thus uncovering the fine surface struc-

ture of the mucosa as well as small lesions.

In the past, we developed various different methods for

the classification of colonic polyps in high-magnification

chromo-colonoscopy which delivered promising results al-

ready (e.g. [3–6, 10]). The image databases used in these

approaches were rather limited in terms of the database size,

hindering an accurate assessment of the system accuracies.

Hence, we mainly used the leave-one-image-out CV (LOO-

CV) protocol to estimate the accuracies of our methods.

However, in a recent study Hegenbart et al. showed that

LOO-CV is prone to biased results [7].

In this work we therefore aim at a comparison of dif-

ferent CV protocols. For this purpose we selected a set

of six methods for polyp classification which delivered

promising results already in the past. We evaluate each

of these methods with the CV protocols leave-one-image-

out, leave-one-parent-image-out (LOPIO-CV), leave-one-

lesion-out (LOLO-CV), and leave-one-patient-out (LOPO-

CV). We then compare the differences between the proto-

cols in terms of the classification rates achieved.

The remaining part of this work is organized as follows:

in Section 2 we provide the medical background of this

work. This is followed by a brief summary of the previously

developed methods and a description of the CV modes com-

pared in Section 3. In Section 4 we give details about the

experimental setup and discuss the results obtained. Section

5 concludes this paper.

2 Medical background

Due to the fact that colonic polyps have a rather high

prevalence and are known to either develop into cancer or
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Figure 1. Illustration of (a)-(f) the different pit pattern types according to Kudo et al. and (g)-(l) exam-
ple images for each pit type.

to be precursors of colon cancer, an early detection of such

pathologies can lower the mortality rate drastically. Hence,

automated classification systems targeted at the assessment

of the malignant potential of colonic polyps aim at avoiding

random and, probably, unnecessary biopsies. As a conse-

quence such systems could potentially help to save time,

lower the cost for colonoscopy procedures, and reduce the

risk of complications during such procedures.

One classification scheme, commonly used to to distin-

guish between the different types of polyps, is the pit pat-

tern classification scheme, originally introduced by Kudo

et al. [9]. Based on the visual pattern of the mucosal

surface this system allows to differentiate between nor-

mal mucosa, hyperplastic lesions (non-neoplastic), adeno-

mas (a pre-malignant condition), and malignant cancer. A

schematic illustration of the pit pattern classification along

with example images for each pit type are given in Fig. 1.

In this work we focus on a classification between non-

neoplastic (types I and II) and neoplastic lesions (types III-

S to V) and a 3-class classification according to [8] in this

work. This classification groups the six different pit pattern

types into normal lesions (types I and II), non-invasive le-

sions (types III-S, III-L, and IV), and invasive lesions (type

V). This scheme is of particular interest since normal mu-

cosa needs not to be removed, non-invasive lesions must be

removed endoscopically, and invasive lesions must not be

removed endoscopically.

3 Methodology

3.1 Evaluated Methods

In the past we developed various different methods for

the classification of colonic polyps. For the experiments in

this work we selected a subset of six methods, which have

already shown to yield very promising classification results.

In the following we briefly describe these methods (the clas-

sifiers and color spaces used to evaluate the methods along

with a rough indicator for the dimensionality of the features

used are given in brackets):

• WT-BBC (Bayes classifier, RGB, Moderate)

The Best Basis Centroids method employs the Best-

basis algorithm [2] to find an optimal basis for each

training image and computes a centroid over all result-

ing bases. After transforming all images into this basis,

the most informative subbands (with respect to a cost

function) are used to compute statistical features based

on the respective coefficients [10].

• WT-DWT (Bayes classifier, RGB, Moderate)

This method transforms an image to the wavelet do-

main using the discrete wavelet transform. From the

most informative subbands (according to a cost func-

tion) statistical features are extracted from the respec-

tive coefficients [10].

• JC-MB-LBP (k-NN classifier, CIELAB, High)

This method is based on a noise-insensitive extension

of the LBP operator [12]. This operator is applied to

two color channels of an image and, based on the trans-

formed channels, a 2D joint-color histogram is created

for each image [3].

• LCVP MR A(2) (k-NN classifier, CIELAB, High)

The LCVP method is based on a color-extension to the

original LBP operator. By treating each pixel as a 3D

color vector, each image is treated as a color vector

field. Then, similar to LBP, neighboring color vectors

are compared, which results in an LCVP-transformed

image. Based on the transformation result at different

scales, a 1D histogram is created for each scale. These

histograms are then concatenated [6].



