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Abstract

In most recent computer aided celiac disease diagnosis approaches, image regions (patches) showing discriminative features necessarily need 
to be manually extracted by the medical doctor, prior to the automated classification pipeline. However, although the obtained classification 
outcomes based on such semi-automated systems are attractive, a human interaction finally is undesired. In this work, fully automated approaches 
are investigated which are based on the measurement of several image quality properties. Firstly, we investigate a method based on optimization 
of single quality measures as well as an approach based on weighted combinations of these metrics. Furthermore, a weighted decision-level and a 
weighted feature-level fusion method are investigated which are not based on the selection of one single best patch, but on a weighted combination. 
In a large experimental setting, we evaluate these methods with respect to the achieved overall classification rates. Finally, especially the proposed 
feature-level fusion method supplies the best performances and comes close to manual experts’ patch selection as far as the accuracy is concerned.
© 2015 AGBM. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

1.1. Celiac disease

Celiac disease, also known as gluten intolerance, is a com-
plex autoimmune disorder which affects the small intestine in 
genetically predisposed individuals of all age groups after the 
introduction of gluten containing food. Characteristic for this 
disease is the inflammatory reaction in the mucosa of the small 
intestine. During the course of the disease the mucosa looses 
its absorptive villi and hyperplasia of the enteric crypts occurs, 
leading to a diminished ability to absorb any nutrients.

Endoscopy in combination with biopsy is currently consid-
ered as the gold standard for the diagnosis of celiac disease. 
During standard upper endoscopy at least four biopsies are 
taken. Microscopic changes within these specimen are then 
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classified in a histological analysis according to the Marsh 
classification [1]. Subsequently, Oberhuber et al. proposed the 
modified Marsh classification scheme [2] which distinguishes 
between classes Marsh-0 to Marsh-3, with subclasses Marsh-
3A, Marsh-3B, and Marsh-3C, resulting in a total number of six 
classes. According to the modified Marsh classification scheme, 
Marsh-0 denotes a healthy mucosa (without visible changes of 
the villous structure) and Marsh-3C designates a complete ab-
sence of villi (villous atrophy).

In accordance to previous work [3–5], we consider the four 
classes Marsh-0 and Marsh-3A to Marsh-3C only, since visible 
changes in the villi structure can be observed only for classes 
Marsh-3A to Marsh-3C. In this work we focus on the two-class 
case only (i.e. Marsh-0 and Marsh-3) since if considering this 
problem definition, the image data set available is well balanced 
with respect to the images in each class. Furthermore, this two 
classes case is most relevant for clinical practice.

The overall prevalence [6] of celiac disease in the USA is 
about one per cent. Fig. 1 shows example images, captured dur-
ing standard upper endoscopy.

http://dx.doi.org/10.1016/j.irbm.2015.09.009
1959-0318/© 2015 AGBM. Published by Elsevier Masson SAS. All rights reserved.
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Fig. 1. Endoscopic images of healthy mucosa (top row) clearly showing the villi structure and of diseased mucosa (bottom row). In some regions the markers for 
celiac disease are visualized well whereas others suffer from strong degradations.

1.2. Computer aided diagnosis

For most computer aided celiac disease diagnosis approaches 
[3,7–10,4,11], reliable (ideal) image regions (e.g. patches with 
a size of 128 × 128 pixels) showing discriminative features 
have to be identified prior to the automated classification. This 
must be done to get ideal data which is free from strong image 
degradations as in case of strong degradations the classifica-
tion accuracy of the decision support system decreases strongly 
[12,13]. The identification of reliable regions could be done 
manually [9,10] on the one hand or by means of a computer 
based method. Existing approach for detection of informative 
regions [14,15], do not directly focus on a succeeding computer 
aided diagnosis and are certainly not optimized for celiac dis-
ease diagnosis. Although the manual method works effectively 
if done by experienced medical doctors [13], there are two in-
centives to use a computer based selection method: First of all, 
a human interaction during endoscopy is time consuming and 
annoying which probably leads to a diminished acceptance of 
the decision support system by physical doctors. Apart from 
that, especially in case of physicians which are inexperienced, 
inattentive or just unfamiliar with the (new) decision support 
system, a weak selection automatically leads to decreased clas-
sification accuracies [13]. This can furthermore lead to an even 
more decreased acceptance of the semi-automated system.

