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Abstract— During the past years, significant research has
been done on computer aided celiac disease diagnosis based on
endoscopic image data. Mostly the aim is to increase the final
classification accuracies based on a certain endoscopic data set.
In this work, we investigate the impact of different endoscopic
devices as well as imaging modalities with distinct impact on
the visual properties of the image data. Apart from the obtained
classification accuracies, special focus is on a metric measuring
the relative performance of computer based methods compared
to the visual classification performance of human experts on the
respective data sets. Thereby a potential bias due to variations
between the data sets can be circumvented. Finally, we can make
statements on the performances of computer based methods
compared to human experts considering the same data set,
and, based on previous knowledge, assumptions on the most
appropriate imaging setting in case of computer aided diagnosis
can be made.
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I. INTRODUCTION

Celiac disease [1], [2], which is commonly known as
gluten intolerance, is an autoimmune disorder that affects
the small intestine after the introduction of gluten containing
nutrition. This disease leads to an inflammatory reaction in
the mucosa of the small intestine caused by a dysregulated
immune response triggered by ingested gluten proteins of
certain cereals. During the course of celiac disease, the mucosa
loses its absorptive villi and hyperplasia of the enteric crypts
occurs, leading to a strongly diminished ability to absorb
nutrients. The overall prevalence [3] of the disease in the USA
is approximately one per cent.

Whereas the gold standard for detection is based on biop-
sies, computer aided diagnosis of celiac disease solely relies
on image data captured during duodenoscopies. During the
past years, significant research has been done in the field of
computer aided celiac disease diagnosis [4], [5], [6], [7], [8],
[9], [10]. In these publications, focus is either on obtaining the
best possible overall classification rates based on a predefined
data set [4], [5], [6], [7], [8], or on selecting appropriate sub-
images (patches) from original ones [9], [10]. These patches
should ideally exhibit the disease markers (and should not suf-
fer from strong image degradations) in order to achieve again
the best accuracies in case of computer based classification.

Due to different imaging configurations, the available image
data for computer based classification varies significantly,

as different cameras (especially sensors) are deployed and
furthermore the imaging modality can be adjusted.

During this work, we compare three different imaging
configurations with significant impact on the visual image
properties. The first configuration (WL1) relies on the Olym-
pus GIF-Q165 endoscope which is based on white-light imag-
ing (WLI). In WLI, the mucosa of the small intestine is
illuminated with a traditional source of (white) light. The
second configuration (WL2) relies on the Olympus GIF-H180
endoscope, which provides distinctly improved image quality,
and is also based on WLI. The third configuration relies on the
Olympus GIF-H180 endoscope and is based on narrow-band
imaging (NBI) where the mucosa is illuminated with some
specific wavelengths as outlined in the subsequent section.

The main goal of this work is to find out which image data
can be classified most accurately in case of computer aided
celiac disease diagnosis? One way to perform a comparison
is to simply compare the diagnosis performances (i.e. the
classification accuracies) obtained with the three different
image data sets. However, as we rely on manually extracted
preselected patches and manually captured images, a straight-
forward comparison could contain some bias due to the manual
patch extraction and image acquisition stage. Therefore, we
additionally compute the relative rates of computer based
methods compared to human experts’ diagnosis performances
based on the respective image data sets. Finally, based on pre-
vious knowledge assumptions on the best endoscopic setting
for computer aided diagnosis can be done.

This paper is structured as follows. In Sect. II, the differ-
ence between the imaging configurations are outlined and a
potential bias of a straight-forward accuracy comparison is
discussed. In Sect. III, the experimental results are presented
and discussed. Section IV finally concludes this paper.

II. IMAGING CONFIGURATIONS

All three investigated imaging configurations rely on flexible
endoscopy and the modified immersion technique. Flexible
endoscopes are equipped with support channels used to extract
biopsy specimen, to clean tissue and to inflate the intestine.
The modified immersion technique makes use of a support
channel to instill water into the duodenal lumen after evacua-
tion of air by suction. Villi, if present, straighten up in water
and appear as finger-like moving structures. Experimental
evidence has been gained [11] that the visualization of villi
utilizing the modified immersion technique corresponds to a



Table 1. Image data sets available for the three different imaging configurations.

Data set Images (Marsh-0/Marsh-3) Patients (Marsh-0/Marsh-3) Device Modality
WL1 280/280 131/40 Olympus GIF-Q165 WLI
WL2 280/280 85/35 Olympus GIF-H180 WLI
NBI 280/280 88/37 Olympus GIF-H180 NBI

(a) WL1 (b) WL2 (c) NBI

Fig. 1. In the top row image patches based on the three different configurations are shown. In the bottom row magnifications are presented to see the effect
of improved imaging technology.

higher positive predictive value in case of manual classification
based on visual data. Additionally, the water provides several
additional benefits such as a more homogeneous illumination
without specular reflections and bubbles. A further benefit of
this technique is, that no specialized endoscopic hardware is
required.

