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ABSTRACT

In the fields of texture classification, the sizes of images

significantly vary according to the respective classification

scenario. Whereas quite small image patches mostly lead

to good classification accuracies, increasing the image size

sometimes even has a negative effect. In this work, we fo-

cus on derivatives of Local Binary Patterns as these feature

extraction methods offer a high discriminative power and

efficiency on the one hand an can be effectively analyzed on

the other hand. The aim is to get new insight and furthermore

to explore strategies which can help to increase the classi-

fication performance. We investigate these strategies which

exploit the obviously high distinctiveness of small image

patches and simultaneously the redundancy available in large

image patches. Finally it can be concluded that the tradi-

tionally applied strategies for texture classification should be

reconsidered in case of sufficiently large image data.

1. INTRODUCTION

For several decades, texture classification has been a funda-

mental challenge in image processing. An early milestone

work has been done by Haralick et al. [1], who have intro-

duced features based on the gray level co-occurrence matrix.

Furthermore texture classification based on Fourier [2] and

Gabor filters [3], just to mention a few, has been done. An-

other work on exploiting local distributions with high impact

has been proposed by Ojala et al. [4]. This method, called

Local Binary Patterns (LBP), has been widely deployed, in-

vestigated and adapted to specific problem definitions [5, 6,

7, 8, 9].

Although many highly sophisticated approaches have

been proposed during the last years [10, 11, 12, 13, 14], Lo-

cal Binary Patterns and especially derivatives are still able

to compete in many classification scenarios [15, 16]. In

this work we focus on derivatives of this method because of

their high discriminative power in combination with a high

computational efficiency and thereby practical relevance.

Furthermore, LBP turned out to be highly appropriate for

analysis which is explained in Sect. 2.

During experimentation, we found out that LBP is able

to generate quite good classification accuracies even in case

of small image data. Whereas newer method (e.g. methods

based on local pooling [10, 17]) require larger images, in case

of LBP, image sizes of approximately 64× 64 pixels (or even

less) are sufficient to reach excellent performances. However,

the available image material is often significantly larger. Un-

fortunately, simply increasing the image size mostly does not

improve the classification accuracies significantly. In some

cases even a loss of accuracy is observed.

Firstly, it is interesting to explore the reasons for this pe-

culiar effect. From logical point of view, an increase of data

would lead to a more stable probability distribution and in the

worst case the achieved accuracy should remain stable. Fur-

thermore, for practical reasons it is highly important to know

how to deal with classification methods if there are larger im-

ages available. One of the approaches investigated in this pa-

per has already been effectively applied to medical image data

[15] where accuracy improvements are achieved by a split and

fuse approach. However, the image data in that paper, which

shows high variations within one class and even within one

image, is quite different from the periodic and regular data,

investigated in this work.

In this paper, effects on the classification performance are

investigated by applying several different strategies in combi-

nation with varying training set sizes. This is done because

the training set size turned out to be a crucial factor. In or-

der to avoid any bias, a large image database is used which

consists of high quality images of mainly periodic textures.

This paper is structured as follows. In Sect. 2 the different

strategies to deal with large images are outlines. In Sect. 3

the experimental results are presented and discussed. Finally

Sect. 4 concludes this paper.

2. METHODS

2.1. Feature Extraction: Local Binary Patterns

To compute the traditional LBP feature vector [18], the gray

values of points surrounding a center pixel are extracted from

the image. In a next step, the center pixel value is subtracted

from the surrounding values and the sign function is applied

to each difference value. Finally the obtained bits are concate-

nated and interpreted as a binary number (see Fig. 1). This

first step is done for each point in the image. Then in a second
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Fig. 1. Schematized flow of LBP computation.

step the histogram over all obtained binary numbers is com-

puted. LBP derivatives are used in our experiments because

of the perfect separation in step one and step two which al-

lows two different splitting strategies as mentioned in the next

subsection. We deploy two different versions of LBP. First

we use a multi-resolution LBP version (MRLBP) [5], with

an eight sample neighborhood and a radius (distance between

center point and neighboring points) of one and two pixels.

Furthermore, Local Ternary Patterns (LTP) [19] are utilized.

