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Abstract:
In this paper, we present an approach to resize integral images directly in the integral image
domain. For the special case of resizing by a power of two, we propose a highly parallelizable
variant of our approach, which is identical to bilinear resizing in the image domain in terms of
results, but requires fewer operations per pixel. Furthermore, we modify a parallelized state-of-
the-art object detection algorithm which makes use of integral images on multiple scales so that
it uses our approach and compare it to the unmodified implementation. We demonstrate that
our modification allows for an average speedup of 6.38% on a dual-core processor with hyper-
threading and 12.6% on a 64-core multi-processor system, respectively, without impacting the
overall detection performance. Moreover, we show that these results can be extended to a whole
class of object detection algorithms.

1 INTRODUCTION

Integral images, initially developed under the
name ”summed-area tables” (Crow, 1984), have
regained a lot of attention since Viola and Jones
proposed an object detection framework (Viola
and Jones, 2001) which makes heavy use of them.
Popular implementations of this framework, such
as the OpenCV library (Willow Garage, 2012),
perform object detection on multiple scales, i.e.,
they resize the original image multiple times and
run the detection algorithm on each resized im-
age, also referred to as scale. Although the object
detection is relatively fast due to the use of inte-
gral images, the need to recompute the integral
image for each scale impacts the performance sig-
nificantly. Therefore, in this paper, we propose a
new algorithm which allows resizing the integral
images themselves, i.e., in the integral image do-
main instead of the image domain, omitting the
need to recompute the integral image for each
scale.
Despite efforts to speed up the computation of
integral images in general (Hensley et al., 2005)
as well as on different architectures like GPUs
(Bilgic et al., 2010), literature on integral images

is sparse. While Crow (Crow, 1984) initially de-
scribed how to perform simple operations, like,
e.g., blurring, in the integral image domain, Heck-
bert (Heckbert, 1986) generalized the underlying
theory, thereby extending its scope to arbitrary
filters with polynomial kernels. Hussein (Hussein
et al., 2008) improved and extended Heckbert’s
work by enabling non-uniform filtering. Although
both frameworks, Heckbert’s and Hussein’s, al-
low to perform resizing operations, they take in-
put from the integral image domain and produce
output in the image domain. In contrast, our
approach performs all operations directly in the
integral image domain, hereby omitting the need
to recompute the integral image after resizing.
Although algorithms performing operations di-
rectly in the integral image domain have been
proposed (e.g., (Yu et al., 2010) for histogram
thresholding), none of them changes the size of
the integral image itself, as opposed to the algo-
rithm we propose. As performing operations on
multiple scales in the integral image domain is
part of several state-of-the-art algorithms, such
as SURF (Bay et al., 2008), local binary pat-
terns (LBP) (Ahonen et al., 2004) and Viola’s
and Jones’ framework for object detection as ex-



plained above, our main contribution of resizing
in the integral image domain inherently allows
speeding up algorithms relying on the computa-
tion of integral images on multiple scales. Note
that, although some algorithms allow scaling up
the features instead of scaling down the integral
images, a significant number of implementations
(Willow Garage, 2012) recompute the integral im-
ages and thus profit from our contribution.
This paper is structured as follows: In section 2,
we propose an algorithm for resizing in the inte-
gral image domain without distortions by impos-
ing certain restrictions on the resizing factor. In
section 3, we extend this algorithm to support ar-
bitrary resizing factors, albeit at the cost of negli-
gible distortions. After evaluating our algorithm
in section 4 in terms of performance, quality and
parallelizability, we conclude our paper in section
5.

2 EXACT RESIZING

In the following sections we describe how a
given integral image can be resized. We distin-
guish between exact and approximate resizing,
where exact means that each pixel of the resized
integral image is identical to the corresponding
pixel of an integral image which is calculated from
a bilinearly resized version of the original image,
the resizing process of which has been performed
in the image domain.

