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Abstract. In this work we introduce a curvature based shape feature
extraction technique. To construct the proposed descriptor, first an in-
put color channel is subject to edge detection and gradient computations.
Then, based on the gradient map and edge map, the local curvature of
the contour is computed for each pixel as the angular difference between
the maximum and minimum gradient angle within a certain neighbor-
hood. Experiments show, that the feature is competitive as far as the
classification rate is concerned. Despite its discriminative power, a fur-
ther positive aspect is the compactness of the feature vector.

1 Introduction

Celiac disease is a complex autoimmune disorder in genetically predisposed in-
dividuals of all age groups after introduction of gluten containing food. The real
prevalence of the disease has not been fully clarified yet. This is due to the fact
that most patients with celiac disease suffer from no or atypical symptoms and
only a minority develops the classical form of the disease. Since several years,
prevalence data have been continuously adjusted upwards. Fasano et al. state
that more than 2 million people in the United States, this is about one in 133,
have the disease [1]. Endoscopy with biopsy is currently considered the gold
standard for the diagnosis of celiac disease. Due to the technological advances in
endoscopy throughout the past years, modern endoscopes also allow to capture
images, which facilitates automated analysis and diagnosis. Thus, automated
classification as a support tool is an emerging option for endoscopic diagnosis
and treatments [2].

In the past various different approaches for an automated classification of
celiac disease images have been proposed. The majority of these approaches
investigated different texture features for the classification. Features utilized
throughout these works include for example simple statistical features [3], sta-
tistical features on color histograms [4] and statistical features extracted from
Fourier magnitudes [5]. In the studies presented in [6] and [7] an extensive com-
parison between various different types of features (e.g. wavelet-based, Fourier-
based, Random fields, and Local Binary Pattern variants) has been conducted.
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In [7] two shape-based approaches have been evaluated [8, 9], which – to the
best of our knowledge – are the only two shape-based approaches ever evaluated
for an automated diagnosis of celiac disease. Actually, there exists different def-
initions of shape-based features. We define a feature to be shape-based, if it is
based on previously detected edges or one or more segmented objects.

Compared to the results obtained with the texture features the shape-based
method proposed in [8] yielded rather poor results only. The main cause for this
is the fact that the feature used in this work has been specifically tailored to
another problem domain (i.e. measures the pit density on colonic polyps for a
classification). The second shape-based method (from [9]), is based on feature
subset selection. The pool of possible features for subset selection included vari-
ous different shape features (e.g. perimeter or area of closed regions found). This
method performed rather well in terms of the classification rates achieved.

In this work we present a novel shape-based feature, called Shape Curvature
Histogram (SCH). This feature describes the curvature of shapes found within
an image in the form of a compact histogram. In contrast to many other shape-
based features the SCH feature does not require shapes with closed boundaries
which could be difficult or even impossible to obtain if single objects cannot be
identified. Thereby our approach is a very general one and can potentially be
applied to other problem domains as well.

The remaining part of this paper is organized as follows: In Sect. 2, our new
feature extraction approach is explained. In Sect. 3, experimental results imply
a high discriminative power with a compact feature representation. Section 4
concludes this paper.

2 Shape Curvature Histogram (SCH)

The computation of the SCH feature can be divided into the following steps:
edge map generation, orientation computation, curvature computation, and the
creation of the final feature vector.

In the explanations below I denotes the image the SCH feature should be
computed for. If I is a grayscale image the computation steps are carried out
only once, resulting in a single histogram. For RGB images the steps are carried
out for each color channel separately, resulting in one histogram for each color
channel. These histograms are then concatenated in order to obtain the final
feature vector.

In the following we explain the computation steps in more detail. For details
on the implementation, we refer to the provided MATLAB reference implemen-
tation. 3 The average execution runtime for a 128× 128 pixel gray value image
on an Intel i5 (3.1 GHz) architecture is 0.012 seconds.