• Weibull (k-NN classifier, RGB, High)

The dual-tree complex wavelet transform (DTCWT)

[13] is used to decompose an image. Based on

the resulting detail subband coefficient magnitudes

the empirical histogram is modeled by two-parameter

Weibull distributions. The Weibull parameters are then

arranged into a feature vector [5].

• Edgefeatures (k-NN classifier, RGB, Low)

This method is based on the detection of pit candidates.

Once found, various shape and texture features are ex-

tracted for the pit candidates within an image. This

method also employs a feature selection strategy to re-

duce the dimensionality of the final feature vectors [4].

The combination of the classifier and color space used

is the one which yielded the highest overall classification

results among different combinations. Since the optimal

parameter configurations for the methods vary between the

different CV protocols and the different classification cases

considered (2-classes and 3-classes), we only provide rough

indicators for the dimensionality of the underlying feature

vectors for an image for each method (“low” corresponds to

less than 50 features, “moderate” corresponds to a dimen-

sionality between 50 and 100 features, and “high” corre-

sponds to more than 100 features).

3.2 Cross-validation Protocols

A particular problem when classifying endoscopic im-

ages is the image database at hand which is quite often

limited in terms of the number of images available [11],

making an accurate estimation of system accuracies prob-

lematic. One common way to solve this problem are CV

protocols, which allow to evaluate a classification system in

a meaningful way. Depending on the image database used,

different ways for cross-validation are possible.

The images used in our experiments originate from

colonoscopies of different patients. Hence, one or more le-

sions per patient are present in our image database. Further-

more, one or more images per lesion are present (i.e. parent

images), showing the respective lesion from different view-

ing angles. This results in an implicit hierarchy inherent to

our database, which is depicted schematically in Fig. 2. To

generate more images for the experiments we manually cut

out one or more small patches (256 × 256 pixels) from each

parent image, allowing us to use the following CV modes:

• Leave-One-Image-Out (LOO-CV)

In this protocol one patch is used as a validation sam-

ple while the remaining patches are used to train a clas-

sifier (repeated for each patch in the image database).

While LOO-CV is quite frequently used it is also prone

to biased results, since, if there is more than one patch

present for a parent image, these patches usually ex-

hibit a high similarity (for example, patches 1 and 2 in

Fig. 2). Hence, the classifier is trained with patches

being very similar to the patch currently classified.

• Leave-One-Parent-Image-Out (LOPIO-CV)

To overcome the problem of similar patches extracted

from the same parent image, LOPIO-CV has the re-

striction that the classifier must not be trained with

patches extracted from the parent image the patch un-

der classification has been extracted from. But as we

notice from Fig. 2, if there are multiple parent images

showing the same lesion, we again run into the prob-

lem of training a classifier with patches similar to the

patch under classification (for example, patches 2 and

4 in Fig. 2).

• Leave-One-Lesion-Out (LOLO-CV)

To avoid training a classifier with patches of the lesion

currently classified, LOLO-CV is even more restric-

tive than LOPIO-CV. Here the classifier must not be

trained with patches which belong to the same lesion

as the patch currently classified. Since different lesions

within a patient are less likely to show high similari-

ties LOLO-CV is sufficient for an accuracy estimation

without any bias from similar images.

• Leave-One-Patient-Out (LOPO-CV)

LOPO-CV is even more restrictive as it prohibits clas-

sifier training with patches which belong to the same

patient as the patch currently classified (even if the

patches belong to different image classes). But this

protocol is also the most realistic one since in clinical

practice there are usually no images available for a pa-

tient who undergoes colonoscopy (except for follow-

up examinations).

4 Experiments

4.1 Experimental Setup

The image database used is based on 327 endoscopic

color images (either of size 624×533 pixels or 586×502

pixels) acquired between the years 2005 and 2009 at the

Department of Gastroenterology and Hepatology (Medical

University of Vienna) using a zoom-colonoscope (Olym-

pus Evis Exera CF-Q160ZI/L) with a magnification fac-

tor of 150. To acquire the images 40 patients underwent

colonoscopy. Extracting patches from the original images

resulted in an extended image set containing 716 images.

Lesions found during colonoscopy have been examined

after application of dye-spraying with indigocarmine. Biop-

sies or mucosal resection have been performed in order to

get a histopathological diagnosis. Biopsies have been taken



Patient

Lesion 1 Lesion 2
Parent image 1 Parent image 4Parent image 3Parent image 2

Patch 1 Patch 8Patch 7Patch 6Patch 5Patch 4Patch 3Patch 2

Figure 2. Illustration of the hierarchy in our image database (based on some sample images).

