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Abstract. This paper presents a way to e�ciently use lane detection
techniques - known from driver assistance systems - to assist in obsta-
cle detection for autonomous trains. On the one hand, there are several
properties that can be exploited to improve conventional lane detection
algorithms when used for railway applications. The heavily changing vi-
sual appearance of the tracks is compensated by very e�ective geometric
constraints. On the other hand there are additional challenges that are
less problematic in classical lane detection applications. This work is
part of a sensor system for an autonmous train application that aims at
creating an environmentally friendly public transportation system.
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1 Introduction

Autonomous transportation systems like ULTra3 (Urban Light Transport) are
trying to create an economically e�cient and environmentally friendly trans-
portation system. Most of the currently available (or under construction) Per-
sonal Rapid Transit (PRT) systems are designed to be operated on special guide-
ways (i.e. railways) that are sometimes even elevated. Thus the implementation
of such a system is bound to a huge amount of initial costs. The ULTra system
states constructions costs per mile between £5M and £10M . Another solution
would be to operate autonomous cars on the streets along with the normal traf-
�c. This however vastly increases the complexity of the scenarios that have to be
handled by the autonomous cars. Furthermore, it is a substantial threat to the
safety of passengers and outside tra�c participants (especially children). The op-
eration of autonomous vehicles on separate guide-ways seems to be a reasonable
but expensive solution, because the path of the PRT vehicle does not con�ict
with the normal tra�c and the track is predetermined which basically reduces
the control commands to stop or go.

3 http://www.ultraprt.com



A cost e�ective solution that interferes only marginally with normal tra�c
seems to be somewhere between the PRT and autonomous cars. We need a sys-
tem that can drive along a �xed path but does not require the building costs for
a whole dedicated guide-way/track. A possible solution to this is the use of ex-
isting railroad lines (smaller branch lines) that are then operated autonomously
with smaller passenger trains (so called train-lets [3]).

Such a system obviously consists of many parts ranging from high-level train-
let control to low-level sensor data acquisition. In this paper, we are going to
look at how lane detection known from autonomous cars can be used to aid
obstacle detection and also to provide basic region of interest information for
other sensors.

We present an algorithm that uses simple, yet e�cient geometric constraints
derived from the unique properties of railroad tracks to allow fast and robust
track detection. The obtained position information can then be used for ob-
stacle detection and sensor-fusion. In Section 2 we look at previous work that
is related to lane detection. Section 3 compares the properties of streets with
railroad tracks. The basic idea for lane detection adapted to autonomous trains
is explained in Section 4. In Section 5 we present several examples of working
and problematic scenarios. We conclude with an outlook how this system can be
potentially improved in Section 6.

2 Previous Work on Lane/Track Detection

Lane detection for driver assistance systems is a topic that gained a lot of atten-
tion during the last ten years ([2,4,5,6,7,11,12]). Some approaches work on the
acquired images directly which represent a perspective projection of the scene
([2,11,1]) and some perform a conversion of the scene into a top down view called
Inverse Perspective Mapping ([4,5,7,9]). Most systems use a simple lane model to
describe the lane which also applies to railroads. However only few systems are
designed speci�cally for railroad detection ([8,10]). An obstacle detection system
for trains is proposed in [10]. In [8] a vision based system for collision avoidance
of rail track maintenance vehicles is proposed. It is based on detecting railroad
tracks by applying techniques similar to lane detection for driver assistance sys-
tems. The spatial period of the sleepers and the distance between the rails are
used to calibrate the camera parameters. A piecewise quadratic function is then
�tted to candidate rail-pixels in the acquired (perspective) image and compared
to the previous frame. However to the best of our knowledge no fully functional
vision based obstacle detection system for railways exists to date. This work uses
the well researched �eld of lane detection and tracking and extends it to the �eld
of train applications.

3 Comparison

While the basic task of lane detection in street and railway scenarios is the same,
there are several properties that require special attention and may help us to



improve the robustness of automatic train systems. Table 1 lists some important
di�erences, which are discussed subsequently.