3 The MATLAB reference implementation can be downloaded from
http://www.wavelab.at/sources/Gadermayr12f.
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2.1 Edge Map Generation

To be able to compute the curvature information the first step is the generation
of an edge map. For this purpose we employ the Canny edge detector [10]. The
result of the edge detection is an edge map which contains all pixels for which we
compute the curvature values. In other words, pixels which do not belong to an
edge are masked out from the computation steps below. Although in special cases
the edge map might contain closed boundaries, generally the edge map could
consist of an arbitrary number of disconnected parts of arbitrary shapes. Thus,
we can not make any assumption on the existence of closed boundaries, which
would be obligatory for contour-based or region-based shape feature extraction
techniques.

2.2 Computation of Orientation

Once the edge map is generated, we compute the gradient direction for each
edge pixel. Having both partial derivatives, this direction can be calculated as 4

Θ(x, y) = atan2

(

∂I

∂y
(x, y),

∂I

∂x
(x, y)

)

, (1)

where (x, y) denotes the position of the edge pixel for which the orientation is
computed. The resulting values for Θ(x, y) always lie within the range (−π, π].

The partial derivatives ∂I
∂x

and ∂I
∂y

are approximated by a convolution of the

image with Sobel filters. Figure 1(e) shows an example orientation image, which
has been computed from the example image shown in Fig. 1(a) and the edge
map shown in Fig. 1(b).

2.3 Computation of Curvature

Having the orientation for each edge pixel, we compute the curvature for an edge
pixel as the difference between the maximum and minimum gradient angle over
all edge pixels within a certain neighborhood. The curvature C for an edge pixel
located at (x, y) can thus be formulated as:

C(x, y) = D(Θmin(x, y), Θmax(x, y)) , (2)

with
Θmin(x, y) = min

(i,j)∈N(x,y)
Θ(i, j) (3)

and
Θmax(x, y) = max

(i,j)∈N(x,y)
Θ(i, j) , (4)

where N(x, y) denotes the set of pixel positions of edge pixels within an w×w-
neighborhood centered at (x, y) (w denotes the width and height of the neigh-
borhood). The difference between two arbitrary gradient directions might yield

4 The function atan2 denotes the four-quadrant implementation of the atan-function.
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(a) Example im-
age

(b) Edge map (c) Superimposed
edges

(d) Gradient di-
rections

(e) Orientations (f) Curvature
map

Fig. 1. Output of the different steps when extracting the SCH feature for a grayscale
image. (a) the input image, (b) the corresponding edge map, (c) the edge map super-
imposed to the input image, (d) the gradient directions for the input image, (e) the
edge pixel orientations (gradient directions, masked by the edge map), and (f) the final
image showing the curvature values for the edge pixels (based on a 3×3-neighborhood).

two different types of angles: either an angle in the range [0, π] or the respective
reflex angle in the range (π, 2π]. Since we are only interested in angle differ-
ences in the range [0, π], we quite often need to compute the smaller angle from
the reflex angle. Hence, we use the following formula to compute the difference
between two angles α and β:

D(α, β) =

{

∆(α, β), if ∆(α, β) ≤ π ,
2π −∆(α, β), if ∆(α, β) > π

, (5)

∆(α, β) = max(α, β)−min(α, β) . (6)

A schematic illustration of the pixel-wise curvature computation is provided
in Fig. 2. Figure 1(f) shows an example for a curvature map based on the input
image shown in Fig. 1(a). In this figure different curvature values are represented
by different colors.

2.4 Generation of Feature Vector

Based on the curvature values for the edge pixels a histogram is created. For
the construction of a histogram we do not consider curvature values of non-edge
pixels since these contain no information anyway (due to the restriction of the
curvature computation to edge pixels). Hence, the number of pixels contributing
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Fig. 2. Computation of the curvature for a pixel (black, filled square). The gradient
directions for the edge pixels (shown in dark gray) are indicated by arrows (the ac-
cording angles are given in degrees). The 3×3-neighborhood used in this example is
indicated by a black square. While the left image shows an example for a low curvature
value (C(x, y) = 30◦), the right image shows a rather high curvature (C(x, y) = 142◦).

to the curvature histogram is likely to change from image to image. As a conse-
quence we normalize each histogram by the number of edge pixels found in the
respective image.