Histology Pit Pattern
3 classes 2 classes

NO NE NP NL NO NE NP NL

Normal I
72 198 14 55 72 198 14 55

Hyperplasia II

Tubular adenoma
III-L

212 420 27 100

255 518 32 129

Tubulovillous adenoma

Serrated adenoma
III-S

Tubular adenoma

Adenoma

IVTubular adenoma

Tubulovillous adenoma

Adenocarcinoma

V 43 98 6 29Carcinoma

Lymphoma

Total 327 716 47 184 327 716 46 184

Table 1. Detailed ground truth information for the image database used throughout our experiments.

from type I, II, and type V lesions, while type III and IV

lesions have been removed endoscopically.

Table 1 shows the ground truth used, where NO, NE,

NP, and NL denote the number of original images, the

number of images in the extended image set, the number of

patients, and the number of different lesions, respectively.

Since different types of lesions may develop in a patient,

some patients appear in more than one class. Thus, the num-

ber of patients in Table 1 is slightly higher than the number

of patients who underwent colonoscopy.

4.2 Results

Figures 3 and 4 show the overall rates achieved by our

methods for different CV protocols. The overall picture is

as expected: the rates drop more in case of more restric-

tive CV protocols. Hence, the highest classification rates

have been achieved with LOO-CV, followed by LOPIO-CV,

LOLO-CV, and LOPO-CV. Only in case of the Edgefeatures

method we see a slight increase in the 2-classes case when

using LOLO-CV instead of LOPIO-CV and in the 3-classes

case when using LOPIO-CV instead of LOO-CV. But this

can be attributed to the feature selection used in case of this

method, which results in moderate result drops only when

using more restrictive CV protocols. We also notice that the

highest result drops between LOO-CV and LOPO-CV oc-

cur when using rather high-dimensional features (JC-MB-

LBP, LCVP MR A(2), and Weibull). This indicates that

those methods are also prone to overfitting.

The detailed classification results of our experiments can

be found in tables 2 and 3. From Table 2 we notice that the

sensitivity values are rather stable for each method across

the different CV protocols (with result drops up to about

3%). The specificities, on the other hand, are subject to

high fluctuations with result drops up to about 33%.

In the 3-classes case we notice a similar behavior (see

Table 3). While results for the non-invasive images are

rather stable when using LOPO-CV instead of LOO-CV

(results – also across image classes – drop up to about 14%),

the results drop significantly by up to about 32% for the nor-

mal images. The highest result drops can be observed for

the invasive images (up to about 80%).
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Figure 3. Overall accuracies yielded by the

methods used and the different CV modes

evaluated (2-classes case).

One explanation for the observed result discrepancies of

the single class results is the unbalanced image set. In ad-

dition, depending on the CV protocol, the training set gets

reduced more or less. This is especially noticeable in case

of LOPO-CV, where excluding one patient from the train-

ing set results in a decrease of up to 49 images (in case of

LOLO-CV and LOO-CV only up to 23 and 1 images are

removed from the training set, respectively). Hence, the

reduced training set has a more severe impact on the classi-

fication in case of classes containing fewer images. In case

of LOO-CV it is also very likely that training patches ex-

ist which are very similar to the patch classified (i.e. high

chance of biased results). As a consequence, we see rather

high overall results as well as high single class accuracies.

But the more restrictions we put on the training set the

smaller is the chance of such similarities, which is again

most striking when comparing LOO-CV and LOPO-CV.

But, as already pointed out in Section 3, using LOLO-

CV is usually sufficient for realistic classification accuracy

estimates. Hence, it is not necessary to use the more strict

LOPO-CV. In addition, the number of training samples is

unnecessarily low in case of LOPO-CV, which is a reason-

able explanation for the LOPO-CV result drops observed,

considering the limited number of images in our image

database. This is also supported by the fact that in case

of LOPO-CV we loose up to about 36% of the training

samples while for all other CV modes the respective frac-

tions are considerably lower (see Table 4). Since in case of

LOPO-CV all images of a patient across all classes are left

out from training the total loss of training samples may be

even higher in case of some patients.

5 Conclusion

In this work we compared six previously developed

methods for an automated classification of colonic polyps.

Due to the limited number of images in our image database

we have put the main emphasis on the comparison of differ-

ent CV protocols to overcome this problem.
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Figure 4. Overall accuracies yielded by the
methods used and the different CV modes
evaluated (3-classes case).

