
c© Springer Verlag. The copyright for this contribution is held by Springer Verlag. The original
publication is available at www.springerlink.com.

Multimedia Systems
DOI 10.1007/s00530-008-0150-0

REGULAR PAPER

A survey on JPEG2000 encryption

Dominik Engel · Thomas Stütz · Andreas Uhl

Received: 11 June 2008 / Accepted: 16 December 2008
© Springer-Verlag 2009

Abstract Image and video encryption has become a widely
discussed topic; especially for the fully featured JPEG2000
compression standard numerous approaches have been pro-
posed. A comprehensive survey of state-of-the-art JPEG2000
encryption is given. JPEG2000 encryption schemes are
assessed in terms of security, runtime and compression per-
formance and their suitability for a wide range of application
scenarios.

1 Introduction

A clear trend toward the increased employment of JPEG2000
for specialized applications has been observable recently,
especially where a high degree of quality or scalability is
desired. For example, the Digital Cinema Initiative (DCI),
an entity created by seven major motion picture studios, has
adopted JPEG2000 as the (video!) compression standard in
their specification for a unified Digital Cinema System [8].
With increasing usage comes the increasing need for prac-
tical security methods for JPEG2000. Over the last years,
a significant number of different encryption schemes for
visual data types have been proposed (see [23,60] for exten-
sive overviews). Recently, the awareness for JPEG2000 secu-

Communicated by A.U. Mauthe.

D. Engel · T. Stütz · A. Uhl (B)
Department of Computer Sciences, Salzburg University,
Jakob-Haringerstr. 2, Salzburg, Austria
e-mail: uhl@cosy.sbg.ac.at

D. Engel
e-mail: dengel@cosy.sbg.ac.at

T. Stütz
e-mail: tstuetz@cosy.sbg.ac.at

rity has grown with the finalization of part 8 of the JPEG2000
standard, JPSEC [32].

The most secure method for the encryption of visual
data, sometimes referred to as the naive method, is to
encrypt the whole multimedia stream (e.g., a JPEG2000 code-
stream) with the aid of a cryptographically strong cipher
like AES [7]. The most prominent reasons not to stick to
classical full encryption of this type for multimedia applica-
tions are

• to maintain format compliance and/or associated func-
tionalities like scalability (which is usually achieved by
parsing operations and marker avoidance strategies),

• to achieve higher robustness against channel and storage
errors, and

• to reduce the computational effort (which is usually
achieved by trading off security, as is the case in partial
or soft encryption schemes).

These issues immediately make clear that encryption
methods for visual data types need to be specifically tailored
to fulfill the requirements of a particular multimedia appli-
cation with respect to security on the one hand and other
functionalities on the other hand.

A number of proposals for JPEG2000 encryption have
been put forward to date. The approaches differ significantly
in their fields of applications, their levels of security, the func-
tionalities they provide and their computational demands.

In this paper our aim is to give a comprehensive survey of
the existing approaches. For this purpose, we first present dif-
ferent categories for the classification of JPEG2000 encryp-
tion schemes. We systematically describe, discuss, evaluate,
and compare the various techniques, especially with respect
to their impact on JPEG2000 compression performance,

123

D. Engel et al.

concerning their security, and regarding their computational
performance.

In Sect. 2 we give an introduction to media encryption.
Section 3 provides an overview of the JPEG2000 standard
suite, focusing on the parts relevant to our survey, most impor-
tantly Part 8, JPSEC. In Sect. 4 we discuss evaluation criteria
for JPEG2000 encryption schemes.

In Sect. 5 we cover methods for bitstream-oriented encryp-
tion techniques, Sect. 6 is devoted to compression-integrated
methods. In Sect. 7 we discuss the findings of this survey and
we give recommendations which techniques should prefera-
bly be used in specific application scenarios. Section 8 con-
cludes the paper.

2 Media encryption

In the following, we discuss a number of useful categories
for the classification of media encryption schemes, which of
course are also relevant for JPEG2000 encryption.

