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Abstract—Up to now, for computer aided celiac disease diag-
nosis reliable subimages showing discriminative features must be
manually extracted by the physicians, prior to the automatized
classification. This must be done to get idealistic data which
is free from image degradations, in order to enable a reliable
computer based classification. However, this interactive stage
during medical treatment requires significant time and attention
of the physical doctor. Furthermore, an inadequate selection (e.g.
of an inexperienced doctor) leads to a decreased classification
accuracy. In this work, a method is proposed to select reliable
subimages from the original endoscopic images by maximizing a
quality measure. Therefore, for the specific problem definition,
we introduce five measures which are supposed to be appropriate
for reflecting the adequateness of a subimage, with respect to a
specific degradation type. Moreover, as none of the single metrics
is able to reflect all prevalent degradations, we propose a weighted
combination of these metrics. Extensive experiments have been
done with five feature extraction techniques, that turned out
to be appropriate for celiac disease diagnosis. Finally the best
accuracies are achieved by the metric based on the weighted
combination.

Keywords—Decision support system, non-interactive, celiac dis-
ease, patch selection, quality measurement, feature extraction

I. INTRODUCTION

Celiac disease [1], which is commonly known as gluten
intolerance, is a disorder that affects the small intestine after
introduction of gluten containing food. The disease leads to an
inflammatory reaction in the mucosa of the small bowel caused
by a dysregulated immune response triggered by ingested
gluten proteins of certain cereals. During the course of celiac
disease, the mucosa loses its absorptive villi and hyperplasia
of the enteric crypts occurs, leading to a strongly diminished
ability to absorb nutrients. According to a large study [2], the
overall prevalence of the disease in the USA is 1:133. Figure
1 shows example images, captured during endoscopy.

Up to now, for computer aided celiac disease diagnosis
[3], [4], [5], [6], [7] reliable subimages (e.g. patches with
a size of 128 × 128 pixels) showing discriminative features
must be manually extracted by the physicians, prior to the
automatized classification. This has to be done to get idealistic
patches which are free from any image degradations, in order
to enable a reliable computer based classification. However,
this interactive step prevents the decision support system
from being totally automatized. Thereby, significant time and
attention of the physical doctor is required and furthermore
the classification performance inevitably drops in case of
inadequately selected patches [8].

The reason for the decreased classification accuracies in

case of randomly or weakly selected patches (or if using the
complete images) is the vulnerability of image classification
methods to various types of degradations, which are prevalent
in endoscopic images [8]. It could have been shown that
image degradations definitely affect the feature extraction and
consequently lead to a reduced classification accuracy. Such
degradations are blur, noise, a lack of contrast and reflections
caused by the light of the endoscope.

In other research areas such as computer aided colorectal
tumor classification [9] or in melanoma classification [10], im-
age patches are manually extracted in a similar way. However,
for these domains, the problem definition is different, as the
property to classify is only visible in a certain region which can
be effectively determined, whereas in celiac disease diagnosis
this property is theoretically visible in large areas, but it is
hard to determine reliable regions. As there exists no ground-
truth of “good regions” but only a ground truth for the final
decision, the adequateness of a patch selection method can
only be assessed with respect to a classification method.

Although the current scenario based on idealistic patches
might be beneficial for developing feature extraction tech-
niques and classifiers, the manual patch selection stage pre-
vents the decision support system from being totally automa-
tized. Therefore, in this work we investigate if it is possible
to select patches for classification in a fully automatized way.
To do this, we propose a method to estimate the quality of
the image patches which are potentially used in computer
based classification. As the quality measure has to deal with
many different degradation types, our final metric consists of a
weighted sum of simple measures. Each of them is responsible
to measure one single degradation type. In the experiments, we
evaluate the performance of the proposed combined method
as well as the single measures, in order to analyze the impact
of the different degradations on the final overall classification
accuracy.

The training set in each scenario investigated in this work
consists of manually extracted idealistic patches. It should be
mentioned that this manual stage can be done beforehand by
experts and does not require any interaction during medical
treatment. The ground-truth is available for each original image
and can be directly taken for all patches extracted from the
respective image. The principal aim of this paper is to give
insight into the effectiveness of certain measures and not to
achieve the best classification rates.

