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Abstract— Recently, computer-aided celiac disease diagnosis
has been promoted to provide an objective opinion besides
histological examination of biopsies and visual assessment of
macroscopic mucosal tissue. State-of-the-art techniques, however,
are not accurate enough to provide incentive for clinical deploy-
ment. In this work, we answer two questions: Do computers and
human experts make similar classification errors and can expert
knowledge be utilized to increase the accuracy of computer-
aided methods. Three experts were asked to perform visual
classification of a large number of images. The experts decisions
were combined with nine different state-of-the-art image repre-
sentations. Experimentation showed that the correlations between
two computer-based methods were higher than the correlations
between an expert and a computer-based method. Furthermore,
the inclusion of expert knowledge led to statistically significant
(p < 0.05) improvements in 69 out of 108 investigated settings.

I. INTRODUCTION

Celiac disease [27], [29], is a common autoimmune disorder
primarily affecting the small bowel triggered by dietary gluten,
which is the major protein found in various cereals. This dis-
ease is charaterized by an inflammation affecting the mucosa
of the small intestine. During the course of the disease, the
mucosa loses its absorptive villi and hyperplasia of the enteric
crypts occurs. These mucosal alterations are associated with a
diminished ability to absorb nutrients. The prevalence of celiac
disease [10], [9], [3], [2], [8] varies geographically and across
ethnic groups. In Europe and North America estimations range
from 1:80 to 1:300.

Endoscopy with intestinal biopsies is currently considered
the gold standard for the diagnosis of celiac disease. Micro-
scopic changes found in these biopsies are then classified
according to the modified Marsh classification [27], [29],
which distinguishes between the classes Marsh-0 to Marsh-3,
with subclasses Marsh-3A, Marsh-3B, and Marsh-3C. Accord-
ing to this classification, Marsh-0 signifies a healthy mucosa
(without visible changes of the villous structure) and Marsh-
3C designates a complete absence of villi (villous atrophy).

Previous studies on computer-aided celiac disease diagnosis
[22], [16], [17], [24] considered the four classes Marsh-0 and
Marsh-3A to Marsh-3C only, since visible changes of the
architecture of the villi can be observed only for these classes.
In this work, we focus on the two-classes case only (i.e. Marsh-
0 vs. Marsh-3). The reason for working with this problem

definition is given by the image data set available which is
well balanced with respect to the images in each class only
when using the two-classes case. Furthermore, this two classes
case is most relevant for clinical practice.

A. Computer Aided Diagnosis

The current gold standard for detection of celiac disease
is based on biopsies. This histological staging of biopsies
is, however, subject to a significant intra- and inter-observer
variability [35], [1], [28]. Therefore getting a second opin-
ion can help to improve reliability (sensitivity/specificity) or
to reduce the number of required biopsies [1]. Today, the
histopathological findings are validated by visual assessment
of the endoscopist. As the manual assessment of tissue by
human expert’s is again subject to high inter-observer vari-
ability [13], strong incentive is given to develop observer
independent diagnostic methods such as a computer-aided
diagnostic system.

Computer-aided diagnosis of celiac disease solely relies
on image data captured during endoscopy of the duodenum
(Fig. 1). Recently, significant research has been performed in
the field of computer-aided celiac disease diagnosis. Classi-
fication has been done based on images obtained either by
conventional endoscopy [22], [19], [20], [37], [14], [15] or
based on wireless capsule endoscopy [32] [6], [4], [5]. All
these methods focus either on obtaining the best possible
overall classification rates based on a predefined data set [6],
[4], [5], [22], [37], [20], or on selecting appropriate sub-
images (patches) from original ones [14], [15]. These patches
(Fig. 1) should ideally exhibit the specific disease markers (and
should not suffer from strong image degradations) in order to
achieve again the best accuracies utilizing a computer-based
classification approach.

Although state-of-the-art image representations as well as
machine learning methods have been applied, best accuracies
are in the range of 85 to 90 % in the two-classes case. In
authors opinion, a clinical deployment is currently inhibited
by two factors:

1) Balanced accuracies between 85 and 90 % are not
sufficient and

2) experienced medical doctors currently outperform
computers-based methods in terms of accuracy [13].
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(a) Marsh-0 (b) Marsh-3

Fig. 1. Example image patches showing a healthy villi structure (a) as well as a diseased mucosa suffering from villous atrophy (b).