2.1 Security and quality constraints

Encryption may have an entirely different aim as opposed
to maximal confidentiality or privacy in the context of cer-
tain multimedia applications. “Transparent encryption” [41]
has been introduced mainly in the context of digital TV
broadcasting (also called “perceptual encryption” predomi-
nantly in the area of audio encryption): a pay TV broadcaster
does not always intend to prevent unauthorized viewers from
receiving and watching his program, but rather intends to
promote a contract with non-paying watchers. This can be
facilitated by providing a low quality version of the broad-
cast program for everyone, only legitimate (paying) users get
access to the full quality visual data (which has been already
broadcast together with the low quality version in encrypted
form). Also, the degree of confidentiality varies from appli-
cation to application. Whereas a high degree is required for
applications like video conferencing, telemedicine, or sur-
veillance, in some scenarios it might be sufficient for digital
rights management schemes to degrading the visual quality
to an extent where a pleasant viewing experience is no longer
possible (“sufficient encryption”). Only transparent encryp-
tion guarantees a minimum quality of the preview image (the
encrypted image transparently decoded).

We can summarize the following distinct application sce-
narios and requirements as follows:

• Highest Level Security/Cryptographic Security
Applications that require a very high level of security, no
information about the plaintext (image and compressed
file) shall be deducible from the ciphertext.

• Content Security/Confidentiality
Information of the plaintext may leak, but the image con-
tent must not be discernible.

• Sufficient encryption/Commercial application of
encryption
The content must not be consumable due to the high dis-
tortion (DRM systems).

• Transparent/Perceptual encryption
A preview image has to be decodable, but the high quality
version has to be hidden. Another application is privacy
protection.

2.2 Selective/partial and lightweight encryption

In order to serve the purpose of reducing computational
effort in the encryption process, more efficient methods as
opposed to full encryption with cryptographically strong
ciphers have been designed. Such systems—often denoted
as “selective/partial” or “soft” encryption systems—usually
trade off security for runtime performance, and are there-
fore—in terms of security—somewhat weaker than the naive
method. Whereas selective or partial encryption approaches
restrict the encryption process (employing classical ciphers
like AES) to certain parts of the visual data by exploiting
application-specific data structures or by encrypting only per-
ceptually relevant information (e.g., encryption of I-macro-
blocks in MPEG, packet data of leading layers in JPEG2000),
the soft encryption approach employs weaker encryption
systems (like permutations) to accelerate the processing
speed. Often, selective/partial encryption or soft encryption
are termed “lightweight encryption”.

2.3 Bitstream-oriented versus compression-integrated
encryption

Bitstream-oriented techniques only operate on the final com-
pressed stream, i.e., the codestream. Although they may parse
the codestream and for example use meta-information from
the codestream, they do not access the encoding (or decod-
ing) pipeline. Classical methods for encryption fall into this
category, and also many selective/partial encryption schemes
that only encrypt parts of the codestream.

Compression-integrated techniques apply encryption as
part of the compression step, sometimes going so far that part
of the compression actually is the encryption. One possibil-
ity is to apply classical encryption after the transform step
(which in most cases inevitably destroys compression per-
formance). For other approaches the transform step is also
the encryption step at the same time. Another possibility to
achieve compression-integrated encryption is by selecting
the transform domain to be used for encoding based on a
key.

123

A survey on JPEG2000 encryption

2.4 On-line/off-line scenario

Two application scenarios exist for the employment of
encryption technology in multimedia environments [46] if
we distinguish whether the data is given as plain image data
(i.e., not compressed) or in form of a codestream resulting
from prior compression. In applications where the data is
acquired before being further processed, the plain image
data may be accessed directly for encryption after being
captured by a digitizer. We denote such applications as
“on-line”. Examples for this scenario are video conferencing
and on-line surveillance. On the other hand, as soon as visual
data has been stored or transmitted once, it has usually been
compressed in some way. Applications where codestreams
are handled or encrypted are denoted “off-line”. Examples
are video on demand and retrieval of medical images from a
database.

Note that while this distinction is related to the distinction
between bitstream-oriented and compression-integrated
encryption, it is a distinction by application, not by procedure.
In principle, both bitstream-oriented and compression-
integrated methods may be suited for either of the two sce-
narios. However, the application of compression-integrated
methods in an off-line scenario will in general not be very effi-
cient, for obvious reasons.

2.5 Format-compliance

The aim of format-compliant encryption is to preserve—
carefully—selected parts of the (meta-)information in the
codestream so that the encrypted data is compliant to the for-
mat of the unencrypted data. If format compliance is desired,
the classical cryptographic approach (the naive method) can-
not be employed as no (meta-)information is preserved. In
many cases, header information is left in plaintext and the
actual visual information is encrypted avoiding the emulation
of marker and header sequences in the ciphertext parts. In this
manner, the properties of the original codestream carry over
to the encrypted stream. For example, rate adaptation may
be done in the encrypted domain easily, provided the orig-
inal codestream facilitates this functionality as well (which
is true for scalable or embedded codestreams, for example).
While the headers are not encrypted in most approaches pro-
posed to date, they may be encrypted in a format-compliant
way as well.

