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Abstract

We discuss parallel algorithms for wavelet-based image
and video coding. After reviewing fundamentals of the par-
allel discrete wavelet transform we cover the paralleliza-
tion of two state-of-the-art compression schemes: a C++
3-D SPIHT video codec and a JAVA JPEG-2000 implemen-
tation.

1 Introduction

In recent years there has been a tremendous increase
in the demand for digital imagery. Applications include
consumer electronics (Kodak’s Photo-CD, HDTV, SHDTV,
Video-on-Demand, and Sega’s CD-ROM video game),
medical imaging (digital radiography), video-conferencing
and scientific visualization. The problem inherent to any
digital image or digital video system is the large bandwidth
required for transmission or storage.

Unfortunately, many compression techniques and appli-
cations demand execution times that are not possible us-
ing a single serial microprocessor [85], which leads to the
use of high performance computers for such tasks (beside
the use of DSP chips, FPGAs, or application specific VLSI
designs). In this context, several papers have been pub-
lished describing real-time image and video coding on gen-
eral purpose parallel architectures – see for example JPEG
[6, 15, 23], MPEG-1,2,4 [1, 2, 43, 86], H.261 [21, 59, 103],
H.263 [3], vector quantization [63, 65], and fractal com-
pression [42, 46, 47, 79, 97].

Image and video coding methods that use wavelet trans-
forms have been successful in providing high rates of com-
pression while maintaining good image quality and have
generated much interest in the scientific community as com-
petitors to DCT based compression schemes. With the final-
ization of the wavelet based JPEG2000 standard [9, 11] and
the inclusion of a wavelet algorithm for synthetic/natural
hybrid coding in MPEG-4 [87] there is no doubt left that
wavelet compression has to be considered state of the art
nowadays. Therefore, a thorough investigation of parallel

versions of these algorithms seems mandatory.
As a first step for an efficient parallel wavelet image

and video compression algorithm, the wavelet decomposi-
tion has to be carried out (followed by subsequent quan-
tization and entropy coding of the transform coefficients).
With respect to computational demand, the transform step
is a major part of each wavelet-based compression algo-
rithm. Therefore, the search for efficient parallel wavelet
transform algorithms is mandatory to guarantee good over-
all performance of a corresponding parallel image or video
codec.

In Section 2, we shortly review the algorithmic princi-
ples of the fast wavelet transform and some major wavelet-
based image and video compression techniques. Section
3 discusses parallel algorithms for the fast wavelet trans-
form and wavelet packet decompositions on MIMD archi-
tectures. Section 4 covers specific parallel image and video
codecs – in particular, we focus on a message passing based
MIMD parallelization of a 3-D SPIHT video codec and a
thread-based JAVA parallelization of JPEG2000.

2 Wavelet-based Image and Video Compres-
sion

2.1 Fast Wavelet Transform and Wavelet Packet
Decomposition

The fast wavelet transform can be efficiently imple-
mented by a pair of appropriately designed Quadrature Mir-
ror Filters (QMF). A 1-D wavelet transform of a signalS
is performed by convolvingS with both QMF’s and down-
sampling by2; sinceS is finite, one must make some choice
about what values to pad the extensions with. This oper-
ation decomposes the original signal into two frequency-
bands (called subbands), which are often denoted coarse
scale approximation and detail signal. Then the same pro-
cedure is applied recursively to the coarse scale approxima-
tions several times (see Fig. 1.a).

The classical 2-D transform is performed by two sep-
arate 1-D transforms along the rows and the columns of
the image dataS, resulting at each decomposition step in a



low pass image (the coarse scale approximation) and three
detail images (see Fig. 1.b). To be more concise, this is
achieved by first convolving the rows of the low pass imageSj+1 (or the original image in the first decomposition level)
with the QMF filterpair G and H (which are a high pass and
a low pass filter, respectively), retaining every other row,
then convolving the columns of the resulting images with
the same filterpair and retaining every other column. The
same procedure is applied again to the coarse scale approx-
imationSj and to all subsequent approximations.