The reason for the decreased classification accuracies in case 
of randomly or inappropriately selected patches (or if using the 
complete images) is the vulnerability of image classification 
methods to various types of degradations which are prevalent 
in endoscopic images. Recent work [12] showed that image 
degradations definitely affect the feature extraction stage and 
consequently lead to a reduced classification accuracy. Such 
degradations are blur, noise, a lack of contrast, underexposure 
and overexposure (reflections). They are potentially prevalent in 
any real world image data, however, endoscopic images are par-
ticularly affected because of the difficult capturing conditions. 
Blur occurs because the difficult handling does not allow to ad-
just the distance to the surface (mucosa) precisely. Furthermore 
motion often cannot be prevented. The small sensors used in 
the endoscopic devices are prone to noise. This liability is am-
plified in case of underexposure which is caused by the spotty 
lightning (as endoscopes are equipped with one or two spotty 
lights). Unfortunately, these spotty lightning not only leads to 

underexposed regions, but also to overexposed ones as well as 
small reflexion (bright spots). Example endoscopic images with 
various kinds of degradations are shown in Fig. 1.

1.3. Contribution

This article collects the two approaches for fully automated 
celiac disease diagnosis from our previous publications [13,16]. 
As previous methods for semi-automated celiac disease diagno-
sis [3,9,10,4,11] are optimized for manually extracted patches 
with a size of 128 × 128 pixels, focus of work on fully au-
tomated diagnosis [13,16] is on the selection of one or more 
such reliable patches. These reliable patches are sub-images 
which clearly show markers for a visual distinction (between 
class Marsh-0 and class Marsh-3) and which do not strongly 
suffer from image degradations. Thereby, after the selection of 
reliable patches, methods for semi-automated celiac disease di-
agnosis can be used to obtain a final decision.

In both papers on fully automated diagnosis, the availabil-
ity of theoretically numerous small sub-images (in our case 
patches with a size of 128 × 128 pixels) in each original en-
doscopic image (768 × 576 pixels) is exploited in order to 
extract data for subsequent classification. Consequently, the ini-
tially required task is to automatically extract numerous poten-
tial sub-images (at fixed, predefined positions) distributed over 
the original endoscopic image. Then, the availability of large 
data firstly allows to select one best patch per original image 
as done in the first work on fully automated celiac disease di-
agnosis [13]. Additionally, it facilitates a redundant processing 
[16] (i.e. feature extraction and classification) of these multiple 
available patches aiming at improving the classification accu-
racy. In order to generate one final decision for each image, 
these redundant threads have to be fused. This can be done on 
different levels [17], such as feature-, score- or decision-level as 
successfully deployed in biometric systems [18,17,19]. As the 
simple (unweighted) fusion does not lead to improved accura-
cies, we utilize patch quality measures to introduce a weighting. 
Based on this weighting, a weighted decision-level as well as a 
weighted feature-level fusion method is investigated.

In this work, the techniques for fully automated celiac dis-
ease diagnosis are characterized as well as extensively analyzed 
and compared with each other. Therefore, several novel exper-
imental scenarios are created. Additionally, the required com-
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putational runtimes are evaluated and compared. For training 
of the classification model, we investigate and compare two 
different scenarios (which has not been done before [13,16]). 
The first one is based on training with manually extracted ideal 
patches. The second is based on training with (also) automat-
ically extracted data. It should be mentioned that the manual 
stage (required in the first scenario) can be done beforehand 
by experts and does not require any interaction during medical 
treatment. The ground-truth, which has been determined by his-
tological examination of biopsies, is available for each original 
image and can be directly taken for all patches extracted from 
the respective image.

1.4. Outline

The paper is organized as follows: First, in Section 2 the 
quality measures, which are furthermore required for fully auto-
mated celiac disease diagnosis, are introduced. In Section 3 the 
method based on patch selection as well as the two fusion based 
approaches are introduced. In Section 4 the experimental results 
are extensively analyzed and discussed. Finally, Section 5 con-
cludes this paper.

2. Quality metrics

First of all, we define a set of sensible quality measures 
which are required for our metric based approaches.