The requirement of format compliance can safely be
assumed to be of great importance. Format-compliance
enables the transparent application of encryption, leading
to numerous benefits such as signal processing in the
encrypted domain, rate adaptation, or reduction of deploy-
ment costs.

3 The JPEG2000 standard suite

JPEG2000 has 13 parts (part 7 has been abandoned). For the
focus of this survey our interest is in Part 1 (the core coding
system), Part 2 (extensions), Part 4 (conformance testing)
and Part 8 (JPSEC).

3.1 Part 1: the core coding system

JPEG2000 [56] employs a wavelet transform; Part 1 of the
standard specifies an irreversible 9/7 and a reversible inte-
ger 5/3 wavelet transform and requires the application of
classical pyramidal wavelet decomposition. The components
of the image (after an optional multi-component transform)
are subdivided into tiles, each of these tiles is independently
wavelet-transformed. For a detailed description of the data
partitioning refer to [56, p. 449] or to [34, p. 42]. After the
wavelet transform the coefficients are quantized and encoded
using the EBCOT scheme, which renders quality scalabili-
ty possible. Thereby the coefficients are grouped into code-
blocks and these are encoded bitplane by bitplane, each with
three coding passes (except the first bitplane). The coding
passes may contribute to a certain quality layer. A packet
body contains CCPs (codeblock contribution to packet) of
codeblocks of a certain resolution, quality layer and precinct
(a spatial inter-subband partitioning structure that contains
one to several codeblocks) of a tile of a certain component. A
CCP may consist of a single or multiple codeword segments.
Multiple codeword segments arise when a coding pass (in
the CCP) is terminated. This will happen if all coding passes
are terminated (JJ2000 option: -Cterm all).

The JPEG2000 codestream—the standard’s term for the
JPEG2000 stream (cf. Sect. 3.3)—consists of headers
(main header, tile headers, tile part headers) and packets that
consist of packet headers and packet bodies (cf. Fig. 1). The
compressed coefficient data is contained in the packet bodies.

Fig. 1 Restrictions within the CCPs

123

D. Engel et al.

The CCPs must not contain any two byte sequence in excess
of 0xff8f nor end with a 0xff byte (bitstream compli-
ance) [34, p. 56] . The arithmetic coding of the bitplanes is
referred to as tier 1 encoding, while the partitioning of the
coding passes into quality layers and the generation of the
packet headers is referred to as tier 2 encoding.

3.1.1 JPEG2000 headers

The main header and tile-part header contain information
about the specific compression parameters (e.g., image size,
tile size, number of components, codeblock size, wavelet
filters, . . .). The packet header contains the following data
items: inclusion information for each codeblock (does the
codeblock contribute to this packet?), the lengths of the CCPs,
the number of contributed coding passes for each codeblock,
and the number of leading zero bitplanes for each codeblock
(LZB).

3.2 Part 2: extensions

Part 2 of JPEG2000 specifies extended decoding processes,
an extended codestream syntax containing information for
interpreting the compressed image data, an extended file for-
mat, a container to store image meta-data and a standard set
of image meta-data. The extensions of Part 2 allow employ-
ing custom wavelet transforms and arbitrary decomposition
structures.

The extended coding processes are beneficial for certain
applications, such as fingerprint compression and medical
image compression [4,40,57]. As fingerprints and medical
images contain sensitive information, security concerns nat-
urally arise.

3.3 Part 1 and 4: bitstream, format and JPEG2000
compliance

The term “bitstream” in its common meaning refers to an
arbitrary stream of bits. In the MPEG-4 standards bitstreams
denote the compressed video stream [33]. The term “bit-
stream-oriented encryption” refers to the encryption of the
compressed stream, i.e., the JPEG2000 codestream. How-
ever, in the JPEG2000 standard the term “bitstream” has a
precisely defined alternate meaning. According to the
JPEG2000 standard [30], “bitstream” is defined in the fol-
lowing way: “The actual sequence of bits resulting from the
coding of a sequence of symbols. It does not include the
markers or marker segments in the main and tile-part head-
ers or the EOC marker. It does include any packet headers
and in stream markers and marker segments not found within
the main or tile-part headers” [30, p. 2].