(a) 1D (b) 2D
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Figure 1. Pyramidal wavelet decomposition

By analogy to the 2-D case the 3-D wavelet decomposi-
tion is computed by applying three separate 1-D transforms
along the coordinate axes of the 3-D data. As it is the case
for 2-D decompositions, it does not matter in which order
the filtering is performed (e.g. a 2-D filtering frame by
frame with subsequent temporal filtering, three 1-D filter-
ings alongy, t, andx axes, e.t.c.). After one decomposition
step we result in8 frequency subbands out of which only the
approximation data (the gray cube in Fig. 1.c) is processed
further in the next decomposition step. This means that the
data on which computations are performed are reduced to18
in each decomposition step.

Wavelet packets [99] represent a generalization of the
method of multiresolution decomposition and comprise
the entire family of subband coded (tree) decompositions.
Whereas in the wavelet case the decomposition is ap-
plied recursively to the coarse scale approximations, in the
wavelet packet decomposition the recursive procedure is ap-
plied to all the coarse scale approximations and detail sig-
nals, which leads to a complete wavelet packet tree (i.e.
binary tree and quadtree in the 1-D and 2-D case, respec-
tively) and more flexibility in frequency resolution. See Fig.
2 for the 2-D case.

2.2 Wavelet-based Image and Video Codecs

Image compression methods that use wavelet transforms
[92] (which are based on multiresolution analysis – MRA)
have been proven to deliver the best rate-distortion perfor-
mance for texture compression of all currently available

Figure 2. Pyramidal wavelet decomposi-
tion, wavelet packet decomposition with uni-
form time-frequency resolution, and wavelet
packet decomposition with arbitrary subband
structure

codecs. A wide variety of techniques to process the wave-
let transform domain further for compression purposes have
been reported in the literature [5, 61], ranging from simple
entropy coding to more complex techniques such as vector
quantization [4, 17], adaptive transforms [20, 95], zero-tree
encoding [84], and edge-based coding [36].

The most advanced and well-known compression algo-
rithms in the wavelet area are SPIHT [82] and EBCOT [90]
(which is the basis of JPEG2000).

The wavelet packet “best basis algorithm” [14] performs
an adaptive optimization of the frequency resolution of a
complete WP decomposition tree by selecting the most
suitable frequency subbands for signal compression. This
is done by optimizing additive information cost functions.
The same algorithm employed with non-additive cost func-
tion is denoted “near-best basis algorithm” [89], if the sub-
band structure is restricted to uniform time-frequency res-
olution the corresponding algorithm is denoted “best level
selection”.

In the context of image compression a more advanced
technique is to use a framework that includes both rate and
distortion, where the best basis subtree which minimizes
the global distortion for a given coding budget is searched
[80]. Other methods use fixed bases of subbands for sim-
ilar signals (e.g. fingerprints [44]) or search for good rep-
resentations with a genetic algorithm [7, 12, 83]. Recently,
wavelet packet based compression methods have been de-
veloped [66, 68, 101] which outperform the most advanced
wavelet coders significantly for certain image types in terms
of rate-distortion performance.

A significant amount of work has also been devoted to
wavelet/subband based video coding (see e.g. [38, 49, 60,
91] for 3-D wavelet/subband coding and [10, 50, 67, 106,
105] and Chapter 20, 21 of [92] for 2-D coding with motion
estimation).



3 Parallel Fast Wavelet Transform: A Re-
view

A vast amount of work has been devoted to implement
and analyze parallel algorithms for wavelet transforms.
However, since not even the term “wavelet” is a very spe-
cific one it is obvious that different kinds of wavelet trans-
forms exist. Depending on the type of target application one
may choose among a multitude of different wavelet trans-
forms, each of them associated with certain advantages and
disadvantages. For example, only the “fast wavelet trans-
form” (also denoted discrete wavelet transform (DWT) or
pyramidal wavelet decomposition) is well suited for real-
time applications and all kinds of compression purposes.
Therefore, it is hard to judge the content of a paper de-
voted to “parallel wavelet transforms”. There have been pa-
pers carrying that title devoted to parallel Gabor transform
[64, 69, 70], continuous wavelet transform with arbitrary
time-frequency resolution [32, 33, 37, 94], the à trous algo-
rithm [8, 24, 26, 27, 30, 58, 78], non-standard wavelet de-
compositions for numerical applications [35], and of course
to the classical fast wavelet transform or DWT.