The paper is organized as follows: In Section II, image
degradations being prevalent in endoscopic images and image
quality measures corresponding to these degradations are in-
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Fig. 1: Example images with varying degradations such as small reflections (1a, center) and even large overexposed sploches
(1b, top left), dark regions combined with noise (1b, right and 1d, bottom right) and blurred regions (1c, bottom left and 1d,
left).

troduced. In Section III, the experimental results are analyzed
and discussed. Finally, Section IV concludes this paper.

II. PATCH SELECTION

As can be seen in Fig. 1, endoscopic images are often
affected by significant degradations. In the following we focus
on identifying all degradations, prevalent in these images.

• Low illumination combined with low contrast and
noise:
Due to the punctual source of light (caused by a light
mounted on the tip of the endoscope), the camera’s
field of view cannot be illuminated constantly. This
is especially the case, if the mucosa is not captured
frontally, but in an acute angle (see Fig. 1d, bottom
right). Image regions with a low illumination often
correspond with a low contrast and with a significantly
increased noise level, which is due to the physics of
the camera sensor.

• Blurred regions:
Due to the fixed focus property of the camera, an
inappropriate (mostly to small) distance between the
mucosa and the lens causes blurred image regions (see
Fig. 1b, left and Fig. 1d, top left). Additionally, blur
can be introduced by camera motion.

• Reflections and too intensive illuminations:
Also caused by the punctual source of light, extremely
bright splotches (see Fig. 1a, center) or even large
overexposed regions (see Fig. 1a, center and Fig. 1b,
top left) can be observed in some images.

In [8], the authors showed that the degradations mentioned
so far reduce the discriminative content in images, compromise
the feature extraction stage and finally lead to reduced clas-
sification accuracies. The aim of the image quality methods,
introduced in the following is to identify patches with high
discriminative content. Therefore, we define measures q, which
have to be maximized, when selecting the coordinates for patch
selection in the original image.

• The first measure addresses the problem of a too low
illumination. As such a weak illumination generally
corresponds to images with a low average gray value,
we propose a quality measure being based on the mean
of the pixel intensities

qA(P ) =
1

|Z|
·
∑

z∈Z

P (z) , (1)

where Z comprises the coordinates of the image patch
P .

• The next measure is utilized to detect image regions
lacking from any significant gray value differences.
Such image patches can be identified by measuring
the contrast which is defined by

qC(P ) =
∑

i,j∈K

|i− j| · p(i, j) , (2)

where K comprises all gray values in P and p(i, j)
stands for the probability of these two gray values to
be present in a certain image neighborhood in P . In
order to focus on real contrast rather than on noise,
for this neighborhood we use a quite large offset of
four pixels in vertical and in horizontal direction and
average these two values.

• The next measure is based on a blur metric b [11]. For
computing this metric, first in one direction, the edges
(e ∈ E) are identified by extracting all local minima
and maxima. Finally the ratio between the lengths (l)
and the pixel differences (δ) of the edges is computed,
which indicates the blur level. Formally written, blur
is defined by

b =
1

|E|

∑

e∈E

l(e)

δ(e)
. (3)

As all of our images suffer from more or less signifi-
cant sensor noise, the patches are previously denoised
using a Gaussian filter G2 with σ = 2. Finally for blur
measurement, we use

qB(P ) = −b(P ∗G2) , (4)

which has a negative sign as we strive for non-blurred
images.

• To detect noisy image patches, we sum up the dif-
ferences between the original image and a denoised
version of the same image

qN (P ) =
∑

z∈Z

|P −G1 ∗ P | . (5)

The denoised image is achieved by filtering the orig-
inal image with a Gaussian G1 with σ = 1.

• Finally, we need a measure to address the problem of
reflections and extremely high illuminations. These



regions can be detected quite easily by considering
the maximum gray values.

qI(P ) =

{

1, if max(P ) < T

0, otherwise .
(6)

T is set to 245 (where zero refers to black and 255
refers to white), which turned out to be appropriate
for separating extremely bright regions (by manual
inspection of a set of training images).

As each of the quality measures copes with single image
degradations, but none of the measures is able to cope with
all of them, we furthermore fuse them to achieve the image
patches with highest discriminative powers. Therefore, we
normalize (n) the output of each measure (to be within the
interval [0, 1]) and sum them up:

qF =
∑

i

wi · n(qi) . (7)

The parameters wi are evaluated by using a separate database.

In the experiments, these measures are compared with the
manual patch selection (indicated by qM ) on the one hand, and
the random measure qR on the other hand.

