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Abstract—In the past we developed an ensemble classifier in
order to improve the accuracy in terms of the classification
of endoscopic images. However, since we have a variety of
feature extraction methods for the construction of a weak method
set at hand, the number of different possible weak method
combinations for the ensemble is quite huge.

In order to address this issue we propose two different methods
which aim at determining a set of weak methods which delivers
an optimal overall classification rate. While the first algorithm
determines optimal weak method candidates by a rating based
on the candidate set, the second algorithm aims at constructing
a set of statistically significant methods in order to increase the
diversity of the ensemble.

Based on previously developed methods, we evaluate the
proposed methods by comparing the overall rates achieved by
the respective combinations to the overall rate achieved by the
best possible combination. We show that the proposed selection
algorithms are able to find the best combination of methods or
at a least competitive one.

I. INTRODUCTION

Today the gold standard for colon examination is

colonoscopy which is performed by using a colonoscope.

Modern colonoscopes are able to take pictures from inside the

colon which allows to obtain images for a computer-assisted

analysis with the goal of detecting tumorous lesions. To get

highly detailed images a magnifying endoscope is used [1].

Such an endoscope represents a major advance in colonoscopy

as it provides images which are up to 150-fold magnified, thus

uncovering the fine surface structure of the mucosa as well as

small lesions.

In the past we already developed a variety of different

methods, which yield different kinds of features. However,

some of these methods delivered rather unstable classification

results across the different image classes. A common way to

improve the accuracy of a medical image classification system

in such a case is to employ an ensemble classifier. In the past

we therefore developed an ensemble classifier to overcome this

limitation [2], [3]. While we were able to show that a classifier

ensemble is indeed able to yield more robust classification

results, up to now choosing the optimal combination of weak

methods has been done in a heuristic way (i.e. manually

evaluating different combinations).

In this work we propose two different methods which aim

at finding optimal combinations of weak methods to alleviate

the need for a manual optimization.

The remaining part of this paper is organized as follows:

in Section II we give a brief introduction to the medical

background of this work. This is followed by a presentation

of the proposed weak method selection algorithms in Section

III. In Section IV we explain the experimental setup used and

discuss the results obtained. Section V concludes this paper.

II. MEDICAL BACKGROUND

Due to the fact that colonic polyps have a rather high

prevalence and are known to either develop into cancer or

to be precursors of colon cancer, an early detection of such

pathologies can lower the mortality rate drastically. Hence,

automated classification systems targeted at the assessment

of the malignant potential of colonic polyps aim at avoiding

random and, probably, unnecessary biopsies. As a consequence

such systems could potentially help to save time, lower the
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Fig. 1. A schematic illustration of the different pit pattern types according
to Kudo et al.
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Fig. 2. Example images for the different pit pattern types.

cost for colonoscopy procedures, and reduce the risk of

complications during such procedures.

One classification scheme, commonly used to to distinguish

between the different types of polyps, is the pit pattern classi-

fication scheme, originally reported by Kudo et al. [4]. Based

on the visual pattern of the mucosal surface this system allows

to differentiate between normal mucosa, hyperplastic lesions

(non-neoplastic), adenomas (a pre-malignant condition), and

malignant cancer. A schematic illustration of the pit pattern

classification and example images are given in figures 1 and

2, respectively.

While the pit pattern classification distinguishes six dif-

ferent types of patterns, in this work we focus on a 3-class

classification according to [5]. This classification groups the

six different pit pattern types into normal lesions (pit pattern

types I and II), non-invasive lesions (pit pattern types III-

S, III-L, and IV), and invasive lesions (pit pattern type V).

This classification scheme is of particular interest since normal

mucosa needs not to be removed, non-invasive lesions must

be removed endoscopically, and invasive lesions must not be

removed endoscopically.

III. PROPOSED METHODS

Throughout the literature different strategies dealing with

the optimal selection of weak methods for an ensemble clas-

sifier exist [6]. In order to improve classification accuracies

by an ensemble, the methods combined should yield a high

overall rate and have a high diversity. In the following we

describe our proposed algorithms which aim at determining

optimal combinations of weak methods out of all possible

combinations, considering M , which denotes the set of weak

methods available. Hence, in this work we are not aiming at the

highest possible ensemble classification rate, but at finding the

best performing weak method combination out of all possible

combinations in a fast and efficient way.