Here we focus onto algorithmic questions specifically re-
lated to MIMD DWT wavelet transform algorithms and pro-
vide pointers to the literature devoted to this topic. Usually,
the data are distributed in some way among the processors
available and the DWT is applied onto local data. In this
setting, the two main issues with respect to parallel DWT
are as follows:� Handling of border data� Data decomposition strategies

When distributing the data to be transformed among
several processor elements (PEs), handling of border data
needs to be specified in some way since the wavelet filters
overlap the borders between adjacent data parts when per-
forming the filtering across the data boundary. In order to
provide the necessary border data to each PE after an ini-
tial data distribution we may distinguish between two ap-
proaches for border treatment (compared theoretically and
experimentally for 1-D and 2-D DWT in [24, 35, 88, 100]
and in [55] for 3-D DWT) which trade off communication
against computational complexity:� Data swappingmethod (also known asnon-redundant

data calculation): each PE computes only on local
data and exchanges these results with the appropriate
neighbour PE in order to get the necessary data for
the next calculation step (i.e. the next decomposition
level).� Redundant data calculationapproach: in the initial-
ization step we do not only provide to a PE its share of

the original signal but broadcast the entire data set to
all PE (which limits this approach to moderately sized
data sets). Subsequently, in each calculation step each
PE computes also redundant data in order to avoid ad-
ditional communication with neighbour PEs to obtain
the required border data.

An algorithm without taking care of border data at all is
presented in [102]. Although it is claimed that this has mi-
nor influence on applications, this approach is not recom-
mended for compression purposes. In most papers, the data
swapping approach is preferred (e.g., [22, 54]). [55, 100]
investigate the optimal decomposition level to switch from
redundant data calculations to data swapping, provide com-
putation and communication cost estimates of both tech-
niques, and give experimental results on SGI Origin, Power
Challenge, and Intel Paragon, respectively.

A third approach used in higher dimensions to provide
the border data is to perform all decomposition steps cor-
responding to one coordinate direction, than to do a global
data transposition, and finally compute the remaining di-
rections. This approach is compared to data swapping in
[52, 76].

Now we proceed with the discussion of data decompo-
sition strategies. Whereas there is nothing to discuss about
data decomposition in the 1-D case, different possibilities
exist for the 2-D and 3-D cases. The main distinction
is among stripe partitioning and checkerboard partitioning
(which are the 2-D cases, in the 3-D case simply a third di-
mension is added). Whereas checkerboard partitioning of-
fers the obvious advantages of minimizing the block-border
length at the cost of a larger number of neighbouring blocks,
stripe partitioning requires only communication with two
direct neighbours. Papers providing comparisons of these
techniques are [35, 75, 77, 102, 55]. In more detail, [35]
gives an in-depth scalability analysis of both approaches for
the 2-D case based on a previous data dependence analysis
[34]. [55, 75, 102] treat the 3-D case and present exper-
imental results for Cray T3D, SGI workstations and SGI
Power Challange. Most papers favor and use the striping
approach, e.g.� [22] suggests a striping adapted to a snake pattern pro-

cessor arrangement and gives results on Cray T3D and
Intel Paragon� [52] gives time complexity estimates and compares the
results to the abovementioned transpose approach, ex-
periments are conducted on CM-5� [77] provides complexity estimates for both stripe and
checkerboard partition and gives experimental results
on Intel Paragon

A checkerboard based image partitioning scheme em-
ploying PVM and the wavelet lifting scheme is presented



in [98].
Additionally, several more specialized topics have been

covered in the literature. [104] describes an adaptive data
distribution following the processor speed in a heteroge-
neous network using PVM. Optimization of 1-D DWT for
multicomputers with De Bruijn Graph network topology
is given in [19]. An algorithm to compute redundant data
(i.e. each of four PEs carries an entirely different subband)
suited for hypercubes (nCube) is derived in [45]. [51] gives
a 1-D CREW PRAM complexity estimation, [57] investi-
gates a data arrangement strategy using a space filling scan
for optimizing cache and memory use to match the filter
process, and [48] presents a 2-D DWT on a multithreaded
architecture and gives a comparison to a MPI implementa-
tion. Cache problems of 3-D DWT are discussed and solved
in [54].

