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ABSTRACT

Image degradations such as noise, blur and scale-variations

are known to significantly affect the classification process

of textured images. However, due to difficult visual ac-

cording conditions, such degradation are often prevalent in

digital real-world images. We show that these degradations

not necessarily strongly affect the discriminative powers of

features, in a scenario where similarly degraded images are

classified. Contrarily, if the training and the evaluation set

contain differently degraded images, the accuracies are de-

creasing extremely. In this paper, we exploit this knowledge

and propose an approach which divides one large database

into several smaller ones, each containing similarly degraded

images. In order to get sensible database divisions, we use

criteria adapted to the respective degradation. In experiments

with several degradations, classifiers and feature extraction

methods, we show that our method continuously and signifi-

cantly enhances the classification accuracies.

Index Terms— texture, classification, endoscopy

1. INTRODUCTION

For decades, texture classification [1, 2] has been a fundamen-

tal challenge in image processing. On the one hand, feature

extraction methods are required to capture image properties,

which are significant for texture discrimination. On the other

hand, for practical usage it is highly necessary to deal with

image degradations which are often prevalent in real world

images. In feature extraction, often a balance act between a

high discriminative power (to accurately classify in case of

idealistic images) and a high invariance to certain degrada-

tions has to be performed.

One area of application, where degraded images are

prevalent is endoscopy (e.g. celiac disease diagnosis [3],

colonic lesion classification [4], small bowel tumor detection

[5] and gastric cancer detection [6]). Due to the small sensors

and punctual lightnings, noise and low contrast often cannot

be circumvented. Moreover as the distance to the surface can-

not be precisely adjusted, differences in scale as well as blur

(if the surface is out of focus) are potentially predominant.

In this work, first we investigate a set of features with ref-

erence to their robustness to three types of image degradations

(blur, noise and scale variations). We focus on two robust-

ness types. If the classification accuracy does not strongly

decrease if all images in a database (training and evaluation

set) are similarly degraded, a feature is denoted to be “rel-

atively robust” with reference to a certain degradation. The

notation “absolute robustness” is used, if the accuracy can be

preserved even if the training and the evaluation set contain

degradations with different extend (but the same type).

Based on the knowledge that absolute robustness gener-

ally is harder to achieve than relative robustness, we conse-

quently propose an adaptive classification framework. By di-

viding (partitioning) the dataset into smaller, but similarly de-

graded ones, the necessity of absolute robust features can be

circumvented.

In [7], a scale adaptive classification approach has been

introduced. However, in this work only degradations due to

scale-variations are investigated. Furthermore, the implemen-

tation is computationally expensive, as the classifier must be

trained separately for each image in the evaluation set. This

is why only classifiers with highly lean learning stages (as the

k-nearest neighbor classifier) can be efficiently utilized. The

framework introduced in this paper overcomes that difficulty.

Using other classifiers, we anticipate an even higher advan-

tage of the adaptive classification, as the k-nearest neighbor

classifier has proved to be suitable to classify datasets contain-

ing variable degradations. In [7] this effect which is referred

to as “implicit scale estimation“ is investigated.

This paper is structured as follows. In Sect. 2, the pro-

posed degradation adaptive classification approach is intro-

duced. In Sect. 3, the relative and absolute robustness of var-

ious features are investigated and the classification improve-

ments achieved with the new approach are presented and dis-

cussed. Section 4 finally concludes this paper.

2. DEGRADATION ADAPTIVE CLASSIFICATION

The basic idea of the degradation adaptive classification is

based on the knowledge that absolute robustness generally is

harder to achieve than relative robustness. Therefore, we di-

vide our datasets into smaller datasets with similar properties.

First for each image I in the training set T , a degradation

measure (see Sect. 2.1) D, which measures the level of the

respective degradation, is computed and normalized by

DN (I) =
D(I)−Dmin

Dmax −Dmin + ǫ
, (1)



to be within the interval [0, 1), where Dmin and Dmax are

the lowest and the highest measure in the training set and ǫ is

a small positive constant (we use ǫ = 10−5). After that, the

original training set T is divided into the subsets Ti

Ti = {I ∈ T : d ≤ DN (I) · C − i < d+ 1}. (2)

where i ∈ {0, 1, ..., C − 1} and C defines the cardinality of

the set of generated subsets. A large C leads to smaller sub-

sets and consequently higher similarity within one set. If d,

which defines the overlap, equals zero, the original dataset is

partitioned. Especially in case of a large C, it is potentially

sensible to create overlapping subsets (d > 0), to ensure that

the subsets for training do not get too small.