Sequences in excess of 0xff8f are used to signal
in-bitstream markers and marker segments and therefore must

not be generated in the encryption process (schemes
fulfilling this requirement and avoiding 0xff bytes at the
end of an encryption unit, i.e., codeword segment, CCP,
or packet body, and preserving the length of the encryp-
tion unit are denoted bitstream-compliant). An encryption
scheme delivering a valid JPEG2000 codestream (in the sense
that it is decodable by the reference software) is denoted
as format-compliant. Part 4 of the JPEG2000 standard suite
(conformance testing) [31] defines the term “compliance” for
JPEG2000 decoders and encoders. While JPEG2000 decod-
ers have to decode certain test sets within given error bounds
in order to be compliant, the only requirement for encoder
compliance is to produce compliant codestreams (decoda-
ble by the reference software); any other requirements using
quality criteria are not part of the standard [31, p. 30]).
JPEG2000 compression with a compliant encoder, which is
followed by encryption that results in a decodable JPEG2000
codestream, is therefore JPEG2000 compliant in the sense of
[31].

3.4 Part 8: JPSEC

JPEG2000 Part 8 (JPSEC) has only recently become an offi-
cial ISO standard (ISO/IEC 15444-8 [32]). The standard-
ization process started with a call for proposals in March
2003 and since then quite a number of contributions have
been made [1,2,5,12,13,62,63]. JPSEC is an open security
framework for JPEG2000 that offers solutions for

• Encryption
• Conditional access
• Secure scalable streaming
• Verification of data integrity
• Authentication

Encryption, conditional access and secure scalable streaming
overlap with the topic of this survey.

3.4.1 JPSEC architecture

The JPSEC framework offers a syntax for the definition of
JPEG2000 security services. This syntax specifies the JPSEC
codestream. A JPSEC codestream is created from either an
image, a JPEG2000 codestream or an existing JPSEC code-
stream. The last case applies if several security tools are
applied subsequently.

Currently security tools are grouped into three types of
tools, namely template, registration authority, and user-
defined tools. Template tools are defined by the normative
part of the standard, registration authority tools are registered
with and defined by a JPSEC registration authority, and user-
defined tools can be freely defined by users or applications.
The standard defines a normative process for the registration

123

A survey on JPEG2000 encryption

of registration authority tools. The registration authority and
the user-defined tools enable the application of custom and
proprietary encryption methods, which leads to a flexible
framework.

In the following section a more detailed summary of the
JPSEC codestream syntax and semantics is given.

3.4.2 The JPSEC syntax and semantics

JPSEC defines a new marker segment for the JPEG2000 main
header (SEC marker segment), which is preceded only by the
SIZ marker segment [32, p. 9]. Therefore the information
of the SIZ marker segment is always preserved by JPSEC
encryption. The SIZ marker contains information about the
number of components of the source image, their resolutions
(subsampling factors), their precision, as well as the chosen
tile size. Note that this information is always accessible even
if the most secure settings are chosen for JPSEC encryption
(e.g., AES encryption of the entire remaining codestream).

The first SEC marker segment in a JPSEC codestream
defines if INSEC marker segments are employed, the num-
ber of applied tools and the TRLCP format specification (the
number of necessary bits to specify tile, resolution, layer,
component, and precinct uniquely; in conjunction these indi-
ces uniquely identify a packet). The INSEC marker segment
is used in conjunction with a non-normative tool and it may be
present in the bitstream. The INSEC marker segment makes
use of the fact that the JPEG2000 decoder stops decoding
if a termination marker (a sequence in excess of 0xff8f)
is encountered. Thus encryption specific information can be
placed directly in the JPEG2000 bitstream. The application
of INSEC markers, though not without merits, also leads to
certain drawbacks. First, the preservation of JPEG2000 for-
mat compliance, as defined in Sect. 3.3, requires the packet
header to be changed (cf. to the approach of [25] in Sect.
5.2 for details). Second, if no specifically tailored encryp-
tion routines are employed (bitstream-compliant), the INSEC
marker segment may not be parsed correctly. Therefore a
useful application of INSEC markers is together with bit-
stream-compliant encryption algorithms (see Sect. 5.3).

The SEC marker segment also contains a list of tool spec-
ifications (one for each tool). The JPSEC tool specification
follows a normative syntax and defines which type of tool is
applied (either normative or non-normative), which specific
tool is used, where it is applied (ZOI:= zone of influence)
and its parameters (e.g., keys, initialization vectors, …).