Compared to the fast wavelet transform, only relatively
few papers have been devoted to parallel wavelet packet
decomposition and its specific features and demands. In
this context it has turned out [25, 39, 56, 93, 96] that it
is advisable to to perform a subband based data decom-
position instead of the concepts mentioned before at a cer-
tain stage of the computation. This is explained briefly for
the 2-D case. Fig.3 shows the data arrangement for lev-
els j = 0 : : : 2: at levelj we get4j subbands, each with2Xmax�j by 2Ymax�j coefficients.
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Figure 3. Data arrangement and labeling for a
2-D wavelet packet decomposition

To do the decomposition in parallel, the data is redis-
tributed according to the subband structure (after an initial
stripe or checkerboard distribution - see Fig. 4 on the left
side) at that specific decomposition level (denoted “distri-
bution level” [25, 96]) where the number of PEs is lower or
equal to the number of subbands. Fig.4 shows the data dis-
tribution onto 4 PE (jp = 1) from levelj = 0 to 2 (where
the date redistribution takes place between level 0 and level
1).

Investigations concerning the optimal border data treat-
ment for the decomposition levels not covered by subband
based distribution are given in [25] for the 2-D wavelet
packet decomposition and in [56] for the 3-D case. A gen-
eralization of the subband based data distribution to an ar-
bitrary number of PEs in presented in [28, 29] and the ana-
lytical results are verified on a Cray T3D.
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Figure 4. Repartition of the wavelet packets
onto 4 PE

The abovementioned approach involving a global trans-
pose instead of border data treatment for the DWT is used
also in the context of wavelet packet decompositions – here,
it is important to notice that only the highest resolution fre-
quency subbands are generated in this case. This limits this
approach to numerical applications where the intermediate
frequency subbands are not required [16, 41, 71, 72].

4 Parallel Wavelet Image and Video Coding

Contrasting to the parallel wavelet transform itself, little
attention has been paid towards the parallel realization of
entire compression applications based on wavelet technol-
ogy. Wavelet-based compression, possibly applying vector
quantization to subbands is implemented on CM-5, CM-
200, Symphonie, and SYMPATI2 [73, 74]. Little insight
is provided about how the actual compression takes place.
Simple thresholding based compression is applied to 1-D
signals using non-stationary wavelet packet decomposition
in [40], however, nothing is stated about parallel aspects
except that domain decomposition is used. Different data
access patterns for decomposition and encoding are dis-
cussed in [62], experimental results on SGI Origin 2000
of a relatively simple compression scheme consisting of
scalar quantization and entropy coding are given employ-
ing OpenMP. Two approaches to parallel zerotree wavelet
coding are given in [18], an extension to parallel SPIHT
coding is discussed in [53]. Different granularity levels for
wavelet packet based parallel video encoding are investi-
gated in [31].

4.1 Parallel SPIHT

Most video compression algorithms rely on 2-D based
schemes employing motion compensation techniques. On
the other hand, rate-distortion efficient 3-D algorithms ex-
ist which are able to capture temporal redundancies in
a more natural way (see e.g. [38, 49, 60, 91] for 3-
D wavelet/subband coding). Unfortunately, these 3-D al-
gorithms often show prohibitive computational and mem-
ory demands (especially for real-time applications). At



least, prohibitive for a common microprocessor. A paral-
lel MIMD architecture seems to be an interesting choice for
such an algorithm.

Here we concentrate on the parallelisation of the encod-
ing part. As opposed to [18] we will produce a bit-stream
that is compatible to the sequential 3-D variant [49] of the
SPIHT algorithm [82].

4.1.1 Parallel Wavelet Transform and Zero-Trees

The wavelet filtering is performed in parallel on local data
(stripe partitioning in the time domain is used). Before each
decomposition step, border data has to be exchanged be-
tween neighbouring PEs due to the filter length. After that,
transformed data are found distributed as shown in Fig.5.

(a) 2-D case (b) 3-D case (c) Zero-
trees

Figure 5. Distribution of coefficients or list en-
tries. Different colours indicate different PEs.
(c) shows that zero-trees are local objects.