CV mode Specificity Sensitivity Overall

WT-BBC [10]

LOO 90.9 95.0 93.9

LOPIO 83.8 95.0 91.9

LOLO 79.3 95.2 90.8

LOPO 72.7 93.6 87.8

WT-DWT [10]

LOO 91.9 95.8 94.7

LOPIO 87.9 94.4 92.6

LOLO 86.4 93.4 91.5

LOPO 79.3 91.7 88.3

JC-MB-LBP [3]

LOO 98.0 99.2 98.9

LOPIO 95.5 98.1 97.3

LOLO 93.9 96.5 95.8

LOPO 75.3 96.3 90.5

LCVP MR A(2) [6]

LOO 89.9 98.6 96.2

LOPIO 65.7 98.8 89.7

LOLO 60.6 98.5 88.0

LOPO 57.6 96.9 86.0

Weibull [5]

LOO 96.0 99.0 98.2

LOPIO 87.9 98.5 95.5

LOLO 84.3 98.8 94.8

LOPO 66.2 98.5 89.5

Edgefeatures [4]

LOO 76.8 97.7 91.9

LOPIO 74.8 95.6 89.8

LOLO 74.2 96.0 89.9

LOPO 71.7 95.4 88.8

Table 2. Detailed classification results for our

methods when evaluated with the different

CV modes (2-classes case).

We showed that, while in case of LOO-CV most meth-

ods are able to deliver rather high classification accuracies,

the picture changes rapidly when using CV protocols which

impose limits on the training samples available. The loss

in terms of the classification results is especially noticeable

for the classification results for the single classes.

We identified the following three main reasons for the

observed behavior: first, especially in case of very restric-

tive CV protocols (i.e. LOPO-CV) the imbalance across the

classes in our image database leads to an insufficient train-



CV mode Normal Non-invasive Invasive Overall

WT-BBC [10]

LOO 89.9 87.9 58.2 84.4

LOPIO 83.3 87.6 40.8 80.0

LOLO 82.3 84.8 29.6 76.5

LOPO 67.7 89.3 0.0 71.1

WT-DWT [10]

LOO 93.4 91.7 54.1 87.0

LOPIO 90.4 87.9 41.8 82.3

LOLO 88.4 85.0 23.5 77.5

LOPO 79.8 80.7 0.0 69.4

JC-MB-LBP [3]

LOO 98.0 98.8 95.9 98.2

LOPIO 95.5 96.9 79.6 94.1

LOLO 93.9 89.8 55.1 86.2

LOPO 75.8 88.8 23.5 76.3

LCVP MR A(2) [6]

LOO 89.9 95.0 76.5 91.1

LOPIO 67.7 91.2 60.2 80.4

LOLO 63.6 86.0 49.0 74.7

LOPO 59.6 81.0 40.8 69.6

Weibull [5]

LOO 96.0 96.2 89.8 95.3

LOPIO 88.9 95.5 61.2 89.0

LOLO 84.3 95.2 31.6 83.5

LOPO 63.6 95.5 10.2 75.0

Edgefeatures [4]

LOO 84.9 93.8 44.9 84.6

LOPIO 83.8 94.5 46.9 85.1

LOLO 78.3 93.6 11.2 78.1

LOPO 72.7 91.2 0.0 73.6

Table 3. Detailed classification results for our
methods when evaluated with the different
CV modes (3-classes case).

CV mode Non-neoplastic Neoplastic

LOO 1 (<1%) 1 (<1%)

LOPIO 1-6 (3%) 1-15 (3%)

LOLO 1-21 (11%) 1-23 (4%)

LOPO 2-46 (23%) 2-49 (9%)

CV mode Normal Non-invasive Invasive

LOO 1 (<1%) 1 (<1%) 1 (1%)

LOPIO 1-6 (3%) 1-15 (4%) 1-7 (7%)

LOLO 1-21 (11%) 1-23 (5%) 1-13 (13%)

LOPO 2-46 (23%) 2-39 (9%) 5-35 (36%)

Table 4. Number of training samples lost per

class and CV mode (maximum values are

given as fractions in brackets).

ing of the respective classes. Second, in our case the patch-

to-patient and patch-to-lesion ratios are rather high, leading

to biased results in case of LOO-CV. When using more strict

protocols the chance of classifying an image and having a

very similar image in the training set vanishes. Third, espe-

cially methods, which are based on rather high-dimensional

features, suffer from more restrictive protocols. This indi-

cates that those methods are also prone to overfitting.

But we must point out that the results presented are just

rough estimates since the low number of images available

leads to inaccurate accuracy estimates because restrictive

CV modes in some cases greatly reduce the training set.
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