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Experimental Study on the Impact of Endoscope Distortion Correction

on Computer-assisted Celiac Disease Diagnosis

Michael Gschwandtner, Michael Liedlgruber, Andreas Uhl, and Andreas Vécsei

Abstract— The impact of applying barrel distortion cor-
rection to endoscopic imagery in the context of automated
celiac disease diagnosis is experimentally investigated. For a
large set of feature extraction techniques, it is found that
contrasting to intuition, no improvement but even significant
result degradation of classification accuracy can be observed.
For techniques relying on geometrical properties of the image
material (“shape”), moderate improvements of classification
accuracy can be achieved. Reasons for this somewhat unex-
pected results are discussed and ways how to exploit potential
distortion correction benefits are sketched.

I. INTRODUCTION

Several medical fields and applications exist, in which

automated decision support systems and other types of

computer-aided technologies based on the analysis of en-

doscopic imagery have been proposed [1]. Since each en-

doscopic procedure generates images which exhibit specific

characteristics depending on the technique used, the com-

puter systems employed for automated technologies must

be designed accordingly. Due to the fact that images taken

using a traditional endoscope often suffer from various kinds

of degradations [2], in many cases various preprocessing

techniques are applied to the imagery (to cope with sensor

noise, focus and motion blur, specular reflections, etc. [1]).

A different type of degradation present in endoscopical

imagery is a barrel-type distortion due to the wide-angle or

fisheye nature of the endoscopic optics’. Since the seminal

work on distortion correction for endoscopic images by

Haneishi et al. [3], several distortion correction procedures

have been applied and developed for this application domain

(e.g. [4], [5], [6]).

The aim of distortion correction in endoscopy is manifold.

Barrel type distortion is claimed to affect diagnosis [7],

since it introduces nonlinear changes in the image, due

to which the outer areas of the image look significantly

smaller than their actual size. Therefore, the estimation of

area or perimeter of observed lesions can be significantly

incorrect depending on the position in the image [4], [6].

Another issue arises in virtual endoscopy [5], where the

endoscope’s position is calculated based on an alignment

of the corrected endoscopic video to a rendered 3-D CT
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image. Any other type of geometrical analysis of the image

material such as building 3D models also requires an exact

camera calibration [8]. Kallemeyn et al. [9] use distortion

corrected arthroscopic images to measure the cyclic cartilage

compression during knee movement, where it is absolutely

necessary to correct the distortion in order to accurately

quantify distances between objects. Finally, it has been

mentioned that barrel distortion might “lead to corrupted

feature values in texture analysis due to the inhomogeneous

magnification” [3] and might also lead to “complications

using token matching techniques for pattern recognition”

[4]. However, no experimental evidence has ever been given

with respect to these latter two assumptions, and also no

positive effect of distortion correction with respect to the

latter problems has been reported so far. The rationale behind

this assumption is illustrated in Fig. 1. Texture patches close

to the center of distortion (CoD) matched against patches far

away from the CoD might exhibit low similarity due to the

compression of the features in the patch close to the edge

of the image even though the texture content is similar in

reality.

(a) GIF-Q165 (b) GIF-N180

Fig. 1. Texture patches with unequal distance to the CoD

To the authors’ knowledge, the potential impact of distor-

tion correction on the analysis of mucosal texture, specifi-

cally on the accuracy of corresponding classification tech-

niques has not been addressed so far. In this paper, we apply

a classical distortion correction technique described in liter-

ature to endoscopic imagery. We compare the classification

results achieved in the context of celiac disease diagnosis

when classification is applied to duodenal texture patches

extracted from original (distorted) images and from distortion

corrected images. Section 2 describes the background of

applying duodenal mucosa texture classification for diagnosis

and staging of celiac disease. In section 3, we describe the

experimental setup by first explaining the image database

used and the corresponding ground truth. Subsequently, we



review the classification techniques employed, and finally,

the distortion correction technique and its respective ap-

plication to our image test set are explained. Section 4

presents and discusses experimental results and in section

5 we conclude this work.

II. AUTOMATED CLASSIFICATION OF DUODENAL

TEXTURE FOR CELIAC DISEASE DIAGNOSIS

Endoscopy with biopsy is currently considered the gold

standard for the diagnosis of celiac disease. During standard

upper endoscopy at least four duodenal biopsies are taken.