2.1 Integral Images

An integral image II of a given image I represents
the sum of all its pixels from the top-left corner
to every pixel, excluding the column and row of
the pixel (note that some definitions include the
pixel’s column and row, requiring corresponding
changes in the subsequent formulas). Hence, it is
calculated as (Willow Garage, 2012)

II(x, y) =

x−1∑
x′=0

y−1∑
y′=0

I(x′, y′) (1)

This allows calculating the sum S of all pixels
within a rectangular area R in constant time
(Crow, 1984) as

SR = II(xr, yb)−II(xl, yb)−II(xr, yt)+II(xl, yt)
(2)

where xl, xr, yt and yb are R’s left, right, top and
bottom coordinates, respectively, as depicted in
figure 1. Note that, in order to reconstruct single

Figure 1: Use of an integral image for summing all
pixels within a rectangular area R constrained by its
coordinates xl, xr, yt and yb. Adopted from (Crow,
1984)

pixels from the integral image (see next section
for details), the integral image’s dimensions are
(w+ 1) · (h+ 1) if the original image’s dimensions
are w · h.

2.2 Näıve Resizing

Resizing algorithms usally perform operations in
the image domain, i.e., on the image’s pixels. As
becomes clear from equation (2), it is possible to
extract every single pixel as a rectangle of width
and height one of the original image I from its
integral image II:

I(x, y) =II(x, y) + II(x + 1, y + 1)−
II(x, y + 1)− II(x + 1, y)

(3)

Therefore, it is theoretically possible to imple-
ment any image-domain-based resizing filter in
the integral image domain by filtering using on-
the-fly extraction of the original image’s pixels
and subsequent calculation of the resized image’s
integral image.
However, this is computationally more expensive
as accessing each pixel requires four operations in
the integral image domain as opposed to one in
the image domain. Furthermore, it is necessary
to access locations in the integral image which are
one row apart in order to derive a single pixel of
the original image. This may cause a higher num-
ber of the CPU’s cache lines to be occupied, if the
integral image is stored sequentially in memory.

2.3 Resizing By A Power Of Two

In the following section we propose a resizing al-
gorithm for integral images which eliminates the
need to extract the original image’s pixels from
the integral image in a computationally expensive
way. However, for the algorithm to work exactly,
the resizing factor needs to be a power of two.



Figure 2: Resizing by a power of two using a special
case of bilinear interpolation where the interpolated
samples (white) have the same distance ds to all sur-
rounding original samples (gray).

Note that we discuss ways to circumvent this re-
striction in section 3.
Consider the following, simplified resizing sce-
nario: A given image I with width w and height
h, where both, w and h, are even, is to be resized
by a factor of two in each dimension, yielding the
image Ih with width w

2 and height h
2 . Using bi-

linear interpolation as depicted in figure 2 (left),
the samples of I (gray) are used to determine the
samples of Ih (white) as:

Ih(x, y) =
1

4
· (I(2x, 2y) + I(2x + 1, 2y)+

I(2x, 2y + 1) + I(2x + 1, 2y + 1))

(4)

The integral image IIh at position (0 ≤ x ≤
w
2 , 0 ≤ y ≤ h

2 ) of Ih can then be calculated by

IIh(x, y) =

x−1∑
x′=0

y−1∑
y′=0

Ih(x′, y′) (5)

which can be expanded to

1

4
·
x−1∑
x′=0

y−1∑
y′=0

I(2x′, 2y′) + I(2x′ + 1, 2y′)+

I(2x′, 2y′ + 1) + I(2x′ + 1, 2y′ + 1)

(6)

This can be rewritten as

IIh(x, y) =
1

4
·
2x−1∑
x′=0

2y−1∑
y′=0

I(x′, y′) (7)

where the summand can subsequently be ex-
pressed as a sample of the integral image II of
the original image I:

IIh(x, y) =
1

4
· II(2x, 2y) (8)