• The first measure addresses the problem of a too low illumi-
nation. As such a weak illumination generally corresponds 
to images with a low average gray value, we propose a qual-
ity measure being based on the mean of the pixel intensities

qA(P ) = 1

|Z| ·
∑
z∈Z

P (z) , (1)

where Z comprises the coordinates of the image patch P .
• The next measure is utilized to detect image regions lack-

ing from any significant gray value differences. Such image 
patches can be identified by measuring the contrast which 
is defined by

qC(P ) =
∑

i,j∈K

|i − j | · p(i, j) , (2)

where K comprises all gray values in P and p(i, j) stands 
for the probability of these two gray values to be present 
in a certain image neighborhood in P . In order to focus 
on real contrast rather than on noise, for this neighborhood 
we use a quite large offset of four pixels in vertical and in 
horizontal direction and average these two values.

• The next measure is based on a blur metric b [20]. For 
computing this metric, first in one direction the edges are 
identified by extracting all local minima and maxima. Fi-
nally the ratio between the lengths and the pixel differences 
of the edges is computed which indicates the blur level. As 
all of our images suffer from more or less significant sensor 
noise, the patches are previously denoised using a Gaussian 
filter G2 where σ is 2.0 pixels.

qB(P ) = −b(P ∗ G2) . (3)

• To detect noisy image patches, we sum up the differences 
between the original image and a denoised version of the 
same image

qN(P ) =
∑
z∈Z

|P − G1 ∗ P | . (4)

The denoised image is achieved by filtering the original im-
age with a Gaussian G1 where σ is 1.0 pixel.

• Finally, we need a measure to address the problem of re-
flections and extremely high illuminations. These regions 
can be detected quite easily by considering the maximum 
gray values.

qI (P ) =
{

1, if max(P ) < T

0, otherwise.
(5)

T is set to 245 (eight bit gray scale), which turned out to 
be appropriate for separating extremely bright regions (by 
manual inspection of a set of training images).

For further processing, these quality measures are min-max-
normalized to be within the interval between zero and one. 
Experiments provide strong evidence that any single quality 
measure is unable to represent the quality of a patch with re-
spect to the classification performance. Therefore, we do not 
focus on single measures but instead introduce methods based 
on a combination of these metrics. How this could be done is 
explained in the following section.

3. Methods: approaches for fully automated diagnosis

3.1. Selection based on single quality metrics (SEL-SIN)

First we investigate the effectiveness of single quality mea-
sures as introduced in Section 2. Based on a set of automatically 
extracted patches in an image, the patch with the maximum con-
cerning the respective quality measure is selected.

3.2. Selection based on combined quality metric (SEL-COM)

Let Q be a matrix containing the row vectors (qA, qC, qB,

qN, qI ) of each patch of one original image and let W be a 
properly chosen column vector containing a weight for each 
quality measure. Then the column vector Q ·W is the weighted 
summed overall quality measure. Our first approach is based 
on maximizing this weighted measure [13]. Therefore, the row 
with the maximum value of this product is evaluated and the 
corresponding image is used for feature extraction and classifi-
cation. Classification in this context refers to the discrimination 
between images showing healthy and diseased mucosa (i.e. be-
tween class Marsh-0 and Marsh-3).

3.3. Information fusion: general remarks

Whereas the first two methods (SEL-SINGLE and SEL-
SUMMED) rely on the selection of one single best patch per 
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image, now we focus on a classification based on the fu-
sion of the available patch data. In the following we use the 
vector Q · W which maps a real number to each patch. By 
computing the element-wise exponentiation of Q · W with 
the properly chosen exponent k, the ratio between the im-
pact of high and low quality patches can be adjusted further-
more (◦ denotes the element-wise matrix exponentiation which 
corresponds to the repeated Hadamard matrix product). Us-
ing element-wise exponentiation has some positive aspects: 
First the ratio between the impact of high and low quality 
patches can be adjusted (theoretically) continuously. Addition-
ally, by selecting specific values for k, a fallback to less so-
phisticated methods can be performed efficiently. In case of 
setting k to zero, the quality measures and the weights are ig-
nored and each image finally has the same impact. The thereby 
achieved fusion methods (unweighted decision-level (DLF) and 
unweighted feature-level fusion (FLF)) are compared with the 
weight based methods in the experimental section. If assign-
ing a large value to k (k → ∞), the methods converge to 
the patch selection strategy as small values are thereby sup-
pressed.