Microscopic changes within these specimen are classified in

histological analysis according to Marsh classification [10].

Automated classification as a support tool is an emerging

option for endoscopic diagnosis and treatments (e.g. [1]). In

the context of celiac disease, an automated system identifying

areas affected by celiac disease in the duodenum would offer

the following benefits (among other):

• Methods that help indicating specific areas for biopsy

might improve the reliability of celiac disease diagnosis.

As biopsying is invasive and the number of biopsy sam-

ples should be kept small, optimal targeting is desirable.

This targeting can be supported by an automated system

for identification of areas affected by celiac disease.

• The whole diagnostic work-up of celiac disease, includ-

ing duodenoscopy with biopsies, is time-consuming and

cost-intensive. To save costs, time, and manpower and

simultaneously increase the safety of the procedure it

would be desirable to develop a less invasive approach

avoiding biopsies. Recent studies [11] investigating such

endoscopic techniques report reliable results. These

could be further improved by analysis of the acquired

visual data (digital images and video sequences) with

the assistance of computers.

• The (human) interpretation of the video material cap-

tured during capsule endoscopy [12] is an extremely

time consuming process. Automated identification of

suspicious areas in the video would significantly en-

hance the applicability and reduce the costs of this

technique for the diagnosis of celiac disease.

In first results, the classification of duodenal mucosa tex-

ture patches with respect to the prevalence of villous atrophy

has been shown to be feasible in principle. Vécsei et al. [13]

suggest using histogram-based and wavelet-based features

for classification. The same group [14] optimizes Fourier

features used for classification by applying an evolutionary

process already delivering competitive classification results.

In subsequent recent work [15], they have systematically

compared the classification performance of two different im-

age capturing techniques and various pre-processing schemes

using a set of different feature extraction and classification

methods.

III. EXPERIMENTAL SETUP

A. Image Acquisition and Marsh Classification

The image test set used contains images taken during

duodenoscopies at the St. Anna Children’s Hospital using

pediatric gastroscopes without magnification (two GIF-Q165

and one GIF-N180, Olympus, with resolution 768 × 576

and 528 × 522 pixels, respectively). The main indications

for endoscopy were the diagnostic evaluation of dyspeptic

symptoms, positive celiac serology, anemia, malabsorption

syndromes, inflammatory bowel disease, and gastrointestinal

bleeding. The mean age of the patients undergoing en-

doscopy was 11.1 years (range 0.8-20.9 years). The female

to male ratio was 1.43:1. Images were recorded by using the

modified immersion technique, which is based on the instil-

lation of water into the duodenal lumen for better visibility of

the villi. The tip of the gastroscope is inserted into the water

and images of interesting areas are taken. A study [16] shows

that the visualization of villi with the immersion technique

has a higher positive predictive value. Previous work [15]

also found that the modified immersion technique is more

suitable for automated classification purposes as compared to

the classical image capturing technique. Images from a single

patient were recorded during a single endoscopic session and

differ by the presented duodenal region only.

There are two duodenal regions with completely different

geometric properties, i.e. the Duodenal Bulb and the Pars

Descendens. Since the bowel resembles a tube, the chosen

perspective considerably changes among images. Textures

within images from the Bulbus region lie in the tangent plane

to the surface, therefore, the most important distortion is

that caused by the endoscopes’ optics. The mucosa texture

seen within the Pars Descendens region varies between a

tangential orientation to a perspective that points out of the

surface of the image. Consequently, distortions with respect

to texture homogeneity are also caused by differences in

perspective in addition to the optics’ distortion. Therefore,

we concentrate on image material taken from the Duodenal

Bulb in this work.

We have created a set of textured image patches with

optimal quality to assess if the required classification is

feasible under “idealistic” conditions. Thus, the captured

data was inspected and filtered by several qualitative factors

(sharpness, distortions, visibility of features). In the next step,

texture patches with a fixed size of 128 × 128 pixels were

extracted, a size which turned out to be optimally suited

in earlier experiments on automated celiac disease diagnosis

[15].