Note that this equation only depends on the orig-
inal image’s integral image II and has no depen-
dency to the original image I. Furthermore, it

trivially allows repeated application (e.g., twice
for a resizing factor of four as illustrated in figure
2 (right)), thereby enabling resizing by arbitrary
powers of two. As can be easily shown, a given
integral image II can be resized by a factor of 2n

in each dimension to an integral image IIn as

IIn(x, y) =
1

22n
· II(2nx, 2ny) (9)

Based on this observation, we formulate our ap-
proach to resize integral images as follows: An
integral image can be resized by a power of two
with bilinear interpolation using only one single
integral image sample per calculated sample using
equation (9). Note that the latter assumes both,
the corresponding image’s width and height, to
be integer multiples of 2n. For all other cases,
resizing cannot be performed exactly at the inte-
gral image’s borders. However, the handling of
these borders in approximate form is described in
section 3.2.

3 APPROXIMATE RESIZING

In order to overcome the limitations of the
resizing approach proposed in the previous sec-
tion in terms of image dimensions and resizing
factors, we present an extension which can deal
with arbitrary resizing factors and image borders.
Nonetheless, this extended approach is largely
based on the limited approach presented in the
previous section.

3.1 Resizing Arbitrarily

In this section we explain how to extend equation
(8) in order to support arbitrary resizing factors.
We do so by splitting the formula into two parts –
the factor in front of the sum and the sum itself.
By modifying each of them separately, we derive
an equation which can be used to resize arbitrar-
ily in the integral image domain.
When resizing by a factor two in each dimension,
we observe that the factor of 1

4 in front of the sum
in equation (8) corresponds to the inverse of the
combined (i.e., multiplied) resizing factor. Sim-
ply put, each pixel of the resized image covers an
area of 4 pixels in the original image, as depicted
in figure 3 (left). This is equivalently true for the
corresponding integral image pixels.
Extending this observation to arbitrary resizing
factors, henceforth denoted as 2a, it is obvious
that each pixel of the resized image now covers an
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Figure 3: Resized (integral) image samples (white)
covering a constant area of 4a2 (black rectangle) in
the original (integral) image (gray samples) when re-
sizing by a factor of 2a = 2 (left) and 2a = 1.16
(right), respectively. For both, the resizing filter off-
set b = 0.5 samples (see equation (10)).

area of 2a · 2a = 4a2 square pixels in the original
image. Figure 3 (right) depicts this for a resiz-
ing factor of 2a = 1.16, where the covered area is
4a2 = 1.3456 square pixels. Note that each pixel
of the resized image is located at the center of the
area it covers in the original image, i.e., its dis-
tance to each side of the rectangle enclosing this
area is a.
Although changing the factor in equation (8) to
1

4a2 does not introduce an error, the required cor-
responding change of each summand does. Re-
placing II(2x+ 1, 2y + 1) by II(2ax+ b, 2ay + b)
(where −a < b < a denotes a offset correspond-
ing to the desired resizing filter phase, which is
typically constant for all samples) is not possible
in general, as a is not necessarily an integer.
Therefore, we suggest performing bilinear inter-
polation in the integral image domain in order to
get an approximation of the virtual pixel at posi-
tion II(2ax+b, 2ay+b) based on the values of the
surrounding integral image pixels. Note that this
approximation introduces a small error compared
to the bilinear interpolation in the image domain.
This error is estimated empirically in section 4.2.
Summarizing the above modifications to equation
(8), an integral image II can be resized by a fac-
tor of 2a in both dimensions in the integral image
domain in the same (mathematical) way as in the
image domain, i.e., by bilinear interpolation. Do-
ing so yields a resized integral image IIr which
can be calculated by

IIr(x, y) ≈ 1

4a2
· bilinear(II, (2ax + b, 2ay + b))

=
1

4a2
·
([

1− dx dx
] [itl ibl

itr ibr

] [
1− dy
dy

])
(10)

for all values of x and y except the borders (see
section 3.2 for details), where

itl = II(x′, y′), itr = II(x′ + 1, y′)

ibl = II(x′, y′ + 1), ibr = II(x′ + 1, y′ + 1)

x′ = b2ax + bc, y′ = b2ay + bc
dx = 2ax + b− x′, dy = 2ay + b− y′

(11)

The value of b has to be chosen according to the
desired filter phase as explained above. Note that
equation (10) uses the same formula for bilinear
interpolation as any comparable algorithm in the
image domain would. The only difference is that
the latter operates on the image’s pixels, while
the former operates on the integral image’s.