In the following two subsections we show how the quality 
vector (Q · W)◦k can be used in patch fusion. For the experi-
ments, W and k are evaluated during exhaustive search based 
on a separate data set.

3.3.1. Weighted decision-level fusion (W-DLF)
The first method based on the computed quality vector

(Q · W)◦k operates on the decision level. That means, for each 
patch in an original image, first the classifier’s decision is com-
puted by means of traditional feature extraction and classifica-
tion. All decisions for one original image are stored in the row 
vector D, where 1 stands for a positive and −1 stands for a 
negative decision. By computing

Df = sgn(D · (Q · W)◦k) , (6)

the single decisions are multiplied with the corresponding 
weights (image qualities), summed up and finally thresholded 
using the sign function sgn. We have to content with the rather 
simple sum rule, as more elaborate decision-level fusion ap-
proaches like the behavior-knowledge space [21] or decision 
templates [22] are developed for fusing different classifiers and 
not different input data.

3.3.2. Weighted feature-level fusion (W-FLF)
In opposite to W-DLF, W-FLF operates on the feature level. 

This implies that the features are fused prior to the classifi-
cation step. In this approach the classification step that corre-
sponds to a loss of information is postponed and applied to the 
fused features, which could be a benefit compared to the sim-
pler decision-level fusion. The fused feature vector Ff which is 
used for classification is calculated by

Ff = F · (Q · W)◦k

‖(Q · W)◦k‖ , (7)

where F is a matrix containing the feature vectors (columns) 
for each patch. The quality vector (Q · W)◦k is normalized 
to ensure that the sum of all contributions is one. The col-
umn vector Ff contains the element-wise weighted sum of 
all feature vectors and can be directly given to the classifier. 
Ff could be interpreted as a weighted average feature vector. 
We pursue this strategy, as it intuitively allows a weighting 
of the individual features, which cannot be achieved easily in 
case of a feature concatenation. The averaging theoretically re-
quires that the decision boundaries are linear as otherwise the 
averaging of two features of one class could lead to an av-
eraged descriptor located in the subspace of the other class. 
However, in the experiments we do not restrict to linear clas-
sification. To investigate the impact of the decision boundary 
on our approach, the utilized features are individually analyzed 
with respect to this problem in Section 4 with variable classifier 
adjustments.

In this work we focus on decision-level as well as feature-
level fusion approaches but we do not investigate score-level 
approaches. This is done because decision- and feature-level 
methods can be generally applied whereas score-level tech-
niques highly depend on the classifier that is utilized.

3.4. Computational runtime analysis

The major steps, as far as computational effort is concerned, 
consist of

• quality measurement (consisting of five single measures) 
and

• feature extraction.

The classification step is not considered as it is known to be 
quite fast (as the model can be computed in advance). Whereas 
in the fused approach the quality measures as well as the fea-
tures must be computed for each patch, in case of patch se-
lection [13] the feature must be computed only for the best 
patch. The overall computation time1 for all quality measures 
on 128 × 128 pixel gray value patches is 37 milliseconds (ms) 
(qA: 1 ms, qC : 16 ms, qB : 1 ms, qN : 1 ms, qI : 18 ms). The 
computation time for the features ranges from 6 to 142 ms 
(6 ms (LBP), 6 ms (ELBP), 13 ms (SCH), 142 ms (MFS), 
2 ms (FPS)). For example in case of fusion based classifica-
tion with LBP or ELBP and extracting 16 patches per original 
image, for each original image the computation time would 
be about 688 ms where 592 of them are consumed for qual-
ity measurement and only 96 are used for feature extraction. In 
case of patch selection based classification, it would take 598 
(592 + 6) ms which is not significantly faster. Thus, we claim 
that the small additional computational effort is justified if the 
fusion leads to increased accuracies.

1 Runtime tests are executed on an Intel i5 architecture with 3.1 MHz. All 
functions are implemented in MATLAB 2013a.
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4. Experiments

4.1. Materials/patients: experimental setup

The image test set used contains images of the duodenal bulb 
and the pars descendens taken during duodenoscopies at the 
St. Anna Children’s hospital using pediatric gastroscopes (with 
a resolution of 768 × 576 (Olympus GIF Q165) and 528 × 522
pixels (GIF N180), respectively).