In order to generate ground truth for the texture patches

used in experimentation, the condition of the mucosal areas

covered by the images was determined by histological exam-

ination of biopsies from the corresponding regions. Severity

of villous atrophy was classified according to the modified

Marsh classification in [17]. This histological classification

scheme identifies six classes of severity of celiac disease,

ranging from class Marsh-0 (no visible change of villi

structure) up to class Marsh-3c (absent villi). Since a visible

change of the villous structure can be observed at Marsh-

3a to Marsh-3c only, we aim at two different classification

problems: a four class problem with classes Marsh-0, Marsh-

3a, Marsh-3b, and Marsh-3c, and a two class problem with

the classes Marsh-0 and Marsh-3 (consisting of images of



the latter three classes).

Table I shows the number of images available per consid-

ered Marsh-class. As can be seen, for the two class problem

the number of images is well balanced, while for the four

class problem the Marsh-3 classes contain less images as

compared with Marsh-0.

TABLE I

DISTRIBUTION OF IMAGE DATA FROM THE BULBUS DUODENI.

Marsh-0 Marsh-3a Marsh-3b Marsh-3c

# 153 45 54 21

In case only patches close to the CoD would be used

during the classification process, the effect of distortion

correction with respect to feature sizes together with its

potential benefits for texture analysis would be negligible,

only artifacts caused by interpolation might degrade the

classification result. In order to clarify this, we display the

center position of all employed texture patches which have

been used in the classification process in Fig. 2.

(a) GIF-Q165 (b) GIF-N180

Fig. 2. Distribution of patch centers with one example patch

We note that especially for the GIF-Q165 endoscope, the

patches are well distributed (except for the areas where

patient related information is overlayed in the upper and

lower left corner). For the GIF-N180 endoscope, a rather

small number of patches is used overall, but still these are

sufficiently well distributed. Obviously it turns out that it is

not the case that only patches close to the CoD are involved

in our application, so there should be room for classification

improvements by distortion correction.

B. Texture Classification Methods

1) Feature Extraction Techniques: To be able to assess the

performance of distortion correction techniques with respect

to a variety of different classification techniques being ap-

plied to corrected imagery, we applied a set of several feature

extraction methods that provided the best results in Marsh-

based classification of endoscopic image data in earlier work,

ranging from transform-based procedures employing FFT or

various wavelet transforms to pixel-neighborhood operators

like local binary patterns variants. The abbreviations of the

techniques used throughout this work are shown in bold

(given in alphabetical order):

CWT-Weibull: The Dual-Tree Complex Wavelet Transform

is used to decompose the images into 6 scales and the

empirical histogram of the detail subband coefficient magni-

tudes is modeled by two-parameter Weibull distributions. The

Weibull parameters are then arranged into a feature vector

[18].

Edge-Shapes: After Canny Edge detection, different edge-

shape features and texture features of edge-enclosed regions

are computed. To find the most discriminative combination

of features we use a greedy forward feature subset selection

[19]. This technique has originally been developed for colon

mucosa pit pattern classification.

ELBP: Extended Local Binary Patterns [20] are used with

an 8-neighborhood and scales ranging from 1 to 5. A color

version of the image is Sobel filtered using a horizontal

and a vertical filter. Optimal filter directions and scales are

determined by exhaustive search.

FFT-Evolved: By using the FFT an image is transformed

into the respective power spectrum. Multiple ring-shaped

filters are then applied to the spectrum of each color channel

of the RGB color model to concentrate on discriminative

frequency subbands only. Since the number of possible ring

filters is quite large, an evolutionary algorithm is used to find

an optimal set of filters for each color channel [14]. For each

of these ring filters the mean of the coefficient magnitudes

within such a ring is used as a feature.

Gabor-Classic: The Gabor Wavelet Transform is used with

4 scales and 6 orientations, the mean and standard deviation

of the coefficient magnitudes within a subband are used as

features [21].

LBP-Delaunay: First we apply an extended and rotation in-

variant version of the Local Binary Patterns operator (LBP).

The result is used to extract polygons from the images.

After computing the Delaunay triangulation we construct

histograms from the edge lengths of the Delaunay triangles

[19]. This technique has originally been developed for colon

mucosa pit pattern classification.