3.2 Handling Of Borders

For positive b, the rightmost column and the bot-
tommost row can, in most cases, not be calculated
by equation (10) as non-existing samples of the
original integral image, i.e., samples whose coor-
dinates are larger than the image’s width and/or
height, respectively, would have to be accessed.
For negative b, the same applies to the leftmost
column and the topmost row.
The latter case (b < 0) is trivial to handle: All
samples can be set to zero as the first row and
column of an integral image is by definition (see
equation 1) zero. The former case (b > 0) can
be handled in a way similar to the approach de-
scribed in section 3.1. While the area covered
by the integral image pixels at the border is as
large as the area covered by the other integral im-
age pixels, the unavailability of pixels beyond the
border requires linear interpolation of the border
pixels instead of full bilinear interpolation. Resiz-
ing at the right border x = xr can be performed
by calculating

IIr(xr, y) ≈ 1

4a2
· linear(II, (2axr + b, 2ay + b))

=
1

4a2
· ((1− dy) · II(b2axr + bc, y′)+

dy · II(b2axr + bc, y′))
(12)

where y′ = b2ay + bc and dy = 2ay + b− y′. Re-
sizing at the bottom border is equivalent for con-
stant y = yb and variable x. In case the bottom-
rightmost pixel cannot be calculated by one of
these formulas, it can be approximated without
interpolation by

IIr(xr, yb) ≈
1

4a2
· II(b2axr + bc, b2ayb + bc).

(13)



4 EVALUATION

In order to assess the speed, quality and par-
allelizability of our approach, we created three
different implementations in three different lan-
guages. Firstly, we created a CUDA program
for power-of-two resizing to show the achievable
degree of parallelism resulting from the reduced
number of memory accesses in this special case
(for details see section 4.1). Secondly, we im-
plemented arbitrary resizing in Python includ-
ing OpenCV’s resizing capabilities for compari-
son to show the quality difference, i.e., the error
induced by our approximation. Finally, we mod-
ified OpenCV’s LBP based (Ahonen et al., 2004)
object detection algorithm to use our resizing ap-
proach to show the latter’s performance and prac-
tical use.
All tests were carried out on an Intel Core 2 Duo
E6700 desktop system with an NVIDIA GeForce
8500 GT graphics card running Ubuntu 11.10 64-
bit, unless noted otherwise. We used version 2.4.3
of OpenCV with support for the Intel Thread
Building Blocks (TBB) library (version 4.1 Up-
date 1).

4.1 Parallelizability

For the special case of resizing by a power of
two in each dimension, our algorithm for exact
bilinear interpolation (see equation (8)) requires
fewer memory accesses per sample to be calcu-
lated (one) than classical bilinar interpolation in
the image domain does (four, see equation (4)).
Hence, our approach is not slower than classical
bilinear interpolation. Additionally, each sample
requires a different source integral image sample
to be calculated from. Therefore, each sample can
be calculated completely independently, allowing
for massive parallelization.
Furthermore, if the desired output of the resizing
operation is an integral image, classical bilinear
interpolation has to be followed by an integral
image calculation which is hard to parallelize ef-
ficiently, while this is not the case with our ap-
proach as its output is another integral image.
Thus, a resizing operation with an integral im-
age as final result can be parallelized more easily
when using our approach.
To show the latter’s parallelizability, we created
a straight-forward, unoptimized GPU implemen-
tation for resizing an integral image by a factor
of two in each dimension in which each image
sample is resized by a separate thread calculating
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Figure 4: Speedup over number of threads when resiz-
ing integral images by a factor of two in each dimen-
sion: theoretical linear speedup (light gray rectan-
gles) vs. actual implementation’s speedup (dark gray
triangles).