A. Ensemble based on rating

This method is based on the computation of a rating value

for a given candidate set of methods S. After initializing S

to contain the best performing method B ∈ M only, new

methods are added to S in an iterative manner. If there exists

a method which has not been tested yet for inclusion and

which is able to improve the rating R of S, it is added to S.

The whole process of testing all methods not contained in

S (denoted by T ) and adding new methods is repeated N

times, where N corresponds to the number of weak methods

available in M .

Algorithm 1 Selection based on combination rating

1: M ← set of available methods
2: N ← |M |
3: B ← best performing method in M
4: S ← {B}, R← 0
5: for iter = 1 to N do
6: T ←M\S
7: for all t ∈ T do
8: T ← T\t
9: S ← S ∪ t

10: Rnew ← 0
11: for all i ∈ I do
12: C ← 0
13: for all s ∈ S do
14: if i is correctly classified by s then
15: C ← C + 1
16: end if
17: end for
18: if C < |S|/2 then
19: Rnew ← Rnew − 1
20: else if C > |S|/2 then
21: Rnew ← Rnew + 1
22: end if
23: end for
24: if Rnew < R then
25: S ← S\t
26: else
27: R← Rnew

28: end if
29: end for
30: end for

The rating of the candidate set S is based on the idea that

more than half of the methods in the candidate set should

classify a given image correctly. If this is the case, the newly

computed rating Rnew for S is increased by one. If exactly

half of the methods classify a given image correctly, the rating

remains untouched. Otherwise Rnew is decreased by one.

After testing this condition for each image in the image set

used, the newly computed rating is adapted if Rnew exceeds

the previously computed rating for S. Otherwise the just added

method is removed from S (see also Algorithm 1, lines 11–

28).

After all iterations have been finished, the final set of

methods is contained in S.

B. Ensemble based on statistical significance

Our second method does not rely on the computation of

a ranking value. Instead this method iteratively adds new

methods to S which produce a significantly different output

as compared to the previously added method (denoted by

C). In addition, only methods exceeding a certain level of

classification accuracy are potentially added to S. The idea

behind this is to increase the diversity of a weak method set



Fig. 3. Comparison of OB (solid line) and the respective overall accuracy
lower bound L for adding new methods (dashed line).

by combining methods which produce significantly different

output but yet perform rather comparable in terms of the

classification accuracies.

After initializing S to contain the best performing method

B ∈ M only, new methods are added to S in an iterative

manner. First, D is initialized as the set of methods which

produce a significantly different output as compared to C

(see Algorithm 2, lines 14–19). If this set remains empty

the algorithm is aborted since there are obviously no more

methods which satisfy the requirement of being significantly

different to C. Otherwise, the algorithm searches for the

method m ∈ D exhibiting the highest overall classification

accuracy OD. If OD is higher or equal to a lower bound L,

the respective method is added to S. Otherwise the algorithm

is aborted since there is obviously no more method in D which

is able to meet the lower bound requirement (see Algorithm

2, lines 23–26).

The lower bound L is introduced in order to avoid adding

methods to S which might have a negative influence on the

ensemble. Hence, we compute L based on the overall rate of

B, denoted by OB . The higher the value of OB the smaller

the tolerance for adding methods with respect to the overall

accuracy should get, and vice versa. The value for L is

obtained by a non-linear computation to have more control

over the tolerance in different accuracy ranges. We therefore

impose the constraint on L to be 1/1 (100%), 1/5 (20%), and

1/20 (5%) below the value of OB for an overall accuracy

of 1%, 50%, and 100%, respectively. In order to be able

to compute L for all possible accuracy values, we fit the

following polynomial of degree 3

G(x) = ax3 + bx2 + cx+ d (1)

to the denominators of the constraint values {1, 5, 20} at

locations {1, 50, 100}. The final value for L is obtained by

taking the multiplicative inverse of G(x) subtracted from one

and multiplied by OB , which can be expressed formally as

L = OB

(

1−
1

G(OB)

)

. (2)

A comparison between OB and the respective overall accu-

racy lower bound for adding a new method is shown in Fig.