LTP: The Local Ternary Pattern operator [22] is used in

an 8-neighborhood to compute histograms for each scale

employed (in the range 1 - 5) using a grayscale version of

the image. The optimal combination of scales is found by

an exhaustive search. The first bin of each histogram is not

used.

WT-BBC: The Best Basis Centroids method [23] uses the

Best-basis algorithm to find an optimal basis for each image

in a training set and computes a centroid over all resulting

wavelet packet decomposition structures (maximal decom-

position depth 3). After transforming all images into this

basis, the most informative subset of the resulting subbands

(with respect to a cost function) is used to compute the

energy over all coefficients within a subband. These values

are concatenated to form the feature vector for an image.

WT-GMRF: This method [24] first transforms an image to

the wavelet domain using the pyramidal discrete wavelet

transform (two stages) resulting in 3 · 3 · 2 = 18 detail

subbands since we use each color channel of the RGB color

model. For each of these detail subbands the Markov pa-

rameters of a Gaussian Markov Random Field are estimated.

The number of parameters resulting from one detail subband

depends on the neighborhood order (neighborhoods used are

of Geman type). In addition to the Markov parameters we



use the approximation error for each subband as a feature

too.

Except for CWT-Weibull and Gabor-Classic, we always

pre-processed the images by applying CLAHE [25] followed

by a Laplace Sharpening with a kernel size of 9× 9 [26].

2) Classification: For classification we apply a k-nearest

neighbor (k-nn) classifier to the extracted features to ensure

better comparability among the different techniques. In the

classifier, all methods except for the LBP-based ones use

the Euclidean distance metric for the k-nn classification.

The LBP-based methods use the histogram intersection as

distance metric. The optimal k-value was determined by ex-

haustive search through the admissible corresponding param-

eter range. Based on previous experiences with the different

techniques, the parameter range is specified as follows. In

case of ELBP, LTP, and LBP-Delaunay k is chosen from 1 to

25 and from 1 to 50 for the Edge-Shape, WT-BBC, and WT-

GMRF methods. The results of the FFT-Evolved methods are

optimized by an evolutionary process, which either assigns

k = 1 or k = 2 depending on the used chromosomes. The

methods DT-CWT-Weibull and Gabor Classic did use a set

of k-values ranging from 1 to 10.

The low number of images in our test set does not allow to

split the data into training and test set for evaluating classi-

fication performance. Therefore, we apply the leave-one-out

cross validation (LOOCV) protocol to assess classification

accuracy [27]. LOOCV is based on taking a single image of

the test set as test image and the remaining images as training

data and perform classification. This process is repeated for

each single image thus allowing to estimate classification

accuracy.

C. Distortion Correction

We use a planar checkerboard pattern (with points on

a known grid) for distortion calibration. Calibration points

have been extracted manually since we did not want to loose

correction precision due to incorrectly determined corner

points. Fig. 3 shows two examples of the calibration patterns

taken by the two endoscopes (already distortion corrected

images are shown).

(a) GIF-Q165 (b) GIF-N180

Fig. 3. Distortion corrected calibration pattern taken with both endoscopes

The applied distortion correction technique (DC) relies

on the OpenCV software developed by J.-Y. Bouguet (a

MATLAB version including extensive documentation and

examples is also available1). This software is mainly based

1http://www.vision.caltech.edu/bouguetj/calib doc/

on the work of Zhang [28]. We extracted 140 calibration

points out of 4 images for each of the the GIF-Q165

endoscopes and 144 points out of 4 images for the GIF-

N180 endoscope, which were then fed into the software and

applied to our images.

As explained in the previous section, the texture patches as

counted in table I have been obtained by manually selecting

128×128 pixels sized squares. Since after distortion correc-

tion these data do no longer correspond to squares these

cannot be used immediately for subsequent classification

(most techniques implicitly assume at least a rectangularly

shaped texture patch). Therefore we apply the following

technique to generate square-shaped texture from distortion

corrected image material (which is illustrated in Fig. 4).

Fig. 4. Generation of distortion corrected texture patches

Based on the original (distorted) endoscopic images, we

record the coordinates of the center of the extracted 128×128

pixels. Subsequently, distortion correction is applied to the

entire original images and the recorded center coordinates

are mapped into the distortion corrected image. Using these

coordinates, a 128 × 128 pixels texture square is extracted

from the distortion corrected image which is then used for

classification.