equation (9). Given a 32 bits per sample integral
image with dimensions (w + 1) · (w + 1), where
w is a power of two, our implementation spawns
(w
2 + 1) · (w

2 + 1) threads on the GPU for calcu-
lating the resized integral image.
Note that we did not use the GPU’s built-in bi-
linear resizer in order to keep the implementation
as simple as possible. Since the main aim of our
implementation is to demonstrate parallelizabil-
ity, this does not affect the results. Since using
the built-in bilinear resizer would only speed up
the filtering operation in terms of consumed clock
cycles per processed group of pixels, it only dif-
fers from the straight-forward implementation by
a constant multiplicative factor, which vanishes
when considering relative speedup values.
Our implementation’s net execution time, i.e., the
actual computation time on the GPU, is mea-
sured using CUDA events (using CUDA version
4.0 bundled with driver version 304.43). In or-
der to avoid the influence of caching effects, be-
fore each actual measurement, the GPU kernel is
executed three times for cache warming. Subse-
quently, the actual kernel is executed five times.
The average time of these five executions is used
to represent the actual net execution time.
Figure 4 depicts the relative net execution time
of our resizing approach and a theoretical lin-
ear speedup representing the performance of an
ideal algorithm with one constant time memory
access per sample for comparison. The x axis de-
notes the values of w, while the y axis denotes
the speedup relative to the execution time of our
GPU implementation’s performance for w = 128
which is the medium measurement point.
As can be seen, the speedup is nearly ideal
for larger image dimensions. Although a small
overhead remains compared to the theoretically
achievable speedup, this is to be expected due to



the GPU’s internal thread scheduling overhead.
For smaller image dimensions, the measurements
fluctuate significantly due the small number of
threads to be executed. Benefitting from the
GPU’s ability to let multiple threads access the
memory at the same time under certain condi-
tions, the achievable speedup for a small number
of threads is higher than the simplified theoreti-
cal limit and has therefore to be rated with care.
However, for a large number of threads this ef-
fect becomes relatively small and can therefore
be disregarded.

4.2 Quality

For arbitrary resizing as described in section 3.1,
the quality degradation, i.e., the error introduced
by our approach as compared to resizing in the
image domain, needs to be assessed. To do so,
we use the LIVE (Seshadrinathan et al., 2010)
reference picture set and process each picture I
in the following way. Firstly, I is resized bilin-
early to Iref with OpenCV to serve as a refer-
ence. Secondly, OpenCV is used to compute the
integral image of I, followed by applying our al-
gorithm for resizing in the integral image domain
and subsequently reconstructing the resized im-
age Inew using equation (3). Finally, both, Inew
and Iref , are upsampled with nearest neighbour
interpolation using OpenCV to fit I’s dimensions
and compared to the original image I to deter-
mine the respective differences.
Table 1 summarizes the minimum, maximum and
average PSNR differences for each resizing factor.
Hereby, positive values mean that our approach’s
PSNR is higher than OpenCV’s, while the con-
verse is true for negative values. Although the
absolute gap between the minimum and maxi-
mum PSNR difference for each factor is not very
high in general (around 2dB on average), a factor-
dependent trend regarding the average difference
can be seen.
While our approach achieves a higher PSNR for
large resizing factors (greater than 6.2), the con-
verse is true for small resizing factors (less than
3.1). If little actual interpolation is required (e.g.,
for factors like 1.0, 2.0 or 3.0), the PSNR differ-
ences are smallest on average. Conversely, they
amount to up to 4 dB for quasi-pathological cases
like resizing factors of 1.9.
Although this may seem relatively high, thor-
ough investigation shows that high differences are
mainly caused by sub-sample shifts of the image
introduced by our algorithm. Interpolating in the

integral image domain partly ”moves” the area
associated with each interpolated column and row
to their corresponding neighbours, thereby intro-
ducing a sub-pixel shift when reconstructing the
image. As this augments the error signal, the
PSNR increases. Assuming that most practical
applications are not affected by shifts of this mag-
nitude, the quality difference between our bilinear
resizer and OpenCV’s can be considered accept-
ably small.