Instead of binarization, this method generates a ternary code.

An absolute difference smaller than a threshold Θ between

the neighboring points leads to third (ternary) value, other-

wise again the sign function is utilized to determine between

zero and one. We utilize a setup with four neighbors (which

turned out to be enough in case of LTP), a radius of two pix-

els and a threshold of five. The final feature vector thereby

consists of 81 (34) bins.

2.2. Dealing with Large Images

In the following, we propose several strategies to deal with

images which are significantly larger than a required size for

LBP based feature extraction. Experiments showed that a size

of 64 × 64 pixels is enough for quite accurate classification

in case of our scenario. Even with smaller images good rates

can be obtained.

First of all, we detect two different methods to reduce the

number of samples which flow into one final histogram.

• Local splitting

Local splitting in this context means that binary pat-

terns in a certain local neighborhood are collected

into one histogram which corresponds to the feature

vector. This is done by first computing the binary

patterns per pixel (step 1) and afterwords collecting

the values in a rectangular neighborhood into a his-

togram (step 2). Separation is done by partitioning into

n ∈ {12, 22, 32, ..., 102} square sub-images (see Fig.

2, left). Thereby n feature vectors can theoretically be

generated from one single image.

• Periodic splitting

Another strategy is to collect samples without consider-

ing the local neighborhood. Therefore, we apply a peri-

odic partitioning of the binary patterns into histograms.

Periodic in this case means that according to a specified

Local Splitting Periodic Splitting

Fig. 2. Schema of the two splitting strategies (for n = 4).

Similarly colored patterns are collected into one histogram.

step size n ∈ {12, 22, 32, ..., 102}, each
√
n
th

pattern in

each direction is taken into one histogram (see Fig. 2,

right). Thereby once again n overlap-free histograms

(which correspond to feature vectors) can theoretically

be generated from one single image.

With local or periodic splitting we theoretically obtain a

larger number of images and feature vectors. For an extensive

analysis we investigate the achieved classification accuracies

with the following strategies considering the training set and

the evaluation set.

• Image splitting (IS)

By local or periodic splitting of training and evalua-

tion set images, the number of images is multiplied by

the factor n. Thereby the training set is significantly

enlarged which potentially has a positive effect. Fur-

thermore, we obtain n features and decisions for each

image. To get one final decision, all of these decisions

are fused by majority voting. This method has already

been successfully applied in case of a medical decision

support system [15].

• Image splitting - reduced training set (ISR)

To separate the positive effect of the enlarged training

set and the data size reduction, we furthermore investi-

gate the accuracies achieved with a reduced training set.

In this setting, the training set is artificially reduced to

have the same size as in case of traditional classification

without splitting.

• Evaluation set splitting (ES)

Another strategy is to split only the evaluation set im-

ages. Thereby the training set size stays unchanged

whereas the achieved decisions can be fused.

• Training set splitting (TS)

If only the training set images are split (as in case of

IS), we obtain an enlarged training set but only one final

decision.

• Training set splitting - reduced training set (TSR)

In case of this method, the training set of TS is artifi-

cially reduced as in case of the ISR method. Although

this approach is supposed to be less effective than TS,

it finally helps to separately consider the effect of the

enlarged training set and data size reduction.
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Fig. 3. Classification accuracies (vertical axis): LBP with local splitting.
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Fig. 4. Classification accuracies (vertical axis): LTP with local splitting.

3. EXPERIMENTS

3.1. Setup

The experiments are based on the Kylberg texture database

[20], consisting of 28 materials (each showing regular, peri-

odic patterns) with 160 unique texture patches per class, cap-

tured at a single scale. Each image has a size of 576 × 576

pixel. The unique textures are divided in separate sets each

containing 40 patches per class (i.e. the total number of im-

ages per set is 1120). We chose random subsets of one set for

training and random subsets from another set for evaluation.

This step is repeated 32 times to get stable average rates. We

consider varying training set sizes s ∈ {5, 10, 20, 40}.

The feature vectors (LBP histograms) are finally L2 nor-

malized in order to be able to compare histograms of images

of differing sizes. For final classification, we deploy the linear

support vector classifier [21] which has been widely used in

recent work on texture classification.