B. Contribution

In this work, we make use of physician’s knowledge during
interaction by asking them to visually classify the available
image data. We investigate if computers and human experts
make similar classification errors if characterizing endoscopic
image data. Additionally, we assess if expert knowledge can be
utilized to increase the accuracy of computer-aided methods.
For that, we propose an approach which incorporates the deci-
sion of one medical expert into the final image representation.
As the method relies on one medical expert only, it could be
efficiently implemented in a clinical environment, which is of
high practical relevance.

Recently [11], we already investigated a fusion of expert
knowledge with computer-aided decision support techniques.
In this work [11], which was highly clinical and thus applica-
tion oriented, we investigated a small collection of computer-
aided classification methods only and furthermore focused on
the fusion of all available data available per patient to enhance
the classification accuracy even further. Here, a significantly
larger experimental setting is applied, investigating a large
collection of image representations as well as combinations
of them. Additionally, examinations on correlations among
different features for automated classification and between
features and expert rating are conducted in order to gain
systematic insights into technical aspects of sensible fusion
approaches.

II. EXPLOITING EXPERT’S DECISION

Theoretically, for each image, a decision can be com-
puted with different computer-based classification methods.
Additionally, in a clinical environment, the knowledge of the
medical expert, who is performing the endoscopy, could be
integrated into the further processing pipeline.

To gain insight and in order to identify sensible data for
fusion, first the (linear) correlations between decisions of dif-
ferent computer-based methods as well as between computer-
based methods and human experts are computed.

Furthermore, we propose a fusion approach to investigate
whether any combination of computer- and human-based clas-
sification leads to improved overall classification rates. The fo-
cus in this scenario is on fusing computer-based methods with
the knowledge on one human expert (as these two decision
vector pairs are supposed to be less correlated). We specifically

consider a scenario where only one physician provides exactly
one binary decision per image. Theoretically, we could also
incorporate data from several medical experts, however, such
data would be hardly available in clinical practice. The major
issue is how to fuse the available data [33]. The most intuitive
strategy is to apply decision-level fusion. However, as we want
to investigate the combination of one human expert with one
computer-based technique, such a method would not work
well as it requires more than two decisions per image to work
effectively. Score-level fusion would demand from computer-
based classifiers and human experts to provide soft decisions.
Especially in the latter case this is not easy to obtain and highly
unintuitive for physicians. Consequently, we decided for a
special kind of feature-level fusion approach incorporating the
decision of the expert directly into the feature vector of the
computer-based method by means of concatenation. For that,
after L2 normalization of the feature vector and weighting of
the expert’s (binary) decision, the data is concatenated.

Finally, we additionally applied feature-level fusion to two
computer-aided methods, with and without expert’s informa-
tion, to gain additional insight.

III. EXPERIMENTS

A. Setup

The test data utilized for experimentation contains images
of the duodenal bulb and the pars descendens taken during
endoscopies at the St. Anna Children’s Hospital. Prior to
automated processing, all images are converted to gray scale
images as the additional use of color information generally
does not lead to consistent improvements [22], [37], [16], [17].
This conversion, however, is not applied for acquisition of
experts’ data, because human experts are used to color images
and the rates could thereby suffer from a gray scale conversion.

In a pre-processing step, texture patches with a fixed size of
128×128 pixels were manually extracted to get more idealistic
data (as positively evaluated previous research [16], [37], [22]).

To obtain the ground truth for the texture patches, the results
of histological examination of biopsies from corresponding
image regions are utilized. The staging of the villous atrophy
was classified according to the modified Marsh classification
[29]. A confirmation of the staging was obtained by visual
inspection of an experienced endoscopist. Although it is
theoretically possible to distinguish between several different



stages of villous atrophy, in this study we aim at distinguishing
between images from patients suffering from celiac disease
(Marsh-3) and healthy patients (Marsh-0), as this two classes
case is most relevant in practice.

Our experiments are based on three different balanced data
sets, each containing 560 image patches (280 of class Marsh-0
and 280 of class Marsh-3). All overall (balanced) accuracies
presented are based on the mean of 50 random splits. One dis-
tinct split divides the data set into an approximately balanced
training (80 %) and evaluation set (20 %), restricting images
of one patient to the same set in order to avoid any bias (due
to similarities within data of one patient).