4.3 Performance

As state-of-the art object detection algorithms
make heavy use of integral images on multiple
scales as explained in section 1, we modified one
of them – OpenCV’s LBP based object detection
algorithm – as an example. Note that this can be
done for other multi-scale integral-image-based
object detection algorithms in a similar fashion,
making the subsequent results applicable to them
as well.
While OpenCV’s original LBP detector imple-
mentation resizes the input image in the image
domain and computes its integral image on each
scale (see figure 5 left), our modification uses the
integral image of the original image and resizes
it in the integral image (II) domain (see figure
5 right). The actual detection operations on the
resized integral images remain unchanged. How-
ever, our modification does not require the inte-
gral images to be computed at each scale. Note
that this theoretically allows discarding the in-
put picture as soon as the first integral image is
calculated. This can save a significant amount
of memory, e.g., on embedded systems, when the
input image is not needed otherwise. As the de-
fault resizing factor used by OpenCV is 1.1 per
scale in each dimension, our approximate resizing
approach described in section 3.1 is used.
In order to assess the influence of our re-
sizing approach on object detection perfor-
mance, we trained the LBP detector with
OpenCV’s face detection training data set and
a negative data set from http://note.sonots.
com/SciSoftware/haartraining.html. Sub-
sequently, we assessed its detection perfor-
mance using the four CMU/MIT frontal face
test sets from http://vasc.ri.cmu.edu/idb/
images/face/frontal_images. The test data
set includes eye, nose and mouth coordinates for
each face in each of the 180 pictures. A face is
considered detected if and only if all of the afore-
mentioned coordinates are within one of the rect-

http://note.sonots.com/SciSoftware/haartraining.html
http://note.sonots.com/SciSoftware/haartraining.html
http://vasc.ri.cmu.edu/idb/images/face/frontal_images
http://vasc.ri.cmu.edu/idb/images/face/frontal_images


Table 1: Minimum, maximum and average PSNR differences between our approximate resizing approach and
OpenCV’s bilinear resizer over all pictures of the LIVE data base (Seshadrinathan et al., 2010) for different
resizing factors F . All PSNR difference values are in dB.