III. EXPERIMENTS

A. Experimental Setup

The image test set used contains images of the duodenal
bulb and the pars descendens taken during duodenoscopies at
the St. Anna Children’s hospital using pediatric gastroscopes
(with a resolution of 768 × 576 (Olympus GIF Q165) and
528× 522 pixels (GIF N180), respectively).

The patch selection stage extracts sub-images with a fixed
size of 128 × 128 pixels, in order to be able to compare the
results with the manual extraction, which is also based on
equally sized patches and is done by a highly experienced
endoscopist. For automatized patch selection, the measures
q are applied to 16 potential patch candidates per image.
The patch with the highest measure is finally selected for
feature extraction and classification. In case of a tie, one patch
is randomly selected. The weights wi are evaluated during
exhaustive search, based on a separate dataset. The search
space for each wi is between 0.0 and 1.0 with a step-size
of 0.2. In our experiments, for feature extraction the patches
are converted to gray value images.

To generate the ground-truth, the condition of the mucosal
areas covered by the images was determined by histological
examination of biopsies from the corresponding regions. Sever-
ity of villous atrophy was classified according to the modified
Marsh classification as proposed in [1]. Although it is possible
to distinguish between the several stages of the disease, we
only aim in distinguishing between images of patients with
(Marsh-3) and without the disease (Marsh-0), because this 2-
classes case is more relevant in practice. Another incentive for
preferring the 2-classes case is that the distinction between
the different stages of the disease is considerably subjective
even as far as the histological examination is concerned [12].
Thereby, the ground-truth and furthermore the evaluation in a
multi-classes case would be less reliable.

Our experiment is based on one database for parameter
optimization consisting of an idealistic patch set and an non-
idealistic original image set as well as one database for

evaluation consisting of a similarly sized patch and original
image set. The patch datasets consist of 300 (151 Marsh-0,
149 Marsh-3) and 312 (155 Marsh-0, 157 Marsh-3) images,
respectively. Both original datasets comprise 2752 patch can-
didates (1376 for each class), automatically extracted from 172
images (i.e. each original image has 16 patch candidates).

For classification, the k-nearest neighbor classifier is used.
We utilize this simple classifier in order to focus on the patch
selection stage. The rates achieved with k values reaching from
one to 30 are averaged, to get more stable and significant
results rather than to get the highest possible rates.

B. Feature Extractors

For the experimental analysis, we deploy the following
feature extraction techniques, which proved to the adequate
for celiac disease classification in previous work [13], [5]:

• Local Binary Patterns [14] (LBP):
The commonly used Local Binary Patterns describe a
texture by computing the joint distribution of binarized
intensity differences within a certain neighborhood.
This widely used feature extraction technique is used
with eight neighbors and a radius (i.e. the distance to
the neighbors) of two pixels.

• Extended Local Binary Patterns [15] (ELBP):
ELBP is an edge based derivative of Local Binary
Patterns. Instead of capturing intensity differences (as
done by LBP), this feature captures differences of
the edge magnitude. As LBP it is used with eight
neighbors and a radius of two pixels.

• Fourier Power Spectra Rings [16] (FPSR):
To get this descriptor, first the Fourier power spectra
of the image patches are computed, in a way that the
low frequencies are in the image center. Afterwards,
a ring with a fixed inner and outer radius is extracted
and the median of the values in this ring are calculated.
For our experiments, we use an inner radius of seven
and an outer radius of eight pixels, which turned out
to be suitable in previous work [16]. Although this
feature has a dimensionality of one, it turned out to
be suitable [16] for celiac disease diagnosis.

• Shape Curvature Histogram [17] (SCH):
SCH is a shape feature, especially developed for celiac
disease diagnosis. After detection of significant re-
gions (using the Canny-edge detector [18]), the shape
curvatures are computed by measuring the differences
of the gradient orientations in a 3 × 3 neighborhood.
Finally a histogram collects the occurrences of the
contour curvature values in the significant regions.
As in the original work, we consider a histogram bin
count of eight that turned out to be optimal for celiac
disease diagnosis.

• Multi-Fractal Spectrum [19] (MFS):
The local fractal dimension is computed for each pixel
using three different types of measures for computing
the local density. The final feature vector is built by
concatenation of these fractal dimensions. Previous
work [6] showed that this declared viewpoint invariant
feature is suitable for celiac disease diagnosisis.