The ZOI can be specified via image or non-image related
parameters. A ZOI specification consists of one or multi-
ple zone descriptions, the ZOI is the union of all the zones.
Each zone is described by several parameters of a description
class (image related or non-image related). For image related
parameters a zone is the region where all the parameters are
met (intersection). If multiple non-image related parameters

are given, the specified regions should correspond to each
other in a one to one manner, e.g., if packets and byte ranges
are employed, the byte ranges specify the packet borders.
In this manner the ZOI can be used to store meta-data of the
codestream, e.g., where certain parts of the image are located
in the codestream.

The image related description class allows to specify a
zone via image regions, tiles, resolution levels, layers, com-
ponents, precincts, TRLCP tags, packets, subbands, code-
blocks, ROIs (regions of interest), and bitrates. The
non-image related description class allows to specify pack-
ets, byte ranges (padded and unpadded ranges if padding
bytes are added), TRLCP tags, distortion values, and rela-
tive importance. The distortion value and the relative impor-
tance may be set to signal to a decoder or adaptation element
the importance of the specified ZOI. While the distortion
value gives the total squared error if the corresponding ZOI
is not available for decoding, the relative importance field
is not tied to a specific quality metric. By employing these
fields efficiently and in an informed way, transcoding can
be conducted even if the JPSEC codestream consists of fully
encrypted segments (see Sect. 3.4.3). The parameters of a tool
also have to be specified; for normative tools the parameter
description follows a distinct syntax, while non-normative
tools may define their own syntax and semantics.

The parameter description for JPSEC normative tools con-
sists of a template identifier and the corresponding template
parameters for the tool, the processing domain, the granular-
ity, and a list of the actual parameter values VL (initialization
vectors, MAC values, digital signatures, …).

There are three basic templates for JPSEC normative tools,
namely the decryption template, the authentication template
and the hash template. These are further subdivided. For the
decryption template a block cipher template, a stream cipher
template, and an asymmetric cipher template are defined.
Several block ciphers are available (AES, TDEA, MISTY1,
Camellia, Cast-128, and Seed), one stream cipher (SNOW 2),
and one asymmetric cipher (RSA-OAEP).

The processing domain is used to indicate in which domain
the JPSEC tool is applied. The possible domains are: pixel
domain, wavelet domain, quantized wavelet domain, and
codestream domain.

The granularity defines the processing order (indepen-
dently of the actual progression order of the JPEG2000 code-
stream) and the granularity level. The granularity level may
be component, resolution, layer, precinct, packet, subband,
codeblock, or the entire ZOI. Thus the ZOI specifies a sub-
set of the image data (either in the image domain or in the
compressed domain), while the processing order specifies
in which order these data are processed (which may differ
from the progression order of the protected JPEG2000 code-
stream). The granularity level specifies the units in which
the data are processed (which can be a further subset of

123

D. Engel et al.

the data specified through the ZOI). The list of parameter
values VL contains the appropriate parameter for each of
these processing units.

The following example is given in the standard [32] to
illustrate the relationship between ZOI, processing order,
granularity level and the list of parameter values: A
JPEG2000 codestream has been encoded with resolution pro-
gression (RLCP) and 3 resolution levels and 3 layers. The
ZOI is defined by resolutions 0 and 1. The processing order is
layer and the granularity level is resolution. Figure 2
illustrates the process, the value list VL would contain hash
values (if hashing is applied).

The granularity syntax is employed by secure scalable
streaming (SSS) as proposed in [1,2,62,63]. Its implemen-
tation within JPSEC is discussed in the next section.

3.4.3 JPSEC and bitstream-oriented encryption

The normative tools of JPSEC enable the rearrangement of
JPEG2000 data (except the main header) into segments. It is
possible to conduct the rearrangement across packet
borders. The segments are then encrypted (see Fig. 3).
Segment-based encryption enables very efficient secure

Fig. 2 Granularity level is resolution

Fig. 3 Segment-based encryption

transcoding, i.e., SSS, because the meta-data of segmentation
and encryption is stored in the SEC marker segment. Hence
a JPSEC transcoder only needs to parse the main header
for the SEC segment and truncate the JPSEC codestream at
the according position. Compression performance is hardly
influenced by this approach.

The rest of the JPEG2000 codestream (tile headers, packet
headers and packet bodies) is reassembled into segments. The
advantage of this approach is a low transcoding complexity,
while a disadvantage is that rate adaption can only be done
by a JPSEC-capable transcoder (but not by a transcoder that
is only JPEG2000-compliant). In general, the advantages of
format-compliant encryption are lost, but scalability is pre-
served to a definable level.