F MIN MAX AVG F MIN MAX AVG F MIN MAX AVG
1.00 -0.00 -0.00 -0.00 4.10 -1.78 0.92 -0.46 7.20 -0.70 1.83 0.74
1.10 -3.14 -0.24 -1.93 4.20 -2.32 0.57 -0.61 7.30 -0.78 1.94 0.96
1.20 -3.14 0.26 -1.57 4.30 -1.15 1.10 -0.01 7.40 -0.44 1.58 0.68
1.30 -3.77 -1.29 -2.78 4.40 -1.13 0.75 -0.03 7.50 0.52 2.00 1.28
1.40 -3.18 -1.42 -2.62 4.50 -1.68 0.83 -0.28 7.60 -0.50 1.76 1.01
1.50 -3.10 0.16 -1.10 4.60 -1.49 1.06 -0.07 7.70 -0.77 1.37 0.62
1.60 -2.71 0.53 -0.04 4.70 -1.60 1.29 -0.07 7.80 -0.10 1.46 0.75
1.70 -2.95 -0.84 -1.82 4.80 -0.75 1.65 0.50 7.90 -0.50 1.57 0.63
1.80 -2.47 -1.29 -1.94 4.90 -2.14 0.95 -0.25 8.00 -0.47 1.86 1.48
1.90 -4.06 -0.89 -2.02 5.00 -0.52 2.35 0.83 8.10 -0.84 1.75 0.75
2.00 -1.82 -0.00 -0.25 5.10 -0.84 1.39 0.49 8.20 -0.81 1.54 0.66
2.10 -3.45 -1.73 -2.58 5.20 -0.86 1.11 0.34 8.30 -1.04 1.25 0.37
2.20 -3.32 0.21 -1.59 5.30 -1.46 1.35 -0.13 8.40 -1.20 1.65 0.47
2.30 -3.17 -0.57 -2.03 5.40 -0.97 1.25 0.07 8.50 -0.53 1.77 0.98
2.40 -2.17 0.58 -0.53 5.50 -1.36 1.42 0.40 8.60 -1.08 1.39 0.56
2.50 -2.87 0.62 -1.11 5.60 -0.74 1.34 0.55 8.70 -0.53 1.67 0.63
2.60 -3.35 -0.07 -1.93 5.70 -1.29 1.32 0.13 8.80 -0.86 1.90 0.99
2.70 -3.06 0.53 -1.46 5.80 -0.10 1.59 0.80 8.90 -1.13 1.49 0.65
2.80 -2.48 -0.23 -1.33 5.90 -0.62 1.56 0.44 9.00 -0.83 2.10 0.81
2.90 -2.41 0.24 -1.07 6.00 -0.26 1.48 0.96 9.10 -0.10 1.70 1.08
3.00 -1.57 1.82 -0.08 6.10 -1.57 1.40 -0.15 9.20 -0.33 1.77 0.90
3.10 -1.85 0.32 -0.68 6.20 -0.98 1.39 0.35 9.30 -0.04 1.84 1.04
3.20 -1.94 1.20 0.52 6.30 -0.72 1.48 0.52 9.40 -0.87 1.67 0.83
3.30 -1.98 0.94 -0.32 6.40 -0.17 1.83 1.17 9.50 -0.93 1.48 0.42
3.40 -2.21 -0.00 -0.96 6.50 -1.24 1.10 0.21 9.60 -0.22 2.09 1.42
3.50 -1.51 0.65 -0.19 6.60 -1.10 1.82 0.52 9.70 -1.07 1.91 0.84
3.60 -1.41 0.81 0.13 6.70 -0.31 1.32 0.50 9.80 -0.54 1.90 1.02
3.70 -1.92 0.43 -0.55 6.80 -1.26 1.57 0.33 9.90 -0.69 1.81 0.65
3.80 -1.77 0.32 -0.39 6.90 -0.22 1.83 0.84 10.00 -0.64 1.90 1.13
3.90 -1.77 0.91 -0.27 7.00 -1.21 1.60 0.56
4.00 -1.07 1.08 0.72 7.10 -0.73 1.98 1.10

angles returned by the LBP based detector. The
detection rate is determined as the ratio of the
number of detected faces to the total number of
faces.
In total, the detection rate does not change, i.e.,
both, OpenCV’s and our modification’s, detec-
tion rates are exactly the same, namely 46.19%.
It should be noted that not all detected faces coin-
cide completely, i.e., the detected rectangles differ
slightly due to the sub-pixel shift introduced by
our approach on smaller scales as explained in sec-
tion 4.2. In addition, 15% of all pictures exhibit
differences in the number of detected faces, which
is mainly due to fact that the detector’s train-
ing was performed using regularly resized training
data. We conjecture that, when using our resizing
approach during training as well, the aforemen-

tioned differences will possibly vanish.
In order to assess the performance gain of our
modification in terms of execution time in a fair
way, we do not perform execution time measure-
ments for our unoptimized modification and the
highly optimized original OpenCV code. Instead,
we deduce the performance gain as follows: As
our resizing approach in the integral image do-
main is identical to bilinear interpolation in the
image domain in terms of operations (see section
3.1), our modification does not impact the resiz-
ing speed. Conversely, as our approach does not
require integral image calculations at any scale
but the first (see above), the remaining integral
image calculations do not need to be performed.
Therefore, the execution time of these integral
image calculations relative to the detector’s to-



Figure 5: Illustration and comparison of OpenCV’s multi-scale LBP detector (left) and our modification of
it (right). By using the proposed integral image resizing approach, our modification does not require the
recalculation of the integral images on each scale.