To gather decisions of human experts for a comparison,
three experts in the field of gastrointestinal endoscopy manu-
ally annotated the image data. Thereby, 5040 manual clas-
sifications where performed (280 images × 2 classes × 3
configurations × 3 experts) providing a stable basis for further
experimentation.

For the experiments, one decision per image was required
in order to meet the practically most realistic scenario (as
motivated in Sect. II) with only one available endoscopist
during the examination. Therefore, the experimental evaluation
is conducted individually for each human expert.

Data fusion is performed on feature-level. In case of fusing
computer-based feature vectors with expert’s decisions, the
feature vector is concatenated with the decision label. Before-
hand, the label is weighted (multiplied with a positive real
valued scalar w) and the feature vector is L2 normalized. The
optimum weight w is evaluated (within {2−2, 2−1, 20, 21, 22})
based on the other two data sets (mean of the indexes is
utilized).

In order to determine whether the performances of two
techniques are statistically significantly different, the Mann-
Whitney-Wilcoxon signed rank-sum test [26] is applied.

B. Feature Extraction Methods

For a detailed comparison, several well known image repre-
sentations are utilized. Beside state-of-the-art general purpose
image representations [30], [36], [38], [34], [21], we inves-
tigate descriptors which have been specifically developed for
analysis of endoscopic images [12], [23]:

• Local Binary Patterns [30] (LBP):
LBP describe a texture by means of the joint distribu-
tion of pixel intensity differences represented by binary
patterns. For experimentation, LBP is utilized with a
radius of two pixels as well as various numbers of
neighboring samples (2 (LBP2), 4 (LBP4) and 8 (LBP8))
to gain insight into the impact of specific (not necessarily
sensible) configurations.

• Local Ternary Patterns [36] (LTP):
LTP is a generalization of LBP, aiming at a more robust
final representation. This is achieved by introducing a dif-
ferent quantization scheme based on three states instead
of the binarization applied in LBP. We utilize a standard
configuration [36] (threshold t = 5, radius r = 2, eight
circularly aligned neighbors).

• Multi-Fractal Spectrum [38] (MFS):
This image descriptor is obtained by first computing the
local fractal dimension for each pixel. This is performed
using three different types of measures for computing
the local density. Finally, the feature vector is built by
concatenation of these fractal dimensions.

• Dual-Tree Complex Wavelet Transform [23] (DTCWT):
This image descriptor is based on fitting a two-parameter
Weibull distribution to the wavelet coefficient magnitudes
of sub-bands obtained from the dual-tree variant of the
complex wavelet transform. Decomposition is performed
on five levels.

• Shape Curvature Histogram [12] (SCH):
This method, which has been specifically designed to
deal with endoscopic image data, describes an image
as the histogram of contour curvature values. The final
representation is obtained by first selecting contour pixels
(by means of edge detection), followed by curvature
estimation, based on edge filter responses. Finally all cur-
vatures in contour regions are collected into a histogram
consisting of eight bins.

• Improved Fisher Vectors [34] (IFV):
Fisher Vectors [31], as well as the next descriptor
(VLAD), is a global mid-level image representation that
is obtained by pooling local image descriptors. In case of
Fisher Vectors, the Gaussian mixture model is utilized to
construct a dictionary, based on a local descriptor. For this
local descriptor, we make use of the SIFT (Scale-invariant
Feature Transform) [25] feature. The final Fisher Vector
contains information how the parameters of Gaussian
mixture model have to be modified to better fit the
data. This is done by concatenating the means and the
covariance deviation vectors. We apply the improved
Fisher Vectors version [34] (based on Hellinger’s kernel
and L2 normalization).

• Vector of Locally Aggregated Descriptors [21] (VLAD):
VLAD is a local pooling technique, similar to Fisher Vec-
tors. In opposite to Fisher Vectors, VLAD does not store
any second-order information. Furthermore it utilizes k-
means clustering instead of a Gaussian mixture model
to generate the feature vocabulary. The feature vectors
finally store information of the difference between the
cluster centers and the pooled local descriptors.