Street Railway

variable lane width �xed lane width

variable lateral o�set zero lateral o�set

varying type of lane markings �xed �lane markings�

general lane appearance is relatively
homogeneous

several di�erent (inhomogeneous)
�lanes�

lane markings are designed for
optimal visibility

visibility is not guaranteed

lane markings have no volume and
thus don't cast shadows on the ground

tracks have a certain height and thus
cast shadow on the ground

construction sites and obstacles can
easily change

the path of a car within a road

vehicle path through the world
coordinate system is �xed

the speed of a car is generally adapted
to weather

and visibility conditions

automatic trains are operated at
nearly constant speed independent of

most weather conditions

the horizontal movement of a
car-mounted camera is low due to the

low height of the vehicle

swinging of the train cause substantial
change of the camera position along

the path

Table 1: Properties of street lanes and railway tracks

First of all, the lane width on railways is obviously �xed along the whole
path. Otherwise the train would not be able to drive the complete track. The
width of lane markings on streets, however, depends primarily on the type of
road and is generally limited by a minimum width required by law, which in
turn depends on the country the street belongs to. The lateral o�set of a car
relative to the center of the lane is variable, which is especially true for wider
lanes. We will later see that a �xed lateral o�set can be exploited to reduce the
possible track candidates.

Road lane markings are designed in a way that should be optimally visible to
a human observer (Figure 1b), and they are continuously improved. In contrast,
the only purpose of railroad tracks is to guide the train. It is just a side e�ect
if the tracks are easily visible to an observer. Although in many situations the
tracks are very prominent, in general visibility is a�ected by changes in lighting
and weather much stronger than road lane markings. An advantage of rails over
lane markings is that they are constantly grinded each time a train rolls over
them. This keeps the top of the rails from corroding. The appearance of the
street itself is also very homogeneous (Figure 1b) compared to the track bed of
railways (Figure 1a). The track bed, or in general the space between the rails,
consists for example of gravel, asphalt, snow or even grass (Figure 1a). The last
signi�cant di�erence in the visual appearance is the volume of the tracks. Lane



(a) Inhomogeneous lanes between
railroad lines (average case sce-
nario)

(b) Good visibility of lane markers
and very homogeneous roads

(c) Summer with
vegetation

(d) Bad light-
ing because of
shadow

(e) Summer no
vegetation

(f) Good winter
conditions

Fig. 1: Comparison between road lanes and railway tracks, and overview of di�erent
scenarios

markings are �at and basically have no volume or height. This means that they
can not cast shadows on the ground and thus the detection of the lane marking
itself is invariant to the position of the sun, if no other object casts a shadow
on the street. Tracks however have a certain height, i.e. several centimeters, and
thus cast shadows which create additional edges in the image and weaken the
visual appearance of the real edge.

If we combine the fact that the lateral o�set is �xed and that the position of
the track can not be changed easily, it is clear that the train always moves on
a �xed path with respect to the world coordinate system. This allows a much
tighter integration of a-priori information like the prediction of the vehicle posi-
tion at upcoming points in time. However this is only true for the whole vehicle,
since trains have a strong trend to swing left/right especially at higher speeds.
This is probably due to the great mass in combination with the suspension that
is designed to make the ride comfortable for the passengers. This strong swinging
combined with the fact that the train is considerably higher than a regular car
results in a displacement of the camera system that can not be predicted easily.
This means that even if two frames are acquired at the exact same position of
the vehicle at two di�erent times the position and orientation of the camera with
respect to the world coordinate system is not the same.

A �nal but very signi�cant property are the weather conditions. Trains are
operated at constant speed over a much greater range of weather conditions than
a normal car. For example, even if the track is nearly fully covered with snow
the trains are still operated with no or only a slight reduction in speed, because
they need to keep their timetable.



4 Track detection
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(a) Track detection using the geomet-
rical properties

(b) Acquisition of the scene and conver-
sion into a birds-eye view orthographic
projection

Fig. 2

4.1 Motivation

Obviously a train does not need to do lane keeping but there are two reasons
why our autonomous train needs a track detection mechanism:

1. Provide a region of interest to the other sensor systems.
We are developing a system that uses multi-sensor fusion to achieve reliable
and robust decisions. To be able to detect obstacles on or close to the track
(which we will call the extended clearance gauge) the system needs to know
which part of the sensor data belongs to our physical region of interest. To
achieve this the track detector provides the exact position of the detected
track in the image to the other sensors (RADAR, LIDAR, Stereoscopic sys-
tem). Those sensors will be calibrated relative to a point on the train and
thus can interpret the track information in their own coordinate system.