Format-compliant bitstream-oriented encryption schemes
(see Sect. 5) can be implemented as non-normative tools.

3.4.4 JPSEC and compression-integrated encryption

JPSEC allows to specify the ZOI via image related param-
eters. The area specified by the ZOI may be encrypted by
employing a normative tool. Normative tools allow the spec-
ification of a processing domain, e.g., pixel domain, wavelet
domain, quantized wavelet domain, or codestream domain. If
the wavelet domain or quantized wavelet domain is chosen,
the processing domain field indicates whether the protection
method is applied on the sign bit or on the most significant
bit [32, p. 35]. Hence the encryption of rather freely definable
portions of the wavelet transformed data is possible.

3.5 The interplay of JPEG2000, JPSEC and JPEG2000
encryption

JPSEC can be used to secure JPEG2000 codestreams. Annex
C of the JPSEC standard [32, p. 91] elaborates in more detail
on the interoperability of JPSEC and the other parts of the
JPEG2000 standard suite. As a JPEG2000 Part 1 decoder will
skip marker segments that it does not recognize (see [34, p.
28]), it is possible to place the SEC marker segment in the
main header of JPEG2000 codestream and still preserve com-
pliance to JPEG2000 Part 1. The term “Part 1 compliance”
is defined in [32, p. 91] for JPSEC codestreams that have
a strictly defined behavior for a JPEG2000 Part 1 decoder.
Note that this definition of “Part 1 compliance” is stricter
than the definition of “format compliance” for JPEG2000
given in Sect. 3.3. However, the definition given in Sect.
3.3 is sufficient for assessing the compliance for JPEG2000
encoders according to Part 4 of the standard and will therefore
be sufficient for assessing format compliance. Many of the
JPEG2000 encryption approaches will produce codestreams
that are in accordance with both compliance definitions, e.g.,
the encryption via a random permutation of the wavelet coef-
ficients (see Sect. 6.2.2).

123

A survey on JPEG2000 encryption

In summary, JPSEC can be used to format-compliantly
signal all the necessary parameters of a format-compliant
encryption scheme.

The extended coding system of JPEG2000 Part 2 offers
vast parameter spaces, and thus keeping the actual parameters
secret (the chosen decomposition structure, or the wavelet
filter) can be employed as a form of compression-integrated
encryption. The advantage of this approach is that no addi-
tional decompression/decryption software is necessary, only
the parameters have to be encrypted and decrypted.

Although the JPSEC standard has been tailored to
JPEG2000 Part 1 codestreams, it is reasonable to employ
the JPSEC syntax for the encryption of JPEG2000 Part 2
codestreams (e.g., if secret JPEG2000 Part 2 compression
options are employed, the corresponding byte ranges con-
taining these parameters are encrypted). Annex C.2 of the
JPSEC standard discusses the interoperability with Part 2
and mentions that the usage of JPSEC can be signalled via
Part 2 (CAP marker segment).

3.6 Application of the JPEG2000 standard

JPEG2000 does not yet dominate the mass market, but there
are several areas where it has been widely adopted. Most
interesting for the scope of this survey is the Digital Cinema
Specification that defines JPEG2000 as intra-frame codec.
As content and copyright protection play a major role in this
area there is extensive coverage of security issues in the DCI
specification.

3.6.1 DCI’s digital cinema specification

Despite the extensive coverage of security issues in [8], the
defined encryption methods are conventional. The digital
video is divided into reels of 10–20 min. These reels consist
of several track files that may contain image, audio, subti-
tle and other meta-data [8, p. 44]. A track file starts with a
file header and ends with a file footer. The track file body
consists of several KLV (key length value) units. The key is
an identifier for the content of the KLV unit, length specifies
the length of the value. For an image track file, the image
data is wrapped using KLV on an image frame boundary
[8, p. 47]. For encryption, KLV units are simply mapped to
new K∗L∗V∗. While K∗ and L∗ are the new identifier and
length, V∗ is composed of cryptographic options, K, L and
the encrypted V. In other words: the video is encrypted frame
per frame. The application of the AES cipher in CBC mode
with 128 bit keys is required.

The JPEG2000 file is fully encrypted, only its length and
the fact that it is an image track file are known. Frame drop-
ping can easily be implemented by ignoring the correspond-
ing KLV unit. To transcode an encrypted image, its entire
data has to be decrypted. Ciphertext bit errors affect one

block (16 bytes) and one bit of the JPEG2000 file [51]. The
KLV, CBC and JPEG2000 systems are prone to synchroni-
zation errors, e.g., bit loss. For images this method corre-
sponds to the naive encryption approach, while for videos
it is notable that the compressed frame sizes are preserved
in the encrypted domain and can potentially be used as a
fingerprint.