Sensitivity

Specificity
Accuracy

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

q
R

q
A

q
B

q
I

q
N

q
C

q
F

q
M

(a) LBP

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

q
R

q
A

q
B

q
I

q
N

q
C

q
F

q
M

(b) ELBP

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

q
R

q
A

q
B

q
I

q
N

q
C

q
F

q
M

(c) FPSR

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

q
R

q
A

q
B

q
I

q
N

q
C

q
F

q
M

(d) SCH

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

q
R

q
A

q
B

q
I

q
N

q
C

q
F

q
M

(e) MFS

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

q
R

q
A

q
B

q
I

q
N

q
C

q
F

q
M

(f) Mean over all features

Fig. 2: Accuracies, sensitivities and specificities achieved with the specific quality measures separately for each feature.
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Fig. 3: Distribution of weights evaluated for the fused quality measure qF . For each measure qi, wi indicates the weighting
(relative to the sum of all weights).

C. Results

In Fig. 2, the performances of the patch quality measures
are visualized separately for each feature. The wide bars
indicate the classification accuracies and the thin bars indicate
the sensitivities (left) and the specificities (right).

First, we focus on the accuracies. As anticipated, we
notice that the manual patch selection qM corresponds to
the highest accuracies. However, especially the approach qF ,
combining all quality measures is able to outperform a random
patch selection by far in case of each feature. Moreover, the
fusion in each case corresponds to the highest (or equal) rates
compared to all of the single quality measures (qA, qB , qI ,
qN and qC). As far as the different features are concerned,
the highest accuracies are achieved with the shape based
SCH in case of manual patch selection and the edge based

ELBP in case of automatized (qF ) patch selection. The highest
accuracies considering single quality metrics are achieved with
qA, which measures the average illumination, followed by the
blur measure qB .

If focusing on the balance between sensitivity and speci-
ficity, quite interesting aspects can be detected. Considering the
random patch selection, in case of all features a high sensitivity
faces a very low specificity. This behavior is due to the fact that
a low quality patch, especially if suffering from blur, usually
has a higher similarity to an image showing diseased mucosa
than to a healthy mucosa which shows the villi structure. Even
with the manual patch selection, a similar but less distinct
behavior can be observed. If focusing on the automatic quality
measures, we notice that in case of qB and especially in case
of qC this behavior is balanced or even reversed. In order to



get at the root of these things, the properties blur and contrast
with respect to mucosal images have to be investigated. Images
with a high blur level (i.e. the blur measure is low) and a low
contrast level show a higher degree of similarity to diseased
patches than to healthy patches. Therefore, if forcing a high
measure patches with a higher similarity to healthy patches are
preferred. In opposite, forcing a large noise measure (i.e. the
noise level should be small), patches with a high similarity
to diseased patches are preferred. If considering the fused
measure qF , it can be observed that a balance similar to the
manual approach is achieved.

In the following we focus on this metric, to estimate the
level of participation of the single measures in the fused
measure. In Fig. 3, the distribution of the weights of the single
quality measures are shown for the specific features. First of
all, we see that except from qI which penalizes reflections
and seems to be less important, the measures are quite good
balanced and none of the measures is predominant. A high
contrast (qA), a high average illumination (qA) and a low blur
level (qB) are similar important for all features. Furthermore,
we notice that especially a low noise level plays an important
role in case of LBP, ELBP and SCH, which operate in a small
neighborhood and are based on rather high image frequencies
compared to the other two features. In opposite the Fourier
based FPSR which extracts quite low frequencies seems to be
less dependent on a low noise level.

IV. CONCLUSION

We have investigated five quality measures and a weighted
combination of them. Finally we have found out that especially
the combination corresponds to significantly improved accu-
racies, compared to an inadequate (random) patch selection.
The average improvement is more than seven per cent. None
of the single measures is able to outperform the combined
approach in case of any feature. Consequently, we conclude
that a sensible quality measure must incorporate at least some
of the single measures. The analysis of weight distributions
showed that the importance of the certain measures depends
on the respective feature extraction method. Compared to the
manual patch selection, the achieved results are on average
less than five per cent below. Although the results of the
manual selection cannot be achieved, it have to be mentioned
that its accuracies would decrease in case of an inappropriate
manual selection (e.g. by inexperienced or inattentive medical
doctors). By selecting more appropriate patches per image or
even some images per patient combined with a decision-level
or score-level fusion, we assume that further improvements
can be achieved. However, for such an investigation, a larger
database consisting of a significant number of images for each
patient would be required.
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