2. We assume that most obstacles have a connection to the ground (wheels,
feet, ...) and thus would at some point disrupt the appearance of the track.
Depending on the camera position, camera angle and distance of the object
to the camera those discontinuities in the track are going to appear farther
or closer from the train. With su�cient distance from the train those dis-
continuities get closer to the real distance of the obstacle. Thus this method
is best suited for long distance obstacle detection where stereo and LIDAR
scanners do not work properly.



4.2 Inverse Perspective Mapping

Based on the observations of the railway track properties we are able to design
algorithms that are optimized for those scenarios. A schematic overview of the
algorithm is shown in Figure 2a. By transformation of the perspective view
into a birds-eye orthogonal view (Inverse Perspective Mapping IPM [4]) we gain
the ability to directly check all the geometric constraints that our algorithm
requires. In addition, the transformation also makes it easier for appearance
based algorithms to �nd matching regions because the perspective projection
does no longer deform the objects depending on their location and thus the
track width remains constant over the whole image.

Figure 2b shows the IPM step. The camera acquires the scene in front of the
train which is transformed through a perspective projection (Figure 2b acquired

image). While it is possible to �nd parallel lines in perspective images [11] it is
much simpler if one has the undistorted view. As our algorithm heavily relies on
the fact that the tracks are parallel with constant distance at all times, it makes
sense to perform an IPM prior to the track detection. We also mentioned that
the train undergoes a swinging which translates and rotates the camera in the
world coordinate system. To be able to correctly calculate an Inverse Perspective
Mapping we use the camera parameters to calculate the perspective projection of
every point in the birds eye view. This is slightly more complicated than warping
the input image but gives us more �exibility in dealing with the moving camera
and non-planar surfaces (which are assumed by image warping techniques).

To calculate the IPM we de�ne a region of interest in world coordinates (for
example: 6 meters left, 6 meters right and from 5 to 35 meters in front of the
camera). Currently we also require the world in front of the camera to be a
planar surface and thus assume a z-Coordinate of zero. This however can be
changed in the future once the real curvature becomes available through the
LIDAR scanner. The extrinsic and intrinsic camera parameters are calibrated
o�ine because they are not going to change once the system is in place.
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We need to scale and o�set the points in the IPM image to �t in the desired
ROI (as seen in equation 1). ROIleft denotes the outermost left point of our
(physical) region of interst and ROInear de�nes the closes point of our region of
interest. Combined with the width (ROIwidth) and height (ROIheight) the region
of interest is completely de�ned in physical space (see Figure 2b), because for



now we assume the ground to be a �at surface. In equation 2 the extrinsic
camera parameters Rext (rotation of the camera) and Text (translation of the
camera) are used to transform the world coordinates of our ROI into the camera
coordinate system. Those points are then projected onto the image plane by
using the intrinsic camera parameters fx, fy focal length and cx, cy center of
projection (equation 3). This �nally establishes a relation between the points
in the IPM image (xipm, yipm) and the points in the acquired image (u, v).
This is done for every pixel in the IPM image and thus reverses the perspective
projection of the camera as seen in Figure 2b perspective correction.

4.3 Algorithm

Once the IPM image has been created a Di�erence of Gaussian (DoG) �lter is
applied, which has been proven to be the most versatile in our tests, with rather
big kernel sizes (17 for the �rst �lter and 13 for the second) to account for the
motion blur and the probably wrong focus of the �x-focus camera. This �ltered
image is thresholded to create a binary image which is then split vertically into
10 equally sized slices. This breaks up longer lines and allows us to �nd parallel
line segments. It also makes the next step more robust against erroneous edges
from the DoG �lter.

After this step we got a binary image with blobs that are not higher than 1
10 th

of the image. Those blobs are approximated by �tting a straight line segment
to the boundary points. One of the strongest properties of railroad tracks is
the constant distance of the tracks and thus the parallel line constraint of short
track segments. In the next step the algorithm deletes all candidates that do not
have a second candidate within the correct track distance and the correct angle.
Those candidates with more than one correct partner are ranked higher than
those with fewer partner candidates.

This already creates very good candidates (on average less than 100 track
parts where about 20% to 50% do not belong to an actual track). We are using
two versions of our algorithm which di�er in the last step. The �rst one selects
the correct candidates by recursively combining track candidates from di�erent
slices and �tting a 2nd order polynomial to them. Finally two longest combined
candidates with the correct distance are chosen as the left and right rails. The
second algorithm calculates a center-line for each parallel pair of rail segments
and does RANSAC �tting of a 2nd order polynomial to points of the center-lines
and the center of the pivot point (Pzero) of the leading axle. This property is
derived from the zero lateral o�set constraint in Table 1 which forces the center-
line of the track to always pass through Pzero . We also know that the camera
is �xed relative to Pzero and thus all center-lines have to pass roughly through
a single point outside the IPM image.