During experimentation, we evaluate three different imaging
configurations, as outlined in Table 1. Figure 1 shows example
image data, captured under the three different configurations.

The difference between the WL1 and the WL2 data set
is due to the newer endoscopic device (GIF-H180). Using
this novel endoscope, the level of noise can be reduced
significantly as can be seen especially in the magnified sub-
figures on the bottom row. The magnification level of the two
endoscopic devices is more or less the same. Most previous
work in this field [8], [10], [12], [13], [14], [15], relies on
image data captured with the older endoscope (GIF-Q165) or
a related model (GIF-N180) exhibiting a similar image quality.

In case of the narrow-band imaging (NBI) data set the
same device as in set WL2 is utilized, however, a special
illumination method is applied which leads to more empha-
sized villi structures in the visual data. NBI [16] has been
reported to improve the diagnostic accuracy in diverse fields
of endoscopy [17]. It is based on specific blue (440 to 460
nm) and green (540 to 560 nm) wavelengths for illumination
to enhance the contrast of vascular patterns on the mucosal
surface. This method is employed to specifically delineate the
outline of the residual villous structures (if present) due to a
better visualization of villous height and shape compared to
traditional white light endoscopy.

A. Bias in Data Sets

Preliminary experimentation showed that a straight forward
comparison of classification accuracies based on the different
data sets may not provide a fair comparison between the three
endoscopic settings used.

Firstly, it is not possible to capture the same mucosal
regions (showing the same disease markers) of the same
patients with all three imaging modes. Whereas in case of the
different illumination modes (WL2 and NBI) this is difficult
but theoretically feasible, in case of the different endoscopes
(WL1 and WL2) this definitely cannot be done without ethical
concerns during medical treatment.

A further problem is that some regions of the endoscopic
images often significantly suffer from severe degradations such
as blur, overexposure as well as underexposure [9]. Experience
indicates that the obtained image quality correlates with the
level of expertise of the medical doctor who acquired the visual
data.

To solve these issues, this work relies on manually extracted
patches (with a size of 128 × 128 pixels as done in previous
work [7], [9], [18]) which have been extracted by experts.
The idea is to select regions that are widely free from strong
degradations and actually show disease makers which can
be effectively used for discrimination between healthy and
diseased mucosa.

However, further potential bias can be unintentionally intro-
duced by the experts during the manual selection of the image
patches for classification. During manual patch selection, the
experts extract sub-images which contain, in their opinion,
markers for a potentially successful distinction. If an imaging



configuration delivers images of a lower quality (e.g. the
disease markers are not clearly visible), the experts probably
extract fewer images. Doing that, the classification accuracies
will not represent the overall quality of the original image data.
Being aware of this issue, in the following, we mainly do not
focus on the absolutely achieved classification accuracies, but
we compare the rates of computer based methods with the
visual classification performance of human experts using the
same image data.

The assumption of a significant bias in the absolute clas-
sification rates is supported by the fact that the accuracies
obtained with data set WL1 turned out to be on average the
highest compared to the other data sets, although the image
data (visually) seems to be inferior (compared to the other
sets). This is supposed to be because in case of (more noisy)
low quality image data, during manual extraction image data
with more pronounced disease markers is extracted. We as-
sume that thereby the classification task can even be simplified
in case of image data exhibiting a lower quality. Analyzing the
relative rates (ratio of computer based accuracies to humans’
classification performances), we aim at getting more insight
into the requirements for a successful discrimination.

III. EXPERIMENTS

A. Setup

The test data used for experimentation contains images
of the duodenal bulb and the pars descendens taken during
endoscopies at the St. Anna Children’s Hospital. Prior to
automated processing, all images are converted to gray scale
images as the additional use of color information did not
lead to consistent improvements. This conversion, however,
is not done for acquisition of human experts’ classification
accuracies, because human experts are highly used to color
images and the rates could thereby suffer from a gray scale
conversion.

In a preprocessing step, texture patches with a fixed size of
128 × 128 pixels have been manually extracted to get more
idealistic data (as done in past research [7], [8] and discussed
in Sect. II-A).

To get the ground truth for the texture patches, the con-
dition of the mucosal areas covered by the images has been
determined by histological examination of biopsies from cor-
responding image regions. The severity of the villous atrophy
has been classified according to the modified Marsh classi-
fication scheme [2]. Although it is possible to theoretically
distinguish between several different stages of the disease, we
aim in distinguishing between images of patients suffering
from celiac disease (Marsh-3) and healthy patients (Marsh-
0), as this two classes case is most relevant in practice. Fur-
thermore it has been shown that a proper separation into more
classes based on visual markers only is extremely difficult and
probably impossible [19].