The limits of the histograms cover the complete range of possible curvature
values (i.e. [0, π]). The number of bins to be used for histogram creation can be
adjusted. The higher the number of bins the more detailed the curvature values
get captured by the resulting histogram. But the length of the resulting feature
vectors will also be higher. In addition, in case of too many bins the bin values
may get rather noisy, making the feature unstable in terms of the classification. If,
in contrast, the number of bins is too low, potentially discriminative information
may get lost in the histogram, with the advantage of a more compact descriptor.

In our experiments we use 8 bins for our histograms, which yields high clas-
sification results although the feature vectors are compact. We did not achieve
higher accuracies with a higher number of bins. The choice for the number of
bins corresponds to a range of π/8 (i.e. 22.5◦) covered by each bin.

3 Experiments

3.1 Experimental Setup

The image database used throughout our experiments is based on images taken
during duodenoscopies at the St. Anna Children’s Hospital, using pediatric gas-
troscopes without magnification (GIF-Q165 and GIF-N180, Olympus).

The main indications for endoscopy were the diagnostic evaluation of dys-
peptic symptoms, positive celiac serology, anemia, malabsorption syndromes, in-
flammatory bowel disease, and gastrointestinal bleeding. Images were recorded
by using the modified immersion technique, which is based on the instillation
of water into the duodenal lumen for better visibility of the villi. Using this
technique, the tip of the gastroscope is inserted into the water and images of
interesting areas are taken. A study [11] shows that the visualization of villi
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(a) No celiac

(b) Celiac

Fig. 3. Patches of patients without (a) and with the disease (b).

with the immersion technique has a higher positive predictive value. Previous
work [6] also found that the modified immersion technique is more suitable for
automated classification purposes as compared to the classical image capturing
technique.

To study the prediction accuracy of different features we manually created
an “idealistic” set of textured image patches with optimal quality. Thus, the
data was inspected and filtered by several qualitative factors (sharpness, distor-
tions, and visibility of features). In the next step, patches with a fixed size of
128× 128 pixels were extracted (a size which turned out to be optimally suited
in earlier experiments on automated celiac disease diagnosis [6]). This way we
created an extended set containing more images available for classification. In
order to generate ground truth for the texture patches used in experimentation,
the condition of the mucosal areas covered by the images was determined by
histological examination of biopsies from the corresponding regions.

Table 1. The detailed ground truth information for the celiac disease image database
used throughout our experiments.

NO NE NP

No celiac 234 306 131
Celiac 172 306 40

Total 406 612 171

Table 1 shows the detailed ground truth information used for our experi-
ments where NO, NE, NP denote the number of original images, the number
of extracted (idealistic) image patches used for classification, and the number of
patients in each class, respectively.
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To estimate the classification accuracy of our system we use leave-one-patient-
out cross-validation (LOPO-CV). In this setup one image out of the database is
considered as an unknown image. The remaining images are used to train the
classifier (omitting those images which originate from the same patient as the
image left out). To actually classify an unknown image (not contained in the
training set) we use the k-nearest-neighbor classifier (k-NN). This rather simple
classifier has been chosen to emphasize more on quantifying the discriminative
power of the features proposed in this work.

To measure the distance between two histograms we employ the histogram
intersection distance metric. We also carried out experiments using other dis-
tance metrics (the Euclidean distance metric and the Bhattacharyya distance
metric) but the classification results were rather similar to those obtained with
the histogram intersection distance metric.

Since the optimal choices for the k-value for the k-NN classifier are not known
beforehand, we decided to carry out an exhaustive search for the k-value which
leads to the highest overall classification rates (k ∈ 1, . . . , 50). Apart from that we
carry out experiments with grayscale images as well as with RGB color images.
In case of RGB images, a feature vector is extracted for each color channel.
These are then concatenated to end up with the final feature vector. In order to
compute the local curvature values (see Eq. (2)), we used a 3× 3-neighborhood.
While bigger neighborhoods are theoretically possible, experiments showed that,
especially in case of dense edge maps (i.e. a high number of edge pixels), bigger
neighborhoods are more likely to interfere with edge pixels from different edges.