3.

Algorithm 2 Selection based on McNemar’s test statistic

1: a← 5.992158558 · 10−6

2: b← 1.300914834895 · 10−3

3: c← 0
4: d← 0.998693093006543
5: G(x) := ax3 + bx2 + cx+ d
6: M ← set of available methods
7: B ← best performing method in M
8: OB ← overall rate achieved by B
9: C ← B

10: S ← S ∪ C
11: L← OB

(

1− 1
G(OB)

)

12: T ←M\C
13: while true do
14: D ← {}
15: for all t ∈ T do
16: if McNemar’s test(t, C) = true then
17: D ← D ∪ t
18: end if
19: end for
20: if D = {} then
21: exit
22: end if
23: OD ← highest overall rate ∀m ∈ D
24: if OD < L then
25: exit
26: end if
27: C ← first method yielding OD

28: T ← T\C
29: S ← S ∪ C
30: end while

To assess whether the differences between the outcomes

of two methods are statistically significant we employ Mc-

Nemar’s test due to its simplicity [7]. It must be pointed

out however that alternative statistical tests may be used too.

For two methods m1 and m2 this test statistic keeps track

of the number of images which are misclassified by method

m1 but classified correctly by method m2 (denoted by n01)

and vice versa (denoted by n10). The test statistic, which

is approximately Chi Square distributed (with one degree of

freedom), is then computed as

Z =
(|n01 − n10| − 0.5)2

n01 + n10
. (3)

From T the p-value can be computed as

p = 1− Fχ2

1

(Z) (4)

where Fχ2

1

denotes the cumulative distribution function of the

Chi Square distribution with one degree of freedom. The null-

hypothesis H0 for McNemar’s test is that the outcomes of m1

and m2 lead to equal error rates. Given a fixed significance

level α, there is evidence that the methods m1 and m2 produce

significantly different results if p < α. As a consequence we

can reject the null-hypothesis H0. For this work we chose a

significance level of α = 0.05. This implies that, if m1 and m2

are significantly different, there is a confidence level of 95%

that the differences between the outcomes of the methods are

not caused by random variation.



TABLE I
THE DETAILED GROUND TRUTH INFORMATION FOR THE PIT PATTERN

IMAGE DATABASE USED THROUGHOUT OUR EXPERIMENTS.

Normal Non-invasive Invasive Total

Original set 72 212 43 327

Extended set 198 420 98 716

Patients 14 27 6 47

IV. EXPERIMENTAL SETUP & RESULTS

A. Experimental Setup

1) Image Database Used: The images used throughout our

experiments are based on 327 endoscopic color images (either

of size 624×533 pixels or 586×502 pixels) acquired between

the years 2005 and 2009 at the Department of Gastroenterol-

ogy and Hepatology (Medical University of Vienna) using a

zoom-colonoscope (Olympus Evis Exera CF-Q160ZI/L) with

a magnification factor of 150. In order to acquire the images

40 patients underwent colonoscopy. To obtain a larger set of

images we extracted subimages with a size of 256×256 pixels

from the original images, which resulted in an extended image

set containing 716 images in total.

Lesions found during colonoscopy have been examined after

application of dye-spraying with indigocarmine, as routinely

performed in colonoscopy. Biopsies or mucosal resection have

been performed in order to get a histopathological diagnosis.

Biopsies have been taken from type I, II, and type V lesions,

as those lesions need not to be removed or cannot be removed

endoscopically. Type III and IV lesions have been removed

endoscopically. Out of all images from the extended set,

histopathological classification resulted in 198 non-neoplastic

and 518 neoplastic cases.

As already indicated earlier we carry out our experiments

based on a 3-class classification according to [5]. Hence, we

aim at distinguishing between normal mucosa, non-invasive

lesions, and invasive lesions. The detailed ground truth used

for our experiments is shown in Table I. Since different types

of lesions may develop inside the colon of a single patient

such a patient may appear in more than one class. Hence, the

total number of patients is slightly higher (47) as compared to

the number of patients who underwent colonoscopy (40).