Zero-tree based algorithms arrange the coefficients of a
wavelet transform in a tree-like manner, i.e. each coefficient
has a certain number of child coefficients in another sub-
band (mostly 4 in the 2-D, 8 in the 3-D case, see Fig.5(c)).

Furthermore, a zero-tree is a sub-tree which entirely con-
sists of insignificant coefficients. The significance of a co-
efficient is relative to a threshold which plays an imported
role in the SPIHT algorithm (sig(c) , jcj � threshold).
The statistical properties of transformed image or video data
(self-similarity) ensures the existence of many zero-trees.
With the help of these zero-trees, sets of insignificant coef-
ficients can be encoded efficiently. We will see that some-
times the root coefficient of the subtree (or even its direct
offspring) does not have to be insignificant.

Zero-trees can be viewed as a collection of coefficients
with approximately equal spacial position. While this fact
implies that the coefficients significances are statistically re-
lated which is exploited by the SPIHT algorithm, this also
means that zero-trees are local objects corresponding to the
data distribution produced by the parallel wavelet transform
(see Fig.5(c)). This can be exploited by the parallelisation
of the zerotree algorithms.

4.1.2 The SPIHT Algorithm

Although the SPIHT algorithm is sufficiently explained in
the original paper [82] it is helpful in this context to refor-
mulate the algorithm.

In the beginning the thresholdc is bigger than all the
coefficients. Thus, all coefficients are insignificant. Then
the threshold is repeatedly divided by 2 and the changes in
significance have to be coded. Before and after each step
(refinement step) the significance of the coefficients is rep-
resented by three lists:

LIS List of insignificant set of pixels. This list includes
all roots of zero-trees. An entry in this list can be of
two types: Type A – all descendants are insignificant,
Type B – all descendants except the direct offspring
are insignificant.

LIP List of insignificant pixels. This list includes coeffi-
cients that are insignificant but not part of a zero-tree
corresponding to anLIS entry.

LSP List of significant pixels.

When processing a refinement step each entry of each list
has to be tested for a change of significance and possibly be
moved to another list. All entries inserted at the end of a
list are also processed in the same refinement step until no
more entries are left.

Possible list entry transitions areLIS ! LIS;LIS !LIP;LIS ! LSP;LIS ! BS;LIP ! LSP;LIP !BS;LSP ! BS where BS stands for “bit-stream” which
means that each evaluation of a list entry has to be coded
into the bit-stream (so the decoding process is able to repro-
duce the decision). Furthermore, when processing the LSP
the value of the corresponding coefficient is refined by one
bit (which is written into the bit-stream).

The decoding process performs the same algorithm but it
does not evaluate the significance of the list entries but sim-
ply reads this information from the bit-stream and corrects
the value of the corresponding coefficient as good as it can.

4.1.3 SPIHT Parallelisation

When parallelising the SPIHT algorithm we have to face
the problem that it uses lists of coefficient positions and is
therefore inherently sequential. The basic operations of the
algorithm are: Moving an iterator all through a list, deleting
elements at iterator position and appending elements at the
end of a list. So the aim is to distribute the list so that each
PE-local entry corresponds to a local coefficient where co-
efficients are distributed among the PEs as shown in Fig.5.

For initial distribution this is a simple task but as coeffi-
cients are appended to the end of lists one has to provide a
mechanism to indicate which parts of a list belong to which



LIS LIP LSP BS
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Figure 6. Functionality of separators. Four
states of the three lists and the bit-stream
while processing the LIS.

PE – or from a PEs view: where a sequence of local coeffi-
cients ends and parts of another PEs list should be inserted.
This work is done by separators (see Fig.6).

The idea is to insert a separator at the end of each part
of the list which entirely belongs to a single PE. So the
initial distribution is to split the approximation sub-band
into equal parts, assigning each part to a list on a single
PE and appending a separator to the end of the list. From
here on the sequential algorithm is performed locally with
one exception: Each time the iterator meets a separator the
separator is copied to the end of each destination list. A
destination list is a list into which an entry could poten-
tially have been inserted while processing previous iterator
positions. Applying this principle the listsLi on PEi are
split by separators into partsLij such that the assembled
list L11L21L31 : : : L12L22 : : : is identical to the list the se-
quential algorithm would produce. The same is true for the
bit-stream.