For the final classification we apply a linear support
vector machine (SVM) which has often been utilized in
previous work on computer-aided celiac disease diagnosis
[14], [22], [18] and also generally in recent work on tex-
ture recognition [7]. To avoid bias, the c-value is optimized
(c ∈ {20, 21, ..., 211, 212}) based on inner cross-validation.

C. Results and Discussion

To study, whether a fusion of expert’s knowledge and
computer-based methods could be beneficial, we first look
at the linear correlations between the classification accuracies
of computer-based methods and between a certain computer-
based method and a human expert (Fig. 2).
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Fig. 2. Correlations of classification accuracies between different computer-based techniques (a) and between computer-based techniques and an expert (b)
in case of data set WL1.

Considering the correlations between two different
computer-based methods (Fig. 2 (a)), we notice that the
correlations are generally high (consistently above 0.5). If
looking at the correlations between computer-based methods
and a human expert (Fig. 2 (b)), it can be clearly seen that
these correlations are distinctly lower (between 0.04 and
0.14). This provides evidence that a fusion of computer-based
and human experts data could be advantageous whereas a
fusion of two (more correlated) computer-based techniques is
supposed to be less effective.

Figure 3 (a) - (i) shows the outcomes of combining
a computer-based method with human expert’s decisions.
The bars indicate accuracies for computer-based classification
(left), human expert classification (right) and the fusion (wide
center bar). On top, the p-values of the significance tests are
given (null-hypothesis: accuracies with (computer and expert)
and without fusion (only computer) are identically distributed).
A p-value less than α = 0.05 typically indicates a significant
improvement. Looking at these results, we notice that the
fusion in general is definitely advantageous. In 99 out of
108 cases, the accuracy of the more appropriate approach
(computer or expert) can be boosted applying the fusion-
based approach. Furthermore, in 69 (with α = 0.05) or 54
cases (with α = 0.01) out of 108 cases, the (only) computer-
based technique is statistically significantly outperformed. The
presented results provide strong evidence that fusion of human
expert’s opinion with computer-based image descriptors is
beneficial.

After these general considerations, we focus on the impact
of the computer-based method on the overall (fusion-based)
accuracy. We notice that the best overall performances are
obtained in combination with LBP8, LTP and IFV which
already exhibit best outcomes without fusion. However, even
based on these high-performing methods, with feature-level
fusion, consistent improvement are observed.

Finally, for the purpose of comparison, the impact of
fusing two (more correlated) computer-based techniques (with
and without expert’s information) is explored as shown in

Fig. 3 (j) - (l). In these plots, the left narrow bars indicate
the accuracy of fusing two computer-based methods while the
right bars present the rates of the human expert. The wide
bars show the accuracies if fusing all data (two computer-
based methods and the expert’s data). In this evaluation focus
is on all possible combination of the three best performing
methods (LBP8, LTP, IFV). We notice, that in general two
computer-based methods do not continuously outperform the
better one of the two approaches (as can be seen if comparing
the overall results with Fig. 3 (c), 3 (g) and 3 (i)). This is
supposed to be due to the higher degree of correlation between
two computer-based methods.

IV. CONCLUSION

We investigated the fusion of computer-based methods with
expert’s knowledge. Focus was specifically on a scenario
with one single expert only, allowing for an efficient clinical
deployment without requiring any further manpower. It was
shown that the overall classification rates (i.e. balanced accu-
racies) of computer-aided diagnosis can be boosted statistically
significantly by adding human knowledge to the final image
representation, in a feature-level-fusion sense. The proposed
fusion-based technique was never significantly outperformed,
even by experienced medical doctors. However, especially if
an expert’s accuracy was rather low, the classification perfor-
mance is distinctly boosted. Based on quite small data (patches
with 128 × 128 pixels) we obtained up to 93 % classification
accuracy. Future work should be on an automated exploitation
of the massive amounts of data available in endoscopic video
material, which is likely to enhance the classification process
even further.
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Fig. 3. Classification accuracies obtained with fusion of computer-based data with human expert’s decisions. The bars indicate accuracies for computer-based
classification (left), expert classification (right) and the fusion (wide center bar). On top, the p-values of the significance tests are given (null-hypothesis:
accuracies with (computer and expert) and without fusion (only computer) are identically distributed).
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