2) Weak Methods Set Used: In order to base our ensemble

on a set of diverse feature types, the set of methods used

(Q) consists of methods published in earlier work. Q contains

methods which extract statistical features from the wavelet

domain (WT-LDB, WPC [8], WT-BBC [9], WT-GMRF with

and without custom neighborhoods [10]), operate in the spatial

domain (GMRF [10]), or investigate local texture properties

within images (JC-MB-LBP [11] and LCVP [12] – both with

and without a multi-scale extension). But we also include

methods which are based on shape-based features (DELAU-

NAY [13] and EDGEFEATURES [14]).

For this work, Q contains 26 different variations of these

methods, which have been tested in order to obtain the

respective method outcomes. To estimate the accuracy of

each method we employed the Leave-One-Patient-Out Cross-

TABLE II
THE CLASSIFICATION RATES (%) OBTAINED FOR THE BEST POSSIBLE

WEAK METHOD COMBINATIONS S
(B)
i

.

Set |S
(B)
i

| Overall Normal Non-Invasive Invasive

S
(B)
1

4 75.56 64.14 98.57 0.00

S
(B)
2

3 80.59 82.83 98.33 0.00

S
(B)
3

1 80.03 70.20 91.90 48.98

S
(B)
4

3 76.96 77.27 94.76 0.00

S
(B)
5

4 75.84 63.64 99.29 0.00

S
(B)
6

1 80.03 70.20 91.90 48.98

S
(B)
7

1 76.26 75.76 88.81 23.47

S
(B)
8

1 80.03 70.20 91.90 48.98

S
(B)
9

1 80.03 70.20 91.90 48.98

S
(B)
10

4 72.21 56.57 96.43 0.00

Validation (LOPO-CV) protocol. In this scenario the images

from one patient are considered as validation data, while the

remaining images are used to train the underlying classifier

(the k-NN or the Bayes classifier). This is repeated for each

patient contained in the image database.

The overall classification accuracies achieved by the weak

methods on the image database used in this work range from

60.34% (WPC) to 80.03% (EDGEFEATURES).

3) Ensemble Classifier Setup: The ensemble classifier,

which is described in more detail in [2], [3], then combines

method outcomes using majority voting. To emphasize more

on the method selection ability of our proposed algorithms

the method ranking has been disabled. In addition we chose

a remapping parameter of 0.5, which corresponds to a linear

remapping and, thus, disables the remapping too.

4) Evaluation Setup for the Proposed Methods: For the

evaluation of the proposed selection methods we use the

evaluation setup as shown in Fig. 4. Out of the complete set

of available methods Q we create 10 subsets of methods Mi

(i = 1, . . . , 10), where each Mi contains 10 randomly selected

weak methods out of Q. These subsets are used since testing

all possible combinations from the 26 available methods in

order to obtain S(B) would result in 226 − 1 tests, which can

not be computed in an reasonable amount of time.

In order to find the best performing combination of weak

methods (in terms of the overall accuracy of the ensemble)

for each Mi we carry out ensemble tests for all possible

combinations of the elements within Mi, which results in 10

test runs, each consisting of 210 − 1 = 1023 ensemble tests,

thus resulting in 10230 ensemble tests carried out in total.

Finally, we obtain the best possible combination S
(B)
i for each

test run i on Mi.

We then apply each of our selection algorithms to each Mi,

which results in the weak method combinations S
(1)
i and S

(2)
i

in case of algorithm 1 and 2, respectively.

B. Results

Table II shows the results obtained with the best combina-

tions obtained for each test run i. One thing we immediately

notice from this table is that half the sets S
(B)
i consist of one



Fig. 4. Evaluation setup used to validate the selection methods proposed in this work.

TABLE III
THE CLASSIFICATION RATES (%) OBTAINED FOR THE WEAK METHOD

COMBINATIONS S
(1)
i

AND S
(2)
i

AS CHOSEN BY OUR ALGORITHMS.