An important question is when the processing of a list
is completed. Essentially, the procedure can stop if it has
processed the last non-separator entry in the list. Unfortu-
nately, this does not guarantee that each PE produces the
same number of separators. But, this is a necessary con-
dition for the correctness of the parallel algorithm because
otherwise the correct order of the list-parts would be lost.
Therefore, the global maximum number of separators has
to be calculated (which unfortunately synchronises the PEs)
and the lists have to be filled up with separators before con-
tinuing with the next list/refinement step.

The procedure of assembling the bit-stream (after col-
lecting the PE-local bit-streams) is the only sequential part
of the algorithm. Unfortunately, it gets more complicated
and therefore consumes more calculation time when the
number of PEs is increased.

4.1.4 Experimental Results

We present results of an MPI implementation on a CRAY
T3E-900 (distributed memory MIMD - multicomputer).
Video data size is always 864 frames with 88 by 72 pixels.
The video sequence used here is the U-part of “grandma”.
The wavelet transform is performed up to a level of 3.
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Figure 7. Speedups for varying #PE and fixed
compression rate (0.14 bpp).

Fig.7 shows speedups for a fixed compression rate:0:14
bpp (bits per pixel, pixels in different frames are counted as
different pixels). The speedup of the SPIHT parallelisation
(without wavelet transform) seems to be limited by approx-
imately 10. The reason for this is firstly the increased in-
fluence of the sequential part for higher #PE and secondly
bigger load balancing problems for higher #PE due to the
unevenly distributed complexity in different parts of the im-
age.

0

2

4

6

8

10

0.004 0.01 0.02 0.04 0.1 0.2 0.4

S
pe

ed
up

output bpp

decomposition
overall

spiht

(a) 8 PEs

0

5

10

15

20

25

30

0.004 0.01 0.02 0.04 0.1 0.2 0.4

S
pe

ed
up

output bpp

decomposition
overall

spiht

(b) 32 PEs

Figure 8. Speedup for decomposition, SPIHT
coding and overall speedup for varying com-
pression rate.

Fig.8 shows speedup curves for fixed #PE and varying
compression rate. Of course the wavelet decomposition
is not dependent on the compression rate. Although the
speedup of the coding part (SPIHT) increases with the bpp-
value the overall speedup remains constant of drops slightly
because the share in execution time of the coding part in-
creases with the bpp-value.

4.2 Parallel JPEG2000

The multiprocessor architecture (i.e. shared memory
MIMD) – often also denoted SMP – is an interesting alter-
native to multicomputers for image processing tasks due to
the high memory requirements of these applications. Also,



the availability of comfortable programming environments
for parallel processing on such architectures (e.g. OpenMP,
JAVA Threads) is an important aspect. Finally, the excellent
prize-performance ratio of Intel-based SMPs makes such
systems very popular for many applications involving visual
data processing [81]. In this section, we describe a “straight
forward” parallelization of a JPEG2000 codec using JAVA
threads.

4.2.1 JPEG2000

The JPEG2000 image coding standard [9, 11] is based on
a scheme originally proposed by Taubman and known as
EBCOT (“Embedded Block Coding with Optimized Trun-
cation” [90]). The major difference between previously pro-
posed wavelet-based image compression algorithms such
as EZW [84] or SPIHT [82] is that EBCOT as well as
JPEG2000 operate on independent, non-overlapping blocks
which are coded in several bit layers to create an embed-
ded, scalable bitstream. Instead of zerotrees, the JPEG2000
scheme depends on a per-block quad-tree structure since the
strictly independent block coding strategy precludes struc-
tures across subbands or even code-blocks. These indepen-
dent code-blocks are passed down the “coding pipeline”
shown in Fig.9 and generate separate bitstreams. Trans-
mitting each bit layer corresponds to a certain distortion
level. The partitioning of the available bit budget between
the code blocks and layers (“truncation points”) is deter-
mined using a sophisticated optimization strategy for opti-
mal rate/distortion performance.

Rate
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coded
image

inherently parallel on
indep. code blocks

Transform
Wavelet

Setup
I/O,

source
image

Entropy coding pipeline
in several stages (Quantization, 
ROI Scaling, Arithmetic Coding, ...)