To generate the ground-truth, the condition of the mucosal 
areas covered by the images was determined by histological 
examination of biopsies from the corresponding regions. Sever-
ity of villous atrophy was classified according to the mod-
ified Marsh classification as proposed in [2]. Although it is 
possible to distinguish between the several stages of the dis-
ease, we only aim in distinguishing between images of patients 
with (Marsh-3) and without the disease (Marsh-0), because this 
2-class case is more relevant in practice [10]. Another incentive 
for preferring the 2-class case is that the distinction between the 
different stages of the disease is considerably subjective even as 
far as the histological examination is concerned [23]. Thereby, 
the ground-truth and furthermore the evaluation in a multi-class 
case would be less reliable.

Our experiments are based on a balanced database contain-
ing 612 patches (i.e. patches 306 per class) which are used 
for classifier training and 172 original images that are used 
for evaluation. From each original image, 16 non-overlapping 
128 × 128 pixel patches are automatically extracted and fur-
thermore used for fused classification. The patch size is chosen 
in order to be able to compare the results with the manual ex-
traction that is done by a highly experienced endoscopist. The 
original images are captured during endoscopies from 72 dif-
ferent patients. To allow an efficient parameter estimation, this 
database (consisting of 612 patches and 172 original images) is 
divided into two equally sized sets (DB 1 and DB 2). In case 
of multiple images of one patient, we had to ensure that they 
are assigned to the same set. The weight vector W as well as 
the exponent k are evaluated during exhaustive search, based 
on the opposing data set as follows: In order to evaluate the ac-
curacies based on the original images of DB 1, the patches of 
DB 2 are utilized for training and the original images of DB 2 
are used for parameter estimation. The same procedure is ap-
plied (vice versa) to evaluate DB 2. Thereby a strict separation 
between training set, test set and evaluation set is achieved. The 
search space for each element of W is between 0.0 and 1.0 with 
a step-size of 0.33 and k is within {2−1, 20, 21, . . . , 26, 27}.

We perform two different experiments. Experiment A cor-
responds to the natural fusion of patches extracted from one 
distinct original image. Experiment B should show if the accu-
racy improvements are limited by the correlations within one 
original image. Such correlations are quite natural, as degrada-
tions like blur or noise often do not occur only in a small region, 
but sometimes even compromise a whole image. Therefore, in 
this experiment the patches of each patient are randomly inter-
changed across the images leading to virtual images consisting 
of patches from the same patient, but from different original 
endoscopic images. This is done as the patches from the new 

virtual images are supposed to be less correlated and the used 
database does not contain enough patients to fuse all patches 
from one patient.

Each of the experiments (A and B) is performed twice. 
Once (Experiments A.1 and B.1) the classification model is 
trained based on the patches. This data is manually extracted 
from the original endoscopic images. Additionally, we make 
experiments (A.2 and B.2) based on a model trained with au-
tomatically extracted data. In this case, the training data is 
similarly generated as the data for evaluation. This is done be-
cause it is not clear if it is advantageous to train with more or 
less degradation-free (ideal) data (A.1, B.1) or with image data 
that is similarly generated as the evaluation data (A.2, B.2). 
These two different experiments are performed, because previ-
ous work on adaptive classification [24] suggests that similarity 
could be more important than a high degree of image quality.

For classification, the k-nearest neighbor classifier is used. 
We utilize this rather simple classifier in order to focus on the 
effect of different settings rather than on achieving the highest 
overall classification rates. For the first experiments (A and B), 
the rates achieved with odd k values reaching from 1 to 31 are 
averaged, to get highly stable results (as the classification rates 
of 16 runs are averaged) rather than to get the highest possible 
rates. In a further experiment (see Fig. 6) we investigate the im-
pact of the flexibility of the classifier by varying the classifier’s 
k value. This effective adjustment with significant impact on the 
flexibility (non-linearity) of the decision boundaries is another 
incentive to deploy this well-known and easily understandable 
classification model for experimentation.