3.6.2 Software implementations

JPEG2000 Part 1 is implemented in the reference software:
There is a C implementation (JasPer) and a Java implemen-
tation (JJ2000). Apart from the reference software there are
several commercial implementations, e.g., Kakadu. For our
experiments we employ JasPer (Version 1.900.1), JJ2000
(Versions 4.1 and 5.1), and Kakadu (Version 6.0).

4 Evaluation criteria for JPEG2000 encryption

In addition to the different categories discussed in Sect. 2,
which relate to intended level of security, field of application
and mode of operation, criteria for the evaluation of the differ-
ent encryption schemes are necessary. While their diversity
makes it hard to directly compare all schemes, there are some
criteria common to all encryption schemes that can be used
in an evaluative comparison.

4.1 Compression

Compression performance may suffer if encryption is
applied. While most of the bitstream-oriented encryption
schemes have no or only a negligible influence on the
compression performance, many compression-integrated
schemes may dramatically decrease the compression perfor-
mance, especially if inaccurate parameters are chosen. How-
ever, the influence on compression performance may also
depend strongly on the source image characteristics.

4.2 Security

Given the different security levels of various application sce-
narios (as defined above) the definition of security will vary.
For high-level security every bit of information that is pre-
served during encryption reduces the security. However, none
of the format-compliant encryption schemes discussed in this
survey complies with these high standards. At least the main
headers and the packet structure (packet body and header
borders) are preserved in the encryption process. Thus link-
ing a plaintext and a ciphertext is to some extent possible for
all of the schemes.

For content security it has to be assessed if the image
content is still discernible; the standard image quality metric

123

D. Engel et al.

PSNR is not well suited for this task. There is a similar situa-
tion for sufficient encryption: it has to be assessed whether the
image still has a commercial value. For transparent/percep-
tual encryption a certain image quality has to be preserved,
but an attacker shall not be capable to further increase the
image quality by exploiting all available information (e.g.,
the encrypted parts).

Hence, security for all but the high-level case may be
defined by the level of resistance to increase the image
quality by an attack. These attacks can exploit any of the
preserved data, as well as context specific side channel infor-
mation (e.g., some statistics of the source images may be
known). This cryptoanalytic model for multimedia encryp-
tion has been proposed in [49] (furthermore a public low
quality version is assumed here, which is not appropriate for
the case of content security).

For these definitions of security the evaluation of image
quality is necessary.

4.2.1 Evaluation of image quality

The peak-signal-to-noise-ratio (PSNR) is no optimal choice
for assessing image quality. A state-of-the-art image quality
measure is the structural similarity index (SSIM) [61] and
it ranges, with increasing similarity, between 0 and 1. Mao
and Wu [42] propose a measure specifically for the security
evaluation of encrypted images that separates luminance and
edge information into a luminance similarity score (LSS)
and an edge similarity score (ESS). LSS behaves in a way
very similarly to PSNR. ESS is the more interesting part and
ranges, with increasing similarity, between 0 and 1. We use
the weights and blocksizes proposed by [42] in combination
with Sobel edge detection.

4.3 Complexity

The proposed schemes are diverse, some need to run through
the entire JPEG2000 compression pipeline (compression-
integrated), others do not (or only partly). For some compres-
sion-integrated proposals the complexity of the compression
process is increased (as for wavelet packets as described in
Sect. 6.1.1), while for others the compression complexity
remains unchanged (as for parameterized filters as described
in Sect. 6.1.2).

Initially, one would assume that JPEG2000 encryption has
to compete against conventional encryption (naive approach)
in terms of runtime performance. However, most of the (run-
time) benefits of JPEG2000 specific encryption schemes are
due to the preservation of image and compressed domain
properties in the encrypted domain. Probably the most impor-
tant feature is scalability. If scalability is preserved, rate adap-
tation can be conducted in the encrypted domain, whereas
otherwise the entire encrypted codestream needs to be

decrypted. The issue of key distribution is thereby greatly
simplified, as the key does not need to be present for rate adap-
tation. All of the discussed JPEG2000 encryption schemes
preserve the scalability to some extent and thus the direct
comparison of the runtime with the naive approach is not
representative for the actual runtime benefits.