Fig. 5 shows examples of original and distortion corrected

texture patches which have been generated as described

above.

(a) Original (b) DC

Fig. 5. Original and distortion corrected texture patches (Bulbus-set, GIF-
Q165 endoscope, class Marsh-0)

IV. EXPERIMENTAL RESULTS

Our results list the classification rates for each Marsh

class where Marsh-0 indicates the methods specificity (the

percentage of correctly classified images actually showing a

normal mucosal state) and the classes Marsh-3a, Marsh-3b

and Marsh-3c indicate the methods sensitivity (the percent-

age of correctly classified images showing villous atrophy).



For simplicity we denote the class Marsh-0 as No-Celiac and

the union of all images belonging to Marsh-3a, Marsh-3b

and Marsh-3c as Celiac in the two-class case. The k-column

in the subsequent tables indicates the number of neighbors

that were used for the nearest neighbor classification. In

order to uniquely identify a specific parameter setting for

LBP-based techniques, we use an abbreviation as follows:

ELBPHVD135, where the digits indicate the scales used and

HVD indicates that a horizontally Sobel filtered, a vertically

Sobel filtered, and an image filtered in both directions were

used for feature extraction, respectively.

TABLE II

2 CLASSES CASE, CLASSIFICATION ACCURACY IN %.

Method Classification Results

k No-Celiac Celiac Total

CWT-Weibull 10 97.4 92.5 95.2
DC CWT-Weibull 8 93.5 90.8 92.3

Edge-Shapes 3 94.1 95.0 94.5
DC Edge-Shapes 7 93.4 93.3 93.4

ELBPHV 135 13 95.4 94.1 94.8
DC ELBPHV 135 13 93.4 85.0 89.7

FFT-Evolved 1 95.4 96.6 95.9
DC FFT-Evolved 1 95.4 93.3 94.5

Gabor-Classic 4 95.4 90.8 93.4
DC Gabor-Classic 3 93.5 89.2 91.6

LBP-Delaunay 23 78.4 61.6 71.0
DC LBP-Delaunay 9 85.6 56.6 72.8

LTP3,5 7 99.3 94.1 97.0
DC LTP3,5 7 95.4 91.6 93.7

WT-BBC 1 93.4 90.8 92.3
DC WT-BBC 5 92.1 85.8 89.3

WT-GMRF 3 97.3 91.6 94.8
DC WT-GMRF 5 89.5 89.1 89.3

Tables II and III show the results of the different tech-

niques for the two and four classes case, respectively. In

the 2 class case, for all but a single classification technique

employed, we observe a clear and surprising trend: the

overall classification result (“Total” column) is better for

the original (distorted) images by about 1.1% (Edge-Shapes)

- 5.5% (WT-GMRF) as compared to the corrected images.

Only for LBP Delaunay we find an improvement by 1.8%.

In the 4 class case (table III) we see similar results. For all

but two techniques, distortion correction actually degrades

the classification accuracy by 0.7% (ELBP) - 6.3% (WT-

GMRF). For two feature extraction techniques we notice an

improvement by 0.4%: Edge-Shapes and LBP-Delaunay.

The distribution of good and poor results with respect to

different feature extraction techniques is not random. While

the results of CWT-Weibull and FFT-Evolved are relatively

stable under distortion correction, WT-GMRF is the tech-

nique with the largest extent of classification accuracy loss. It

seems that the combination of dyadic wavelet transform with

coefficient neighborhood modeling is extremely sensitive

against the effects of distortion correction as discussed in

the next section. Also, LTP and ELTP result in partially

significant decrease in classification accuracy.