Next, the evaluation set E is partitioned into several sub-

sets Ei as

Ei = {I ∈ E : 0 ≤ D′

N
(I) · C − i < 1}, (3)

where

D′

N
(I) = max(min(DN (I), 1− ǫ), 0), (4)

in order to ensure that each image in the evaluation set be-

longs to exactly one training set. Finally for each i, the eval-

uation set Ei is classified, by the discriminant generated by

Ti.

In [7], for each element in the evaluation set, a separate

training subset is constructed. As a consequence, only clas-

sifiers with highly lean learning stages (like the k-nearest

neighbor classifier) can be efficiently utilized. The current

approach allows the usage of arbitrary classifiers. The com-

putational costs can potentially even be improved compared

to the straight-forward classification, as the training of a set

of classifiers based on smaller datasets often is less costly

than the training based on one large dataset.

2.1. Degradation Measurement

In order to divide a dataset into several smaller ones with

higher similarities, a metric D to capture this similarity is re-

quired. In this work, we focus on the following three types of

image degradations (and corresponding metrics):

2.1.1. Noise Metric (Dn)

The noisy images can be effectively separated from unnoisy

ones by computing the total pixelwise sum of the absolute

difference between an image and the Gaussian filtered (with

σ = 1 and a kernel size of 3 pixels) version of the same image.

2.1.2. Blur Metric (Db)

To measure blur, the metric introduced in [8] is deployed. For

computing this measure, first in the horizontal direction, the

edges are identified by extracting all local minima and max-

ima for each row. Finally the ratio between the overall lengths

and the magnitudes of the edges indicates the blur level.

2.1.3. Scale Metric (Ds)

For scale estimation, the scale-space based method introduced

in [7], is utilized. To estimate the global scale of an im-

age, first a scale space is constructed by convolving an im-

age with Laplacian-of-Gaussian filters in varying scales. As

proposed in [7], for the Lapacian-of-Gaussians, the scales

σ = ĉ
√
2
k

, k ∈ {−4,−3.75, ..., 7.75, 8} are chosen (with

ĉ = 2.1214). The pixelwise scales are achieved by using the

index of the maximum responses. Finally, the global scale

for an image is estimated by computing a histogram of this

scale value over all pixels, followed by a Gauss-fitting. The

final scale measure is given by the mean of the fitted Gaussian

kernel.

3. EXPERIMENTS

3.1. Setup

The experiments are based on the Kylberg texture database

[9], consisting of 28 materials with 160 unique texture patches

per class, captured at a single scale. The unique textures are

divided in 4 separate sets (labeled with A,B,C and D) each

containing 40 patches per class (i.e. the total number of im-

ages per set is 1120). The image degradations are achieved

by simulating blur, noise and scale-variations. In the experi-

ments, these three degradation modes are referred to as mode

B (blur), mode N (noise) and mode S (scale-variations). For

each degradation, 9 levels are introduced, leading from level

1 (original quality) to level 9 (highest degradations).

Scale-variations are achieved by downscaling the orig-

inal patches (576 × 576 pixels) with factors within the set

{20.00, 20.25, ..., 21.75, 22.00}. In order to have equal sized

patches for all experiments, finally all patches are cropped

to a size of 128 × 128 pixels. Noisy images are com-

puted by adding Gaussian white noise with σ being within

{0, 4, 8, 12, 16, 20, 24, 28, 32}. The blurred images are sim-

ulated by applying a Gaussian filter with σ being within

{0.0, 0.5, ..., 3.5, 4.0}.

For final classification, we deploy three different classi-

fiers consisting of the nearest neighbor classifier (NN), the

k-nearest neighbor classifier (KNN) and a linear (Bayes nor-

mal) classifier (LIN) [10]. The k value of the KNN classifier is

chosen to be one forth of the dataset size, divided by the class

count. We chose these 3 classifiers because of their traceabil-

ity as well as their dissimilarities. On the one hand, in case

of the linear classifier, the decision boundary is restricted to a

hyperplane. On the other hand, the nearest neighbor classifier

has highly complex decision boundaries given by the Voronoi

diagram. The KNN classifier lies inbetween the others.

In order to decide whether a classification method is sig-

nificantly more accurate than another one, we deploy McNe-

mar’s test [11] (with α = 0.01).

For feature extraction, 4 significantly different well

known techniques are deployed:



• Local Binary Patterns [12] (LBP):

LBP describes a texture by utilizing the joint distribu-

tion of pixel intensity differences represented by binary

patterns. We deploy the uniform version (capturing

only patterns with at most 2 bitwise transitions) using

the standard 8-neighborhood with a radius of 1 pixel.

• Multi-Fractal Spectrum [13] (FRA):

The local fractal dimension is computed for each pixel

using three different types of measures for computing

the local density. The feature vector is built by concate-

nation of these fractal dimensions.

• Histogram of Gradients [14] (HOG):

The distribution of gradient orientations is used to de-

scribe a texture. This feature is used with the standard

bin count of 9, which corresponds to an angular resolu-

tion of 20◦.