5 Examples

For our tests we used a Basler scout scA1300-32gm grayscale camera capable of
acquiring 32 frames per second at a resolution of 1296x966 pixels.



Our tests have shown that this algorithm performs very well even in chal-
lenging scenarios. An overview of common scenarios is provided in Figure 1. We
can see that the amount of vegetation that is allowed on the track has a large
impact (Figure 1c) on the appearance of the space between the tracks. Figure 1e
shows one of the best case scenarios for track detection where the top of the rail
re�ects light quite well. But as already mentioned in Section 3 one can not rely
on this feature. Under bad lighting conditions the brightness di�erence between
the tracks and the surrounding area gets problematically low (Figure 1d). This
remains a challenging scenario.

5.1 Individual �tting

In Figure 3 we can see the output of the �rst variant which �ts the left and
right rails individually. The inverse perspective mapped images in Figure 3a
represent an area of 8x30 meters starting 12 meters in front of the camera. After
the detection of possible track segments and applying the geometric constraint
�ltering that searches for parallel partner segments with correct distance, we can
see (Figure 3b) that most of the remaining candidates do actually belong to the
left and right rails. The correct segments are �nally determined by �tting the
polynomial to various combinations of the candidate segments. Those with the
highest score are chosen as shown in Figure 3c.

(a) Inverse perspective map-
ping of the input images

(b) Detected line segments
after parallel line and dis-
tance �ltering

(c) Detected tracks after se-
lecting the best �t for left and
right rails

Fig. 3: Examples of �tting individual curves to the two tracks

5.2 Center-line �tting through a pivot point

The individual �tting is supplemented by the �tting of a single curve to the
center-line between the left and right rails. In Figure 4b the output of the center-
line �tting is shown. The right image in 4a shows a track that is covered with
snow and some track candidates that can not be detected because the edges are
to weak (Figure 4a right image on the street). But the knowledge that the center-
line of the track must pass through the pivot point still allows the algorithm to
robustly detect the track.



(a) Inverse perspective mapping of
the input images

(b) RANSAC �tting of a center-
line curve

(c) Challenging Scenarios: input
images with raindrops on the
windshield

(d) Challenging Scenarios: Still
good detection despite rain on the
windshield

Fig. 4: Fitting of a single curve to the common center-line of the left and right tracks

One of the core assumptions of this algorithm is the fact that most tracks
will not be detected as a whole but rather in parts. So a core task is to �nd track
elements that belong together even if they are not connected. We can see such
scenarios where a track could never be detected in one piece in Figure 4c. Those
images belong to the worst case scenarios. Although the �nal system is going to
cope with raindrops physically it should still be able to manage those scenarios.
We can see in Figure 4d that the current version of the detector is already able
to �nd the correct position of the tracks.

5.3 Reliabilty of the results

Applying the track detection to each frame independently is of course more
prone to errors than using the knowledge of previous frames to �lter out wrong
candidates (i.e. with Kalman �ltering). However to show how the algorithm
performs on our data we applied the detection on every frame without further
knowledge of the context. Every frame was classi�ed by us as either correct
or incorrect. The test was applied on a dataset acquired in winter with average
weather conditions. The tracklength is approximately 15 kilometers and the train
was driving at a speed of about 40 kilometers/hour. The data was recorded at
∼ 10 frames per second. The track was incorrectly detected in 297 frames of a
total of 13610 recorded frames. This means that the track has been correctly
detected 97,81 percent of the time without using temporal constraints.

6 Conclusions

We have presented a novel technique that uses track detection to �nd the exact
location of railroad tracks in an image which can be used by another system



to actually detect obstacles along those tracks. The algorithm combines sev-
eral techniques from lane detection in automotive systems and extends them by
applying simple but strong geometric constraints that are provided by the use
case (railway) itself. Those geometric constraints allow a reduction of processing
cost in the �nal �tting stage and also generate more robust output even in very
challenging scenarios.

However the initial edge detection is rather simple and not designed for the
custom rail properties. This will be improved in future versions which should
again increase robustness. Additionally the detection will be �ltered by using the
knowledge of previous frames and the estimated motion of the train to increase
robustness.
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