4.2. Image descriptors

For the experimental analysis we deploy the following fea-
ture extraction techniques which proved to the adequate for 
celiac disease classification in previous work [11]:

• Local Binary Patterns [25] (LBP):
The commonly used Local Binary Patterns describe a tex-
ture by computing the joint distribution of binarized inten-
sity differences within a certain neighborhood. This widely 
used feature extraction technique is used with eight neigh-
bors and a radius (i.e. the distance to the neighbors) of two 
pixels.

• Extended Local Binary Patterns [26] (ELBP):
ELBP is an edge based derivative of Local Binary Patterns. 
As LBP it is used with eight neighbors and a radius of two 
pixels.

• Fourier Power Spectra Rings [27] (FPSR):
To get this descriptor, first the Fourier power spectra of the 
image patches are computed, in a way that the low frequen-
cies are in the image center. Afterwards, a ring with a fixed 
inner and outer radius is extracted and the median of the 
values in this ring are calculated. For our experiments we 
use an inner radius of seven and an outer radius of eight pix-
els, which turned out to be suitable in previous work [27].
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Fig. 2. Experiment A.1: These plots show the overall classification rates achieved with patch selection (SEL-SIN and SEL-COM), decision-level fusion (DLF and 
W-DLF), feature-level fusion (FLF and W-FLF), a random patch selection (RAND) and the manual patch selection (MAN). Training is based on the (ideal) patch 
image data.

• Shape Curvature Histogram [28] (SCH):
SCH is a shape feature, especially developed for celiac dis-
ease diagnosis. After detection of significant locations, a 
histogram collects the occurrences of the contour curvature 
values in these regions. As in the original work, we con-
sider a histogram bin count of eight.

• Multi-Fractal Spectrum [29] (MFS):
The local fractal dimension is computed for each pixel us-
ing three different types of measures for computing the 
local density. The feature vector is built by concatenation 
of these fractal dimensions.

4.3. Results and discussion

Fig. 2 shows the overall classification rates achieved with 
patch selection based on single measures (SEL-SIN), patch se-
lection based on combined measures (SEL-COM), unweighted 
and weighted decision-level fusion (DLF and W-DLF), un-
weighted and weighted feature-level fusion (FLF and W-FLF), 
random patch selection (RAND) and patch selection based on 
the human experts (MAN) for experiment A. We notice that 
based on single quality metrics it is not possible to select ap-
propriate image data for a subsequent classification. Among 
those methods, selection based on qA and qC turned out to be 
most effective. These two methods are at least able to contin-
uously outperform a random patch selection. Considering the 
approach based on the combination of quality measures SEL-
COM, the obtained accuracies are already relatively good and 
stable. Obviously the combination definitely is necessary to 
get a meaningful overall quality metric to optimize subsequent 
classification. Interestingly, it can be seen that the unweighted 
feature-level fusion method FLF as well as the unweighted 
decision-level method DLF are unable to compete with the 
SEL-SIN approach in case of any feature. The rates obtained 
with the manual selection are totally out of reach. Consider-

ing the weight based methods we recognize that especially the 
weighted feature-level based method W-FLF is able to outper-
form the patch selection method SEL-COM in case of all fea-
tures and all databases with differing extent. Considering MFS, 
LBP and ELBP, the accuracies of the manual patch selection 
can be virtually reached. Quite high differences are observed 
in case of SCH and FPS. A quite interesting aspect is the dif-
ference between the two weighted fusion techniques. In almost 
each case, the feature based W-FLF corresponds to the higher 
accuracy compared to W-DLF. Obviously the early fusion prior 
to the (information reduction) classification has a positive im-
pact on the final discriminative power.

Fig. 3 shows the obtained accuracies based on training with 
the automatically extracted data. We notice that the perfor-
mance in this scenario generally is lower. Especially the meth-
ods based on information fusion (W-FLF as well as W-DLF) 
seem to be less appropriate if training is performed with non-
ideal data. Due to the generally lower accuracies, it should be 
noted that the generation of ideal training data in a manual sense 
definitely can be advantageous for a classification system.

In Fig. 4 the results of experiment B, which is based on ran-
domly interchanged patches across images of the same patient, 
are shown. As in this experiment not only patches extracted 
from the same image are fused, but patches from different im-
ages, we have expected that in this scenario more significant 
improvement could be obtained in case of information fusion. 
Actually, on average (see Fig. 2(f)) the rates with the weight 
based fusion methods are quite similar.

