
c© IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints invoked
by each author’s copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder.



Endoscopic Image Classification using Edge-Based Features
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Abstract

We present a system for an automated colon cancer
detection based on the pit pattern classification. In con-
trast to previous work we exploit the visual nature of the
underlying classification scheme by extracting features
based on detected edges. To focus on the most discrim-
inative subset of features we use a greedy forward fea-
ture subset selection. The classification is then carried
out using the k-nearest neighbors (k-NN) classifier.

The results obtained are very promising and show
that an automated classification of the given imagery is
feasible by using the proposed method.

1 Introduction

Today the gold standard for colon examination is
colonoscopy which is performed by using a colono-
scope. Modern colonoscopes are able to take pictures
from inside the colon which allows to obtain images for
a computer-assisted analysis with the goal of detecting
tumorous lesions. To get highly detailed images a mag-
nifying endoscope is used [1], which represents a major
advance as it provides images which are up to 150-fold
magnified, thus uncovering the fine surface structure of
the mucosa as well as small lesions.

In this work we present an automated classification
system aiming at colon cancer detection. While in pre-
vious work we mainly focused on general-purpose tex-
ture features, we now aim at exploiting the visual nature
of the cancer classification scheme used.
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In Section 2 we review the classification of pit pat-
terns of the colonic mucosa. Section 3 describes the
feature extraction process and the classification used in
our proposed method. Experimental results and con-
figuration details of our system are given in Section 4.
Section 5 concludes the paper.

2 Pit Pattern Classification

Polyps of the colon are a frequent finding and are
usually divided into metaplastic, adenomatous, and ma-
lignant. As resection of all polyps is time-consuming,
it is imperative that those polyps which warrant endo-
scopic resection can be distinguished: polypectomy of
metaplastic lesions is unnecessary and removal of inva-
sive cancer may be hazardous. For these reasons, as-
sessing the malignant potential of lesions at the time of
colonoscopy is important.

The pit pattern classification, originally reported by
Kudo et al. [6], is the most commonly used classifica-
tion system to distinguish between non-neoplastic and
neoplastic lesions in the colon. It differentiates between
six different types according to the mucosal surface of
the colon, as shown in Figure 3 (type 3 is divided into
3S and 3L designating the size of the pit structure). This
classification system allows to assess the malignant po-
tential of a lesion based on the visual pattern of the mu-
cosal surface. Thus, it is a convenient tool to decide
which lesions need not, which should, and which most
likely can not be removed endoscopically.

Lesions of type 1 and 2 can be grouped into non-
neoplastic lesions and types 3 to 5 can be grouped into
neoplastic lesions, where type 5 is highly indicative for
cancer. This allows a grouping into two classes, which
is more relevant in clinical practice [5].



Using a magnifying colonoscope together with in-
digo carmine dye spraying, the mucosal crypt pattern on
the surface of colonic lesions can be observed [7]. Sev-
eral studies found a good correlation between the mu-
cosal pit pattern and the histological findings, where es-
pecially techniques using magnifying colonoscopes led
to excellent results [5]. Due to the visual nature of this
classification scheme it is also a convenient choice for
an automated image classification.

3 Proposed Approach

In the past we have shown that an automated classifi-
cation of magnified endoscopic images based on the pit
pattern scheme is feasible. But in our previous work we
mainly focused on general purpose features describing
texture properties (e.g. [4, 3]).

By contrast, the proposed method is based on the vi-
sual structures of the pits, using segmentation into pit
areas and background and two types of features (shape
and texture). Besides that, unlike the approaches pre-
sented in [4, 3], this method is not dependent on a time-
consuming transformation to extract features.

3.1 Feature Extraction and Classification

Pre-processing: Prior to the edge detection we
downscale the image by a half to obtain a low-resolution
image and reduce artifacts. Then we apply anisotropic
diffusion to each color channel of the source image to
suppress noise and preserve edges at the same time [8].
While anisotropic diffusion could also be applied to all
color channels at once, we separately pre-process each
color channel since the edges are extracted from sepa-
rate color channels too. Furthermore we use Contrast
Limited Adaptive Histogram Equalization (CLAHE)
[9] to fix inhomogeneous brightness and contrast.