• Edge Co-occurrence Matrix [15] (ECM):

After applying eight differently orientated directional

filters, the orientation is determined for each pixel, fol-

lowed by masking out pixels with a gradient magnitude

below some threshold t. Finally, the ECM is achieved

by computing the gray-level co-occurrence matrix of

these data and a specified displacement v. For the ex-

periments, t is set to 25% of the maximum response

and the displacement vector v = (1, 1) is used.

In a first experiment we investigate the relative as well as

the absolute robustness of the investigated features (in case of

the nearest neighbor classifier) with reference to one specific

degradation. Therefore one of the four Kylberg datasets (A)

is used for training and another one (set B) is used for evalua-

tion. All combinations with degradations 1 to 9 in the training

set and in the evaluation set are examined.

The main experiment is based on training and evaluation

sets, each containing a distinct degradation but all levels of

this degradation. Dataset A (which contains now 1120 x 9

images), is used for training and dataset B (with the same

size) is used for evaluation. The same is done for datasets

C and D. In order to optimize the parameters of the adaptive

classification, the rates for all combinations of C and d must

be processed. The parameter space for our experiments is

fixed to P :

P = {(C, d) | C ∈ {1 + 4 · i | i ∈ N, i ≤ 8} ∧
d ∈ {0.02 · i | i ∈ N0, i ≤ 5}. (5)

Finally, the classification accuracies for both experiments

are achieved by used the indexes of the maxima over all ac-

curacies (varying C and d) of the opposite experiment. Us-

ing the accuracies with the gathered indexes, an overfitting is

avoided. For the analyses, the accuracies of these two experi-

ments are averaged and considered as one measure.
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Fig. 1: Achieved classification accuracies with varying levels

of degradation in training (horizontal axis) and evaluation set

(vertical axis).
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Fig. 2: Comparison of classification accuracies with tradi-

tional (left bars) and adaptive classification (right bars), in

case of combining all (9) degradation classes.

3.2. Results Robustness-Analysis

In Fig. 1, the robustness of the investigated features with

respect to the three degradations are visualized. Obviously,

if the training and the evaluation dataset continuously suffer

from similar degradations (referred to as the relative robust-

ness), the accuracy only moderately decreases in most com-

binations of features and modes (see diagonal axis in the sub-

plots). An extraordinarily high relative robustness is espe-

cially achieved with HOG and Mode B. If the level of degra-

dation in training and evaluation set differs, measuring the

absolute robustness, the loss in accuracy is by far more sig-

nificant in case of all features. A very distinct behavior is

shown by FRA and mode B. We notice that in case of mode B,

features generally show high relative robustness, but low ab-

solute robustness. Obviously blurred images do not strongly

affect the accuracy in case of a high blur-similarity, however,

a lower similarity leads to significant decreases.

3.3. Results Adaptive Classification

Knowing that a relative robustness can be achieved much

more easily than absolute one, we now investigate the effect

of the degradation adaptive classification approach proposed

in this paper. In Fig. 2, the accuracy improvements for

specific features, modes and classifiers are shown if all 9

degradation levels are included in the datasets. Whereas the

left bars show the accuracies achieved with traditional clas-
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Fig. 3: Classification rates with varying numbers of degrada-

tion levels on the horizontal axis. To increase visibility, only

the two extreme case classifiers (LIN and NN) are depicted.

sification, the right bars indicate the rates obtained with the

proposed method. If the right bar is green-colored, a signif-

icant improvement is observed. We notice that in case of all

combinations, improvements are achieved. Whereas these

improvements are either small in case of the NN classifier,

especially with the LIN classifier high improvements are rec-

ognized. Apart from three results with the NN classifier (see

white-colored bars), all improvements are significant.

For a more detailed view, in Fig. 3, the impact of varying

numbers of degradation levels is shown. Whereas the left-

most values indicate the accuracies achieved with idealistic

images (without the simulated degradations), the rightmost

values indicate the rates as presented in Fig 2. We notice that

the adaptive classification not only profits in case of a high

number of degradation levels. Even without any degradation

in the images, the proposed method often delivers improved

classification accuracies. Another interesting aspect is, that

the LIN’s accuracy mostly (in 11 out of 12 experiments) is

below the NN’s rate in case of the traditional classification

and the strongest degradations. Surprisingly, in case of the

new adaptive method in 11 out of 12 cases the LIN classifier

outperforms the NN classifier.