Our experiments are based on three different balanced data
sets, each containing 560 image patches (280 of class Marsh-
0 and 280 of class Marsh-3). All overall accuracies presented
are based on the mean of 50 random splits. One distinct split

divides the data set into an approximately balanced training
(80 %) and evaluation set (20 %), restricting images of one
patient to be in the same set to avoid any bias.

To get accuracies of human experts for a comparison, three
experts (two medical doctors (endoscopists) and one expert in
medical imaging) manually annotated all of the data. Thereby,
5040 images have been manually classified which provide
a stable basis for further experimentation. In order to get
stable data, for further processing the accuracies per expert
are calculated and finally these three classification rates are
averaged.

The relative classification rates are finally achieved by divid-
ing the accuracies obtained with computer based methods by
the mean accuracies of human experts based on the respective
image data set.

B. Feature Extraction Methods

For a reasonable comparison, several different well known
feature extraction techniques are utilized. Beside state-of-
the-art general purpose image representations, we investigate
descriptors which have been specifically developed for the
problem definition:

• Local Binary Patterns [20] (LBP):
LBP describe a texture by means of the joint distribu-
tion of pixel intensity differences represented by binary
patterns. Experimentation is based a radius of two pixels
as well as various numbers of neighboring samples (2
(LBP2), 4 (LBP4) and 8 (LBP8)) to gain insight on the
impact of specific (not necessarily sensible) configura-
tions.

• Local Ternary Patterns [21] (LTP):
LTP is a generalization of LBP making the final represen-
tation more robust to noise. This is achieved by introduc-
ing a different quantization scheme based on three states
instead of the binarization applied by LBP. The approach
is used with a fixed threshold (t = 5), a radius of two
pixels and eight circularly aligned neighbors.

• Multi-Fractal Spectrum [22] (MFS):
First, the local fractal dimension is computed for each
pixel using three different types of measures for comput-
ing the local density. Finally, the feature vector is built
by concatenation of these fractal dimensions.

• Dual-Tree Complex Wavelet Transform [23] (DTCWT):
This image descriptor is based on fitting a two-parameter
Weibull distribution to the wavelet coefficient magnitudes
of sub-bands obtained from the dual-tree variant of the
complex wavelet transform. Decomposition is performed
on five levels.

• Shape Curvature Histogram [13] (SCH):
This method, which has been specifically designed to
deal with celiac disease image data, describes an image
as the histogram of contour curvature values. This is
done by first selecting contour pixels (by means of edge
detection), followed by curvature estimation, based on
edge filter responses. Finally all curvatures in contour
regions are collected into a histogram.



• Improved Fisher Vectors [24] (IFV):
Fisher Vectors [25], as well as the next descriptor
(VLAD), is a global mid-level image representation that
is obtained by pooling local image descriptors. These
state-of-the-art standard methods build up and improve
the idea of the Bag-of-visual-words approach [26] which
has become highly popular in past years. In case of Fisher
Vectors, the Gaussian mixture model is used to construct
a dictionary, based on a local descriptor. For this local
descriptor, we use the well known SIFT (Scale-invariant
Feature Transform) [27] feature. The final fisher vector
contains information how the parameters of Gaussian
mixture model have to be modified to better fit the data.
This is done by concatenating the means and the covari-
ance deviation vectors. We use improved fisher vectors
[24] which are derivatives based on two ideas. Instead
of the linear kernel IFV uses the non-linear Hellinger’s
kernel which is based on the Bhattacharyya distance.
Furthermore, the final feature vector is L2 normalized.

• Vector of Locally Aggregated Descriptors [28] (VLAD):
VLAD is technique which is similar to Fisher Vectors. In
opposite to Fisher Vectors is does not store any second-
order information. Furthermore it uses k-means clustering
instead of a Gaussian mixture model to generate the
feature vocabulary. The feature vectors finally store in-
formation of the difference between the cluster centers
and the pooled local descriptors.

For the final classification we apply a linear support vector
machine (SVM) which has been often used in previous work
on computer aided celiac disease diagnosis [9], [7], [29] and
also generally in recent work on texture recognition [30]. The
c-value is optimized (c ∈ {20, 21, ..., 211, 212}) based on inner
cross-validation. The feature vectors are L2 normalized before
classification.
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Fig. 2. Classification accuracies of human experts. One narror bar indicates
the obtained rates of one certain expert in case of one data set whereas the
wide bars represent the means over all experts.