Binarization: Afterwards, we perform a global
thresholding to obtain a binary image. This binary im-
age is then upsampled to the original image size.

Morphological pre-processing: Then we pre-
process the binary image by using a set of morphologi-
cal operators. First we apply a closing to remove small
“holes”, using a disk of radius 1 as structuring element.
This radius has been chosen to not disturb the shape of
the pits too much but to only fill small holes and re-
move small notches eventually present along the bor-
ders of pit areas. Then we bridge unconnected pixels
by setting pixels to white which lie between two uncon-
nected, white neighbors (using a 3 × 3-neighborhood).
Furthermore we remove isolated pixels followed by fill-
ing closed regions. Finally, we set pixels to black which
have less than five white neighbors (if only half of the

ID Short description
F1 mean of average intensity within each pit
F2 number of pits found
F3 mean of average energy (sum of squared intensities) within each pit
F4 mean area over all pits
F5 fraction of polygons having a perimeter above the median of all perimeters
F6 mean dispersion (max radius from the pit center to the pit boundary divided by the pit

area) over all pits
F7 mean of average saturation within each pit (HSV)
F8 mean of average hue within each pit (HSV)
F9 mean triangle area computed from a delaunay triangulation based on the pit centers

F10 mean edge length computed from a delaunay triangulation based on the pit centers
F11 mean compactness (area divided by the squared perimeter) over all pits
F12 mean perimeter of pits found
F13 sum of average intensity within each pit
F14 sum of average hue within each pit (HSV)
F15 sum of average saturation within each pit (HSV)
F16 intensity mean of the pre-processed channel (after applying anisotropic diffusion and CLAHE)
F17 intensity mean of the original channel
F18 mean irregularity (max radius from the pit center to the pit boundary divided by the minimum

radius from the pit center to the pit boundary) over all pits

Table 1. Chosen set of possible features.

pixels in the 3×3-neighborhood or less are white). This
step helps to minimize the number of small spurs which
might eventually have endured the previous steps.

Edge detection: Performing edge detection on the
color channels often results in too many edges or quite
a few polygons which are not closed. Hence, we ex-
tract the edges from the binary image resulting from
the morphological pre-processing. To extract edges
we use the Canny edge detector (σ = 1.5) without
multi-resolution feature synthesis [2] which may pro-
duce polygons which are not closed.

Morphological post-processing: Thus we post-
process the edges by using the morphological operators
from above, except for the closing (in the same order).
Then we again remove isolated pixels and interior pix-
els of the white areas to obtain the final edge map.

This processing of the binary map and edges ensures
that we end up with closed polygons only, which are
smooth and free of unwanted artifacts. This is because
of the filling of closed areas (which does not affect
polygons which are not closed as can be seen in Fig.
1(e)) and subsequently removing white pixels, which
do not belong to borders of filled areas (see Fig. 1(f)).
Apart from that we see from Fig. 1(a) that some im-
ages contain ridges which can be considered to be ar-
tifacts. These are removed by the post-processing. An
undesired side-effect of this post-processing is that pits
touching the border are removed too.

Finally, we trace all edges to obtain the location of
the border pixels for each detected polygon. Some of
these steps are illustrated in Fig. 1(a)-(g).

Feature selection: We consider features which are
based on the shape of the pit areas and features which
are based on the pixel intensities within the pit areas
(see Table 1). Fig. 3 shows examples of detected pit
areas for each pit type. Since the optimal set of features
is not known we construct a feature candidate set con-
sisting of all possible features from all color channels
considered. Then we use a greedy forward selection al-
gorithm to find the feature subset yielding the best total



(a) (b) (c) (d) (e) (f) (g)

Figure 1. Edge detection steps (a) red channel of an input image, (b) pre-processing, (c) thresh-
olding, (d) Canny edge detection, (e) the pits (filled white) and the parts to be discarded by the
edge map post-processing (not filled), (f) removed non-closed polygons, (g) final edge map.

classification rate using a k-NN classifier.
The algorithm starts with an empty feature set and

iteratively adds one feature at a time out of the candi-
date set, which complements the current feature sub-
set best. We stop adding features if there is no feature
found which raises the 6-classes classification perfor-
mance any further (used as criterion value).