Fig. 4 summarizes the results to outline major promi-

nences. In Fig. 4a, we see that the LIN classifier corresponds

to the highest average improvements followed by the KNN

and the NN classifier. This is especially true in case of a large

number of degradation levels. In [7], the authors showed, that

the nearest neighbor classifier is implicitly able to compen-

sate scale variations if prevalent in the training and the evalu-

ation set. Due to the evaluated linear decision boundary, the

LIN classifier obviously is not able to effectively compensate

these variations. Consequently it profits more significantly

from the proposed adaptive classification. The KNN classifier

is between the others. In Fig. 4b, the rates are summarized,

to investigate the three different modes. In case of modes

B and N, the improvement is increasing with a larger num-

ber of degradation levels. Interestingly, mode S even starts

with a high improvement in case of the undegraded datasets.

Although this seems to be illogical, there is an explanation

for this behavior. The adaptive classification method divides
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modes are averaged, to
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classifiers are averaged,

to investigate the be-

havior of the accuracy

with respect to the

modes and the number

of degradation classes.
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Fig. 4: Summarization of improvements with adaptive classi-

fication by averaging the classification accuracies.

the images to similar sets. Even though the images do not

suffer from simulated degradation, due to the differing intrin-

sic scales of textures, scale variations are prevalent. Thereby

within one database, occurrences of images with a high in-

trinsic scale difference are reduced and consequently wrong

decisions due to inhomogeneous scales can be circumvented.

In case of mode B and mode N a similar but less distinct be-

havior is observed (if considering the leftmost bars).

In Fig. 4c, the rates are summarized, to investigate the im-

pact of the number of degradation levels. As anticipated, the

benefit improves steadily with increasing levels. Once again,

we notice that the improvement (on average) does not vanish

if considering images without any simulated degradations.

In order to ensure that the accuracy improvements are not

only caused by the decreased sizes of the training sets, we fi-

nally evaluated the effect of randomly reduced training sets.

However, in doing so we did not achieve any significant im-

provements. Quite the contrary, (as expected) if the sets are

heavily reduced, the accuracies are continuously decreasing.

4. CONCLUSION

We have shown, that relative robustness to degradations

is rather achieved than an absolute robustness. We have

proposed a degradation adaptive classification framework

to exploit the achieved knowledge in scenarios with vari-

ably degraded images in the datasets. Experimentation has

shown that the classification accuracy can be statistically

significantly improved by our method in case of all evalu-

ated features and all classifiers and all simulated types of

degradations. Surprisingly, enhanced accuracies are not only

achieved in case of large degradation differences. Even

without any simulated degradation, the classification rate

on average can be improved. We especially notice, that the

linear classifier stronger benefits from this new technique

compared to the highly non-linear nearest neighbor classifier.

The impact of combined degradations as well as real world

degradations will be extensively investigated in future work.
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[4] M. Häfner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vécsei,

and F. Wrba, “Pit pattern classification using multichan-

nel features and multiclassification,” in Handbook of Re-

search on Advanced Techniques in Diagnostic Imaging

and Biomedical Applications, pp. 335–350. 2009.

[5] Daniel J. C. Barbosa, Jaime Ramos, and Carlos S.

Lima, “Detection of small bowel tumors in capsule en-

doscopy frames using texture analysis based on the dis-

crete wavelet transform,” in Proceedings of the 30th An-

nual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBS’08), 2008, pp.

3012–3015.

[6] A. Sousa, M. Dinis-Ribeiro, M. Areia, and M. Coimbra,

“Identifying cancer regions in vital-stained magnifica-

tion endoscopy images using adapted color histograms,”

in Proceedings of the 16th Internatinal Conference on

Image Processing (ICIP’09), 2009, pp. 681–684.

[7] Michael Gadermayr, Sebastian Hegenbart, and Andreas

Uhl, “Scale-adaptive texture classification,” in Pro-

ceedings of 22nd International Conference on Pattern

Recognition (ICPR’14), Aug. 2014, accepted.

[8] Pina Marziliano, Frederic Dufaux, Stefan Winkler,

Touradj Ebrahimi, and Genimedia Sa, “A no-reference

perceptual blur metric,” in Proceedings of the IEEE In-

ternational Conference on Image Processing (ICIP’02),

2002, pp. 57–60.

[9] Gustaf Kylberg, “The kylberg texture dataset v. 1.0,”

External report (Blue series) 35, Centre for Image Anal-

ysis, Swedish University of Agricultural Sciences and

Uppsala University, Uppsala, Sweden, September 2011.

[10] R.P.W. Duin, P. Juszczak, P. Paclı́k, E. Pekalska,

D. de Ridder, D.M.J. Tax, and S. Verzakov, “PR-

Tools4.1, a matlab toolbox for pattern recognition,”

2007, urlhttp://prtools.org.

[11] Quinn McNemar, “Note on the sampling error of the dif-

ference between correlated proportions of percentages,”

Psychometrika, vol. 12, no. 2, pp. 153–157, June 1947.
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