tal execution time is equivalent to the potential
speedup of our approach compared to the current
OpenCV implementation.
For the accurate measurement of single functions’
execution times, rdtsc (Intel, 2012) commands
are placed before and after the corresponding
function calls inside the OpenCV code. We use
the aforementioned CMU/MIT test set and exe-
cute the detector a total of 110 times for each im-
age – ten times for cache warming and 100 times
for the actual time measurement as described in
section 4.1. To address the question of scalability,
two additional test systems with comparable soft-
ware configurations are used for this evaluation: a
mobile system (henceforth referred to as system
B) with an Intel Core i5 540M CPU with two
physical cores capable of hyper-threading, i.e., a
total of four virtual CPU cores, and a server sys-
tem (henceforth referred to as system C) with 4
AMD Opteron 6274 CPUs with 16 cores each, i.e.,
a total of 64 physical CPU cores.
The results vary strongly depending on three pa-
rameters: the image size, the image content and
the number of available CPU cores. The former
two parameters influence the number of actual
resizing operations being performed, yielding dif-
ferent speedups for different picture sizes and con-
tent types. As the default resizing factor per scale
is 1.1 in each dimension, larger images with big
objects to be detected exhibit a larger speedup
than smaller images do. Similarly, when large im-
age areas without detectable objects are present,

the speedup is greater as more execution time is
spent in the integral image calculation routines
than in the actual detector due to the LBP cas-
cades on each scale terminating quickly.
The influence of the third and most influential pa-
rameter, i.e., the number of available CPU cores,
is summarized in table 2. It shows that the de-
fault test system with two CPU cores (referred
to as system A) spends on average 4.64% of the
detector’s execution time on the described inte-
gral image calculations, which is equivalent to an
average speedup of 4.64% of our proposed mod-
ification compared to the existing OpenCV im-
plementation (see above). Using the four virtual
cores of test system B, the speedup increases to
an average of 6.38%. This is due to the fact that
the integral image calculations cannot be paral-
lelized efficiently, while the converse is true for
most of the detector’s other code parts. Thus,
our proposed modification using our integral im-
age based resizing approach provides better scal-
ability. This becomes even clearer when consid-
ering test system C with 64 total CPU cores with
an average and maximum speedup of 12.6% and
37.25%, respectively.
Note that our modification also allows speeding
up the overall detection process when TBB sup-
port in OpenCV is disabled, i.e., when only one
CPU core is actually used. This can be seen in
the corresponding row in table 2 which reveals an
average speedup of 2.9% in this case. However,
it is not recommended to only use one CPU core



Table 2: Dependency of integral image calculation
time at lower scales of the LBP detector on the num-
ber of available CPU cores n. All values are relative
to the detector’s total execution time for the respec-
tive hardware and software configuration.

n SYS AVG SDEV MIN MAX
1 A∗ 2.9% 0.71% 1.57% 6.78%
2 A 4.66% 0.66% 2.92% 6.89%
4 B∗∗ 6.38% 0.78% 4.38% 9.87%
64 C 12.6% 4.86% 4.21% 37.25%

∗ TBB support disabled
∗∗ 2 cores with hyper-threading

when more are available as a higher number of
CPU cores increases the speedup significantly as
shown above.

5 CONCLUSION

We proposed a new approach for image resiz-
ing which works entirely in the integral image do-
main. For the special case of power-of-two resiz-
ing, we presented a highly parallelizable version
of our approach which requires only a quarter of
the operations compared to regular bilinear inter-
polation in the image domain, but provides the
same exact results. Furthermore, we evaluated
the practicality of our general approach by mod-
ifying one of multiple state-of-the-art multi-scale
integral-image-based object detection algorithms
in OpenCV without degrading its detection per-
formance. In total, a speed-up of an average of
6.38% and 12.6% could be achieved on a dual-core
mobile computer and a multi-processor server, re-
spectively. Moreover, we showed that similar re-
sults can be achieved for all multi-scale integral-
image-based object detection algorithms.
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