Classification: To obtain the criterion value for a
potential feature set we carry out leave-one-out cross-
validation (LOO-CV) runs with different choices for k
used by the k-NN classifier. We allow only odd k-values
between 1 and 9, which speeds up the subset selection
(we also avoid draws during the voting in the 2-classes
case). The k-value for the last added feature is used
for the final classification. While we also tested the 2-
classes result as criterion value, this almost always re-
sulted in a considerably worse final classification per-
formance (for 2-classes case as well as for 6-classes).

4 Experiments

4.1 Settings

The 627 images used throughout our experiments
have been acquired between the years 2005 and 2009
at the Department of Gastroenterology and Hepatol-
ogy (Medical University of Vienna) using a zoom-
colonoscope (Olympus Evis Exera CF-Q160ZI/L, mag-
nification factor set to 150). Lesions found during
colonoscopy have been examined after application of
dye-spraying with indigocarmine. Biopsies or mu-
cosal resection have been performed in order to get a
histopathological diagnosis. Biopsies have been taken
from type 1, 2, and type 5 lesions. Type 3 and 4 lesions
have been removed endoscopically. Out of all acquired
images, histopathological classification resulted in the
ground truth for our experiments shown in Table 2. Us-
ing LOO-CV, 626 out of 627 images are used as training
set to classify the remaining image. This process is re-
peated for each image. While we are aware of the fact
that subset selection with LOO-CV tends to overfitting,
we are not able to split the image database into sepa-

Pit Type 1 2 3S 3L 4 5
2 classes 178 449
6 classes 114 64 18 119 232 80

Table 2. Ground truth for our experiments.

rate training and test sets due to the limited number of
images (especially evident from class 3S).

4.2 Results

From Table 3 we see that the proposed method
yields very encouraging results in the 2-classes and the
6-classes case – especially when combining different
channels. The best result has been obtained by combin-
ing the red and the blue channel, resulting in an overall
classification accuracy of about 97% for two classes and
88% for six classes. For all results presented, the subset
selection ended up with a 1-NN classifier and the num-
ber of features finally used is rather low (D in Table 3)
compared to a total number of 18, 36, and 54 available
features for single channels, channel pairs and all chan-
nels, respectively.

We notice that in the 2-classes case the results for the
non-neoplastic images are lower compared to the neo-
plastic images. This effect is especially apparent when
using single channels. From Table 2 we see that the
number of neoplastic images is about 1.6 times higher
compared to the other class, which is one reason for this
behavior. In the 6-classes case type 3S almost always
delivers a poor classification rate, which most likely is
due to the low number of images available for this class.

Figure 2. Selection statistics (by channel).



(a) 1 (b) 2 (c) 3S (d) 3L (e) 4 (f) 5

(g) 1 (h) 2 (i) 3S (j) 3L (k) 4 (l) 5

Figure 3. (a)-(f) Sample red channel for each pit type and (g)-(l) the pits detected.

1 2 3S 3L 4 5 Total D

R 76 95 90
11

72 64 56 78 77 73 74

G 78 91 87
8

68 69 33 82 77 68 73

B 75 92 87
6

63 52 39 76 80 69 71

RB 93 98 97
19

91 88 61 91 88 84 88

RG 84 96 93
14

81 81 67 83 85 80 83

GB 85 95 92
11

76 80 56 83 88 69 81

RGB 91 96 94
13

83 83 56 87 90 83 86

Table 3. Classification rates obtained
by different color channel combinations
along with the feature vector dimensions.

Fig. 2 shows how often a specific feature was chosen
on average by the feature selection. Clearly dominating
features are F1 and F15 to F17, which are all based on
pixel intensities within the detected pit areas. The most
frequently selected polygon-based features are F2, F4,
and F9. These features are also used for the top result.

5 Conclusion and Future Research

We conclude that an automated pit pattern classifica-
tion system based on edge features is feasible. This has
been shown by the very promising results we already
achieve. If we combine different color channels for the
classification the results are improved even more.

However, the results presented in this work should be
considered more as a demonstration of feasibility since
we are aware of the fact that the subset selection tends
to produce overfitted results. Hence, in future work we

will compare our current approach to LOO-CV with a
subset selection carried out for each image to be clas-
sified. We will also focus on analyzing the different
features in more detail and improve them to be able to
avoid using feature subset selection at all.
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