Figure 9. JPEG2000 coding pipeline

The main design goals behind EBCOT and JPEG2000
are versatility and flexibility which are achieved to a large
extent by the independent processing and coding of im-
age blocks [9]. The default for JPEG2000 is to perform
a five-level wavelet decomposition with 7/9-biorthogonal
filters and then segment the transformed image into non-
overlapping code-blocks of no more than4096 coefficients
which are passed down the coding pipeline.

In Fig.10 we compare the time required for encoding dif-
ferently sized images using four image codecs: DCT-based
JPEG, wavelet-based SPIHT, Jasper, and JJ2000 (Jasper and
JJ2000 both implement the JPEG2000 standard). Note, that
JPEG, SPIHT, and Jasper are C/C++ based whereas JJ2000
is written in JAVA (seehttp://jj2000.epfl.ch).

Evidently, JPEG is the by far fastest algorithm, whereas
both JPEG2000 implementations are slowest. Interestingly,
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there is not much difference between the C and JAVA im-
plementations (the IBM JDK 1.1.8 just-in-time compiler is
used for JJ2000). Fig.11 shows a runtime analysis of the se-
quential execution of JJ2000. The wavelet transform part is
clearly the most demanding part of the algorithm, followed
by the encoding stage. Fortunately, both stages can be par-
allelized with little effort. Intrinsically sequential parts of
the algorithm are image and bitstream I/O and R/D alloca-
tion which all show relatively low complexity. Obviously,
high parallelization potential was one of the design goals of
JPEG2000.
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Figure 11. Serial Runtime Analysis of JJ2000
on Intel Pentium II Xeon, 500 MHz

4.2.2 Parallelization of JJ2000 using JAVA Threads

The approach followed in this work is to change as little
as possible in the original JJ2000 code for parallelization.
JAVA multi-threading is employed in the wavelet transform
and encoding stage. For a multi-threaded wavelet trans-



form, different parts of the data are assigned to different
threads, the deterministic workload allows a static load al-
location. However, synchronization is required at each de-
composition level between vertical and horizontal filtering.
In the encoding stage, on the other hand, no synchroniza-
tion is necessary due to the processing of independent code-
blocks. The load balance problem caused by the different
runtime for each code-block is solved by using a pool of
worker threads and a staggered round robin assignment of
the code-blocks to these threads. Whereas the JJ2000 code
already contains the necessary thread invocation calls for a
parallel encoding stage, the transform part is covered in this
work.

Fig.12 displays the runtime analysis of a multi-threaded
execution on a 4 processor SMP system (a Compaq server
with Intel Pentium II Xeon processors running at 500 MHz
which is used for all subsequent experiments). An overall
speedup of1:75 is achieved only. When analyzing the chart
in more detail, we find that the speedup corresponding to
the encoding stage is about3:6 whereas the wavelet trans-
form speedup is1:6 at most. Therefore, we investigate the
wavelet transform part in more detail.
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Figure 12. Parallel Runtime Analysis of
JJ2000 on SMP (four processor Compaq, Intel
Pentium II Xenon, 500 MHz)

Fig.13 shows the timings for the filtering procedures,
broken down into the vertical and horizontal parts, respec-
tively. The vertical filtering step requires more than10
times the execution time of the horizontal counterpart. Sur-
prisingly, also the speedup for the vertical filtering is sig-
nificantly lower than this for the horizontal case (compare
Fig.14).

This unexpected behaviour suggests the existence of a
severe cache-miss problem (see also [54] for similar effects
in an MPI implementation for a 3-D wavelet decomposi-
tion). In fact, it turns out that when using large images
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Figure 13. Original and improved filtering

with width equal to a power-of-two and the filter length
is longer than4 (this corresponds to the4-way associative
cache), an entire image column is mapped onto a single
cache-set. Consequently, during the execution of vertical
wavelet filtering an enormous amount of cache misses oc-
cur. We have considered two approaches to improve the
cache hit rate. First, the image width is forced to be not
a power-of-two (e.g. by inserting dummy data, compare
[54]). This technique does not require any modification in
the filter code and results in the use of more cache sets and
consequently allows cache hits on vertically adjacent pix-
els. Second, several adjacent columns are filtered concur-
rently within a single processor. When loading the first data
points of an image column into the cache, the corresponding
data of adjacent columns are situated within the same cache
line. Therefore, computing the products of pixels and filter
coefficients of all these columns can be performed without
any cache misses (except the initial access which triggers
the cache load). Here, a modification of the filter code is
required – the results of the different columns have to be
buffered. The second approach has turned out to be more
effective.