V. DISCUSSION AND FUTURE WORK

We have found that assumptions being made in literature

turned out to be correct for specific feature extraction tech-

TABLE III

4 CLASSES CASE, CLASSIFICATION ACCURACY IN %.

Method Classification Results

k M-0 M-3a M-3b M-3c Total

CWT-Weibull 10 97.4 57.8 53.7 61.9 79.5
DC DT-CWT-Weibull 14 80.3 28.6 64.2 55.1 78.8

Edge-Shapes 5 95.4 42.2 68.5 61.9 78.7
DC Edge-Shapes 5 94.1 44.4 75.9 52.3 79.1

ELBPV D1 9 96.7 46.6 68.5 42.8 78.7
DC ELBPHV D123 4 94.7 57.7 55.5 57.1 78.0

FFT-Evolved 1 92.8 71.1 75.9 66.6 83.8
DC FFT-Evolved 1 92.1 73.3 68.5 66.6 82.4

Gabor-Classic 4 95.4 66.7 70.4 47.6 82.1
DC Gabor-Classic 3 94.8 55.6 61.1 61.9 79.1

LBP-Delaunay 16 98.6 13.3 12.9 0.0 60.0
DC LBP-Delaunay 6 94.7 26.6 14.8 0.0 60.4

LTP135 4 99.3 71.1 75.9 61.9 87.1
DC LTP135 5 98.0 66.6 64.8 52.3 82.7

WT-BBC 12 97.3 57.7 44.4 57.1 77.2
DC WT-BBC 6 96.7 64.4 48.1 0.0 74.3

WT-GMRF 5 98.0 64.4 66.6 28.5 80.9
DC WT-GMRF 27 94.1 80.0 42.5 0.0 74.3

niques only - distortion correction is not able to improve

texture pattern matching for the majority of considered fea-

ture extraction techniques, at least not in the manner we have

set up the system. Interestingly (and this is not unexpected

of course), the only two feature extraction techniques relying

in some sense on geometrical properties of the images, i.e.

Edge-Shapes and LBP-Delaunay, are able to take advantage

of distortion correction (for Edge-Shapes improvements are

only seen in the 4-class case in fact, however, in the two-class

case the amount of accuracy loss is the smallest observed,

i.e. 1.1%).

There are several aspects which may contribute to these

somewhat surprising results. On the one hand, the effects

with respect to different sizes of texture features caused by

the distortion can be at least partially compensated by scale

invariance properties of texture descriptors, which are present

to some extent in most approaches.

On the other hand, it has to be noted that distortion

correction techniques have to apply interpolation especially

in the highly distorted areas close to the edge of the image.

While for applications that “only” use the distortion corrected

image material for navigation purposes or for determination

of a lesions size, the values artificially introduced by interpo-

lation techniques do not pose a problem, but they potentially

do for texture analysis and feature extraction though. We

suspect that artifacts introduced by interpolation might play

an important role in the observed classification behavior. This

assumption is supported by the fact that techniques relying on

the explicit modeling of local pixel neighborhoods (which are

severely affected by interpolation of course) like WT-GMRF,

LTP, and ELTP are affected most severely by accuracy loss.

An additional problem when comparing the classification

results of distorted and undistorted patches is that the shape

of the area corresponding to a rectangular patch in the

distorted image is no longer rectangular in the distortion

corrected one. Therefore, the original and distortion corrected

texture patches do not contain exactly the same image ma-



terial. In order to use identical areas in both “domains” (dis-

torted and distortion corrected) for classification, feature ex-

traction techniques capable of processing arbitrarily shaped

texture patches would be required. However, also for the

original images, the texture patch is extracted approximately

in the region surrounding the area where the corresponding

biopsy has been taken so it is by no means guaranteed that

the original patches do only contain texture related to a

single Marsh class. Therefore, the issue of potential inclusion

of small texture areas with different Marsh class in the

distortion corrected patches could be considered of minor

importance.

In future work, we will investigate the effect of employing

different interpolation schemes on the classification results

with the aim of achieving distortion correction benefits for a

wider class of feature extraction schemes. Additionally, we

will refine the analysis of the results by creating statistical

information if the probability of misclassifying a patch is

somehow correlated to its distance from the CoD in either the

distorted and distortion corrected cases. We will also study

the effect of applying feature extraction schemes with more

explicit scale invariance properties, especially in case patches

close to the image edges are involved in classification.

Finally, Barreto et al. [8] have found the parameter-free

distortion correction approach of Hartley and Kang [29]

being better suited for endoscopic imagery as compared

to the classical approach as used in this work. We will

investigate the impact of using this approach in our setup.
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