We also aim at a comparison between the proposed method and a set of four
features proposed in the past. These features include texture-based features as
well as shape-based features:

– Graylevel Co-occurrence Matrix features (GLCM) [12]
The GLCM is a 2D-histogram, which describes the spatial relationship be-
tween neighboring pixels. To obtain features for the classification, a GLCM
for four different directions (and offset 1 pixel) is computed. Then a subset
of the statistical features proposed in [12] (i.e. contrast, correlation, energy,
and homogeneity) on each GLCM is extracted. The final features used are
composed by concatenating the Haralick features.

– Edge Co-occurrence Matrix (ECM) [13]
After applying eight differently orientated directional filters, the orientation
(maximal response) is determined for each pixel, followed by masking out
pixels with a gradient magnitude below some threshold (75% below the max-
imum response in our experiments). Then the methodology of GLCM is used
to obtain the ECM for one specific displacement (1 pixel displacement in our
experiments).

– Local Binary Patterns (LBP) [14]
The well known LBP are utilized in its common configuration with 8 circu-
larly arranged neighbors and a radius of 1 pixel.

– Shape features combination (EDGEFEATURES) [9]
After Canny Edge detection, different features from edge-enclosed regions are
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computed. In the original paper [9] edge shape features and texture features
were used. However, for the results in this work we use shape features only.
To find the most discriminative combination of features we use a greedy
forward feature subset selection.

In order to be able to assess whether two different methods produce statis-
tically significant differences in the results obtained, we employ McNemar’s test
[15] (with a significance level of α = 0.05).

3.2 Results

Table 2 shows the detailed results for our experiments. The column “SD” in
this table indicates whether there is a statistically significant difference between
the results obtained with the SCH method and the other methods according
to McNemar’s test. In addition, the sign given in brackets indicates whether
the results obtained are significantly lower (−) or significantly higher (+) as
compared to the results of the SCH method. The last column (SCS) provides
the information whether there is a statistically significant difference between the
results for a specific method when comparing the grayscale and color results.

¿From these results we immediately notice that the SCH feature yields the
highest overall classification rate (accuracy) as compared to the other features.
This accounts to the results with grayscale images as well as to the color images
results. We also notice that SCH in most cases delivers significantly higher re-
sults when compared to the other methods. Only in case of LBP applied to the
grayscale images the difference to SCH is not significant, although also in this
case SCH delivers a higher classification accuracy.

Table 2. Detailed classification rates obtained for grayscale images and color images.

Grayscale Images

Method Accuracy Specificity Sensitivity SD SCS

SCH 87.58 89.87 85.29
ECM 77.45 75.16 79.74 3 (−)
GLCM 73.69 67.97 79.41 3 (−)
LBP 84.97 82.35 87.58 3 (−)
EDGEFEATURES 67.16 75.49 58.82 3 (−)

RGB Color Images

Method Accuracy Specificity Sensitivity SD SCS

SCH 85.78 89.22 82.35
ECM 76.31 78.10 74.51 3 (−)
GLCM 75.98 74.84 77.12 3 (−)
LBP 81.54 80.72 82.35 3 (−) 3 (+)
EDGEFEATURES 70.92 75.82 66.01 3 (−)

We also see that there are two methods only, which deliver a slightly higher
accuracy when extracting the features from color images (i.e. GLCM and EDGE-
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FEATURES). In case of all other methods we observe a slight decrease of the
accuracy in case of color images. But, except for the LBP method, the differences
observed are not significantly different.

When looking at the results yielded by the EDGEFEATURES method we
notice that the results are considerably lower as compared to the SCH method.
This is especially interesting since the EDGEFEATURES method employs a fea-
ture selection algorithm, which – at least theoretically – should be advantageous.

4 Conclusion

We proposed a novel shape-based feature which we successfully applied to the
problem of automated celiac disease diagnosis. We showed that, although the
descriptor used is very compact, we in most cases achieve significantly higher
classification accuracies as compared to some well-established feature extraction
methods (texture features as well as shape-based features). We also showed that
the SCH method can be easily extended to work with RGB color images. How-
ever, compared to the accuracy in case of grayscale images, the accuracy changes
observed in our experiments are not statistically significant. Since the proposed
feature has not been tailored specifically to celiac disease images (i.e. it makes no
assumptions about the edges and gradients used), it may be potentially applied
to other problem domains as well.
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