Algorithm 1

Set |S
(·)
i

| Overall Normal Non-Invasive Invasive

S
(1)
1

3 74.86 69.70 94.76 0.00

S
(1)
2

3 80.59 82.83 98.33 0.00

S
(1)
3

3 74.02 59.60 98.10 0.00

S
(1)
4

3 76.96 77.27 94.76 0.00

S
(1)
5

3 67.32 31.31 100.00 0.00

S
(1)
6

3 77.79 76.26 95.95 3.06

S
(1)
7

3 69.41 44.95 97.14 0.00

S
(1)
8

3 78.07 72.73 98.81 0.00

S
(1)
9

3 77.51 76.77 95.95 0.00

S
(1)
10

3 67.18 38.89 96.19 0.00

Algorithm 2

S
(2)
1

2 74.02 63.13 96.43 0.00

S
(2)
2

2 79.47 63.43 98.81 28.57

S
(2)
3

1 80.03 70.20 91.90 48.98

S
(2)
4

2 74.02 63.13 96.43 0.00

S
(2)
5

2 74.30 57.58 99.52 0.00

S
(2)
6

2 79.47 63.64 98.81 28.57

S
(2)
7

2 70.53 48.99 95.24 8.16

S
(2)
8

2 77.09 59.60 99.29 17.35

S
(2)
9

2 79.47 63.64 98.81 28.57

S
(2)
10

7 65.60 26.26 99.29 0.00

method only. Our selection algorithms however in most cases

constructed bigger sets, as can be seen from Table III. It is

also interesting to see that Algorithm 1 always selected 3 weak

methods (for each candidate set S
(1)
i

).

Considering the weak method yielding a highest overall

rate of 80.03% (EDGEFEATURES) we notice that in most

cases the ensemble performs worse. Only in some cases the

ensemble is able to slightly outperform the methods EDGE-

FEATURES. This can be attributed to the fact that for the

evaluation of our selection algorithms we construct random

subsets Mi ∈ Q which potentially just do not include the

best performing methods. In addition, the ensemble classifier

can potentially be optimized further by adjusting parameters

(e.g. the remapping parameter, which has been set to a linear

mapping). However, in this work we are just interested in a

comparison of the results yielded by the best possible com-

bination S
(B)
i and the combinations found by our algorithms,

S
(1)
i and S

(2)
i .

When comparing Tables II and III we also notice that for

some of the test runs carried out at least one of our method

picks the best possible combination (the respective results are

shown in bold in Table III. But, all in all, both algorithms

perform roughly equally well with respect to the ensemble

result of the method combination found. While in some cases

Algorithm 1 delivers higher ensemble results, in other cases

Algorithm 2 is able to outperform Algorithm 1.

A comparison of the classification performance of the

selected combinations against the best possible weak method

combinations is possible by the plots shown in Fig. 5. The

diversities for the different combinations have been computed

as the average of the pair-wise double-fault measure for all

pairs within a combination [6]. The colors of the dots denote

the number of weak methods contained within each combi-

nation (blue denotes a single method, whereas red denotes



(a) S
(1)
2

(b) S
(2)
3

Fig. 5. Plots showing the improvements versus the diversities for all possible

combinations for Mi and the combination S
(1)
2 (i = 2) selected by Algorithm

1 and S
(2)
3 (i = 3) as selected by Algorithm 2 (selected combinations are

denoted by an arrow).

10 methods). The improvement is the difference between the

overall rate achieved by the ensemble on each combination

and the best performing method within the respective Mi.

From these plots we notice that both selection algorithms

pick the best combination possible (shown in Fig. 5 by a red

diamond). While Algorithm 1 picks a combination of 3 weak

methods, Algorithm 2 picks a combination consisting of just

one method – hence, the diversity equals zero.

We also immediately notice that a higher diversity does

not automatically imply a higher improvement. Moreover, we

see that most combinations degrade the result as compared to

the best performing method in Mi (negative improvement). In

addition, we see that, while combining more methods improves

the diversity, the improvement drops for higher method counts.

V. CONCLUSION

In this work we compared our proposed weak method

selection algorithms against the best possible combinations in

terms of the overall classification accuracy. We showed that

our methods are in most cases able to either select the best

performing combination or, at least, a competitive one.

While finding an optimal combination out of a large set of

potential method candidates may result in trying all possible

combinations, our methods help to speed up this process too

since our methods need a rather low number of iterations as

compared to evaluating all possible combinations.
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