Considering the results of experiment B with non-ideal train-
ing data (see Fig. 5), it can be seen that a similar performance 
compared to experiment B.1 is obtained. Interestingly, we again 
observe that especially the feature-level fusion method (W-
FLF) generates less competitive results with the non-ideal train-
ing data. In opposite, the best outcome on average is obtained 



M. Gadermayr et al. / IRBM 37 (2016) 31–39 37

Fig. 3. Experiment A.2: These plots show the overall classification rates achieved with patch selection (SEL-SIN and SEL-COM), decision-level fusion (DLF and 
W-DLF), feature-level fusion (FLF and W-FLF), a random patch selection (RAND) and the manual patch selection (MAN). Training is based on automatically 
extracted data.

Fig. 4. Experiment B.1: These plots show the accuracies with the same strategies as in Fig. 2. In opposite to experiment A, in experiment B the patches of one patient 
are randomly interchanged.

with the decision level based approach (W-DLF). Obviously the 
specific settings of this medical decision support system has a 
major impact on the effectiveness of the different selection and 
fusion approaches.

As especially the weight based feature-level fusion method 
in most experiments leads to high accuracies, we expect that a 
fusion on the one hand across all patches in an image (derived 
from experiment A.1) and on the other hand across all images, 
captured during endoscopy of one distinct patient (derived from 
experiment B.1) could improve the rates from our experiments 
once again. Unfortunately, the data currently available is not 
large enough for such an experimental evaluation.

So far, we experimentally showed that the W-FLF approach 
is mostly the best method to make our decision support sys-

tem totally automated. However, we have not regarding the 
theoretical issues of this method in case of non-linear decision 
boundaries. Finally we investigate the impact of the classifier’s 
decision boundary on the effectiveness of W-FLF. As stated in 
Section 3.3.2, the feature averaging theoretically requires that 
the decision boundaries are linear as otherwise the averaging of 
two features of one class could lead to an averaged descriptor 
located in the subspace of the other class. To investigate how of-
ten an averaged feature of two correctly classified images would 
be incorrectly classified, now we consider all correctly clas-
sified images (from the ideal patches data set). For each pair 
of these images, the average feature is computed and classified 
with varying settings (different k values). This is done as espe-
cially small k values correspond to highly non-linear decision 
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Fig. 5. Experiment B.2: These plots show the accuracies with the same strategies as in Fig. 3. In opposite to experiment A, in experiment B the patches of one patient 
are randomly interchanged.

Fig. 6. Analysis of effects in weighted feature-level fusion W-FLF.

boundaries, whereas with higher k values this effect is softened. 
Fig. 6(a) shows that especially in combination with low dimen-
sional features (FPS, SCH, MFS) and small k values (majorly 
for k = 1), the feature averaging leads to decreased classifica-
tion accuracies (as 100% accuracy is expected in case of linear 
classification).

In Fig. 6(b), the impact of a small k value (k = 1) com-
pared to the averaging (with k reaching from 3 to 31) on the 
improvement achieved with W-FWF compared to patch selec-
tion SEL-SIN is shown. Apart from the classifier settings, the 
same setup as in experiment A.1 is used. As expected, if k is set 
to one, the improvements of W-FLF are (especially in combi-
nation with the low dimensional features) considerably smaller 
or even negative, which is expected to be due to the highly non-
linear decision boundaries. Therefore, we finally recommend to 
take care about the classifier choice using the proposed method 
for weighted feature-level fusion.

5. Conclusion

We have investigated several techniques to fully automa-
tize decision support systems for celiac disease diagnosis. It 
has been shown that a patch selection system based on single 

quality measures does not lead to adequate performances. Nev-
ertheless, the combination of several metrics turned out to be 
already quite effective. The exploitation of data redundancy by 
means of information fusion furthermore leads to distinct im-
provements. The best performances are finally obtained with 
an unconventional method based on feature-level fusion. It has 
been shown that the measurement of image quality has a ma-
jor impact not only in case of a single patch selection, but also 
in case of information fusion. Experiments based on specific 
scenarios show that the choice of the best method distinctly 
depends on the training data. Getting quite close to the classifi-
cation rates of manual patch selection, this work brings us one 
step closer to fully automated non-interactive celiac disease di-
agnosis.
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