A significant improvement is observed in Fig.13 – almost
factor10 is gained by our technique, horizontal and vertical
filtering are now almost identical with respect to runtime.
Additionally, the speedup of the improved vertical filtering
routine is significantly higher (Fig.14) and now equals that
of horizontal filtering. Note that the constrained speedup of
the original filtering routine is due to the congestion of the
bus caused by the high number of cache misses.

Finally, Fig.15 shows the runtime analysis of JJ2000
with the improved filtering routine. We notice an overall
speedup of5:39 with respect to the original JJ2000 imple-
mentation (see Fig.11). Of course, the superlinearity is due
to the improved filtering routine. A further significant in-
crease of parallel efficiency can not be expected, since the
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Figure 15. Parallel Runtime Analysis of
JJ2000 with improved filtering

intrinsically sequential stages contribute already about 40%
to the overall execution time and the efficiency of the paral-
lel parts can hardly be improved without massively chang-
ing the code, which is not the scope of this work.
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packet image compression.IEEE Trans. on Image Process.,
9(5):792–800, May 2000.

[69] M. Misra and T. Nichols. Computation of 2-D wavelet
transforms on the CM-2. InProceedings of the Inter-
national Conference on Applications in Parallel and Dis-
tributed Computing, 1994.

[70] M. Misra and V. Prasanna. Parallel computation of 2-D
wavelet transforms. InProc. of the 11th IAPR Int. Con-
ference on Pattern Recognition, volume IV, pages 111–114.
IEEE Comput. Soc. Press, 1992.

[71] L. B. Montefusco. Parallel numerical algorithms with or-
thonormal wavelet packet bases. In C. Chui, L. Montefusco,
and L. Puccio, editors,Wavelets: Theory, Algorithms and
Applications, pages 459–494. Academic Press, San Diego,
1994.

[72] L. B. Montefusco. Semi-orthogonal wavelet packet bases
for parallel least-squares approximation.Journal of Com-
putational and Applied Mathematics, 73:191–208, 1996.

[73] P. Moravie, H. Essafi, C. Lambert-Nebout, and J.-L. Basille.
Real-time image compression using data-parallelism. In
Euro-Par’95 Parallel Processing, Lecture Notes in Com-
puter Science 966, pages 723–726. Springer, 1995.

[74] P. Moravie, H. Essafi, and M. Pic. Parallel wavelet transform
algorithm for image compression. In F. Huck and R. Juday,
editors,Visual Information Processing IV, volume 2488 of
SPIE Proceedings, 1995.



[75] H. Nicolas, A. Basso, E. Reusens, and M. Schutz. Parallel
implementations of image sequence coding algorithms on
the CRAY T3D. Technical Report Supercomputing Review
6, EPFL Lausanne, 1994.

[76] O. Nielsen and M. Hegland. Parallel performance of fast
wavelet transforms.International Journal of High Speed
Computing, 11(1):55–74, 2000.

[77] J. Patel, A. Khokhar, and L. Jamieson. Scalability of 2-
D wavelet transform algorithms: analytical and experimen-
tal results on coarse-grain parallel computers. InProceed-
ings of the 1996 IEEE Workshop on VLSI Signal Processing,
pages 376–385, 1996.

[78] M. Pic and H. Essafi. Wavelet transform on Connection Ma-
chine and SYMPATI 2. International Journal of Modern
Physics C, 4(1):97–103, 1993.

[79] A. Pommer. Fractal video compression on shared memory
systems. In P. Zinterhof, M. Vajtersic, and A. Uhl, edi-
tors, Parallel Computation. Proceedings of ACPC’99, vol-
ume 1557 ofLecture Notes on Computer Science, pages
317–326. Springer-Verlag, Feb. 1999.

[80] K. Ramchandran and M. Vetterli. Best wavelet packet bases
in a rate-distortion sense.IEEE Trans. on Image Process.,
2(2):160–175, 1993.
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