C. Results
First, Fig. 2 shows the obtained classification performances

of the human experts. One bar indicates the obtained rates

of one certain expert in case of one data set. The standard
deviations are achieved by 50-fold randomly sampling 20%
of the classification decisions (as done in case of computer
based classification). A distinction by human experts of the
WL1 data set seems to be easier whereas the classification
task of the NBI data set turned out to be clearly more
difficult for the medical doctors. However, we strongly assume
that the more elaborated imaging technique does not lead to
decreased classification performances of human experts based
on unbiased data. Actually it has been shown for NBI [17] that
the opposite is the case. Thereby, strong evidence is provided
that the distribution of the underlying mucosal structure, which
has been captured with different endoscopic configurations,
systematically differs (over the three data sets).

In Fig. 3, the main results obtained with computer based
systems are shown. Considering absolute accuracies (solid
lines) it can be seen that with the WL1 data set, on average
the best overall classification rates are obtained. Interestingly,
considering this set, the utilized feature extraction method
does not have a strong impact and the accuracies are always
above 84 %. Even with very few information in the feature
vector (see LBP2), similar accuracies compared to sophisti-
cated image descriptors are achieved. Considering LBP based
feature extraction, it can be seen that in case of WL1, the
configuration (LBP2, LBP4, LBP8) has a minor impact, which
is distinctly different considering the accuracies obtained with
the other data sets. The absolute rates observed with the WL2
data set are generally almost constantly lower compared to
the WL1 data set. However, we notice a stronger impact of
the feature extraction technique used. In case of NBI, the
obtained accuracies also significantly vary with different image
descriptors (especially if looking at the results of the three
LBP configurations). This novel imaging technique does not
lead to improved accuracies, however, in general we notice a
more distinct positive effect of increased training data.

Based on these considerations, we strongly assume that the
problem definition in case of WL1 is easier due to the (biased)
manual patch extraction stage. Consequently, in the following
focus is on the relative accuracies which are calculated as the
fraction on the rates obtained with the computer based methods
and the average rates of human experts.

Considering these relative accuracies (dashed lines), we
notice that the performances of WL1 and WL2 become more
similar (at least apart from the methods LBP2 and LBP4 which
obviously contain not enough information for classification of
the WL2 and the NBI data set). The remaining advantage of
WL1 indicates that human experts’ classification accuracies
suffer more distinctly from the noisy data than computer based
methods do. This assumption is supported by previous work
[31] which showed that noise not necessarily has a strong
impact on computer based classification if the noise remains
stable over training and evaluation data.

With WL1 and WL2, in best case the human classification
accuracy can be obtained approximately, which is indicated by
a relative accuracy of about 1.0. In case of NBI, interestingly,
the human accuracies can even be outperformed (relative
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(a) LBP2
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(b) LBP4
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(c) LBP8
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(d) SCH
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(e) DTCWT
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(f) MFS
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(g) IFV
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(h) VLAD
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(i) LTP

Fig. 3. Absolute (solid lines) and relative (dashed lines) classification rates achieved with computer-based classification. Whereas the absolute rates are real
accuracies (between 0 and 1), the relative rates (calculated as absolute rate

experts’ rate ) can be above 1.0 if the computer based method outperforms the human experts.

accuracy > 1.0) with some image description methods. That
means, based on NBI data, computer based methods have a
relative advantage compared to human expert’s visual classi-
fication (which is not the case in white-light imaging).

However, so far we are not able to make a statement on
the most appropriate imaging modality based on the relative
overall classification rates. These data only provides informa-
tion about the relative performances of computers compared to
human experts. Nevertheless, recent work [17] proved that NBI
data in general is more appropriate for visual classification of
human experts compared to WLI. Consequently, we strongly
assume that if having image data from NBI, WL1 and WL2
showing the same mucosal regions, the sophisticated computer
based methods (IFV, LTP) are able to deliver the best overall

rates utilizing NBI image data. Comparing WL1 and WL2, we
assume that computer based methods will not profit as much
as human experts do from the improved image quality (of set
WL2).

IV. CONCLUSION

We have investigated the impact of three imaging config-
urations during endoscopy on the classification performance
of computer aided diagnosis methods. Comparing the absolute
accuracies, it turned out that the old endoscope (WL1) delivers
the best (absolute) accuracies, however, these rates turned out
to be biased because of the manual patch extraction stage.
Comparing the obtained rates to classification accuracies of
human experts, it has been proven that only in case of NBI
the computer delivers the more competitive rates compared to



experts. As it has been shown that NBI is more appropriate
for a visual classification relying on human experts (in case of
unbiased data), we can assume that the combination of NBI
and computer based classification leads to the best overall
classification rates. Future work could be to select for each
configuration variably difficult classification tasks (sub data
sets) based on the human experts classification decisions to be
able to make an assumption on how computer based methods
perform on tasks with differing levels of difficulty.
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