3.2. Results and Discussion

In Fig. 3 - 6, the resulting overall classification accuracies are

shown for different strategies. First, we focus on local split-

ting (Fig. 3 and 4). One subfigure corresponds to one certain

training set size reaching from 5 to 40. This value denotes

the number of images per class in the training set. The val-

ues on the horizontal axis denote the splitting factor (n). This

values reach from one (corresponds to traditional classifica-

tion) to 100 which indicates a split into 10 (horizontal) times

10 (vertical) square sub-images. Considering traditional clas-

sification, we notice that the obtained accuracies (horizontal

lines) can only be slightly improved by enlarging the training

set (compare sub-figures (a) - (d)). Splitting the evaluation set

images followed by decision level fusion (ES) obviously has

a negative impact on the classification performance. Indepen-

dently from the chosen setup, with increasing splitting factors,

the performance decreases more or less monotonically.

Considering the methods IS and TS we see that the com-

bination of a larger training set and the smaller images in each

case leads to distinct and quite similar improvements. This is

the case for IS which is based on splitting of all images (in

combination with decision level fusion) and similarly for TS

which is only based on split training set images. As the IS

method is more complex than the TS method which is only

based on split training set images, we will consequently focus

on the TS technique. TS has two (potentially beneficial) ef-

fects. On the one hand the training set size is increased and on

the other hand, the features are extracted from reduced image

data. To find out which of these effects dominates, we fur-

thermore look at the rates achieved with the reduced training

sets (TSR). Thereby a fair comparison with traditional clas-

sification can be done considering the training set sizes. If

considering a relatively small training set (see Fig. 3 (a)), we

notice that a reduced training set in case of TSR and ISR has
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Fig. 5. Classification accuracies (vertical axis): LBP with periodic splitting.
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Fig. 6. Classification accuracies (vertical axis): LTP with periodic splitting.

a majorly negative impact. Even the rates of traditional clas-

sification cannot be reached. Interestingly, this behavior is

reversed by adding images to the training set which is done

in case of the sub-figures (b), (c) and (d). Having a training

set that consists of a large number of items (e.g. 40 images

per class as in sub-figure (d)), then the decreased image size

leads to an accuracy improvement even if the training data

size stays unchanged compared to traditional classification.

This is highly astonishing as we supposed that an increased

size of the training set images in worst case has no beneficial

effect. Obviously this is still true but only when the train-

ing set is relatively small. However, as the TS method au-

tomatically leads to significantly increased training data, this

approach even profits is case of relatively small training sets.

To find out why the decreased image size potentially leads

to improved classification accuracies, we furthermore inves-

tigate the effects in case of periodic splitting as presented in

Fig. 5 and 6. Here we see that the generally achieved im-

provements for both features are by far less distinct in case of

large training data (see rates obtained with IS and TS). How-

ever, on opposite in combination with few training data (ISR

and TSR in Fig. 3 (a) and 4 (a)), slightly better results are

obtained.

We suppose that this behavior is due to the fact that the

training data generated by local splitting is more idealistic.

Due to the small neighborhoods that are considered, the fea-

ture vectors are extracted from images with a smaller degree

of (intra-image) variation. These idealistic training data obvi-

ously requires more samples to get decision boundaries which

are appropriate for an accurate generalization. Following the

periodic splitting strategy, the histograms are collected from

points all over the image and consequently are not collected

from variation reduced data.

4. CONCLUSION

We have investigated diverse strategies to deal with large im-

ages in case of a varying amount of available training data.

Some of these strategies have been invented only for analysis

whereas others actually can be used to improve the classifi-

cation accuracy. To put it into a nutshell, the reduction of

the image size for feature extraction can have a significantly

positive impact on the classification performance. This is es-

pecially true in case of having large training data. However,

having relatively few images for training with a large size,

splitting of these images should be considered in order to get

a significantly enlarged (more idealistic) training set. Inter-

estingly in case of small images the accuracy improvement

with increasing training sets vanishes less rapid than in case

of larger images. This is supposed to be due to lower degree

of intra-image variations.
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