In order to give an estimate of runtime performance of
the various JPEG2000 encryption schemes, several time esti-
mates are needed as reference. The bitstream-oriented
schemes need to identify the relevant portions of the code-
stream. There are three possibilities: The first is to analyze the
codestream in the same manner as a JPEG2000 decoder, basi-
cally the header and the packet headers need to be decoded.
An alternative is to employ SOP and EPH marker sequences
to identify the relevant portions. This method is extremely
simple (parsing for two byte marker sequences) compared
to relatively complex packet header decoding via several tag
trees and contextual codes. The third possibility is to employ
JPSEC as meta-language to identify the relevant parts at the
decrypter/decoder side.

For compression-integrated schemes the runtime com-
plexity of the compression pipeline is necessary.

The following numbers are based on a test set of 1,000
images (512 × 512, 2 bpp, single quality layer) and aver-
ages of 100 trials on an Intel(R) Core(TM)2 CPU 6700 @
2.66 GHz. The results for header decoding have been obtained
by modifying the reference software JasPer (see Sect. 3.6.2)
and the results for SOP/EPH parsing have been obtained by
a custom implementation. Additionally, for compression and
decompression the results of the Kakadu implementation are
given. Empirical results for:

• time of header decoding
very low (370.92 fps, 23.18 MB/s)

• time for SOP/EPH parsing
extremely low (1030.93 fps, 63.84 MB/s)

• time of compression
high (JasPer: 12.89 fps, 0.81 MB/s, Kakadu with 2 threads:
41.19 fps, 2.57 MB/s, Kakadu with 1 thread: 25.00 fps,
1.56 MB/s)

• time of decompression
high (JasPer: 21.45 fps, 1.34 MB/s, Kakadu with 2
threads): 60.18 fps, 3.76 MB/s, Kakadu with 1 thread:
40.23 fps, 2.51 MB/s)

Compared to compression and decompression, header
decoding and SOP/EPH parsing are extremely computation-
ally inexpensive. Therefore bitstream-oriented techniques
are preferable if the visual data is already compressed. How-
ever, SOP/EPH parsing is significantly less expensive than
header decoding (three times less according to our
results).

123

A survey on JPEG2000 encryption

5 Bitstream-oriented techniques

The basic unit of the JPEG2000 codestream is a packet,
which consists of the packet header and the packet body
(see Sect. 3.1). Almost all bitstream-oriented JPEG2000
encryption schemes proposed in literature target the packet
bodies. Format-compliance can easily be preserved by
adhering to a few syntax requirements (namely those that
relate to bitstream compliance: no sequences in excess
of 0xff8f are allowed and the last byte must not equal
0xff). Scalability is thereby preserved on a packet
basis. Additionally, if the packet headers are preserved, the
lengths of the plaintext parts (packet bodies) have to be
preserved as well. Several bitstream-compliant encryption
algorithms have been proposed and are discussed in
Sect. 5.3.

Scalability at an even finer level than packets can be pre-
served if each CCP (or even more general, each codeword
segment) is encrypted independently. If encryption modes
are employed that need initialization vectors (IVs), it has to
be guaranteed that the IVs can be generated at the decrypting
side as well—even if allowed adaptations of the encrypted
codestream have been performed during transmission. The
generation of truncation and cropping invariant initialization
vectors is discussed in [70]. Basically a codeblock can be
uniquely identified in a JPEG2000 codestream (e.g., by spec-
ifying the component, the tile, the resolution, the subband,
the precinct and the codeblock’s upper left coordinates) and
a codeblock contribution to a packet can be uniquely identi-
fied by the quality layer. In [70] tiles are identified by their
position relative to a reference grid (which is truncation/crop-
ping invariant) and codeword segments are identified by the
first contributing coding pass.

Several contributions discuss how to enable scalable
access control (e.g., a user only has access to the lowest res-
olution, as a preview) [32, p. 65], [27,28,67] with only one
single master key. This is in general achieved via hash chains
and hash trees.

In the following sections, we first discuss replacement
attacks and their simulation by JPEG2000 error concealment
in Sect. 5.1. In Sect. 5.2 we discuss format-compliant packet
body encryption algorithms which require the packet header
to be modified. Note that these schemes can also be applied
on a CCP or codeword segment basis, preserving scalabi-
li-ty on a finer granularity, but requiring every CCP or code-
word segment length in the packet header to be changed.
Then in Sect. 5.3 packet body encryption with bitstream-
compliant algorithms is discussed which allows to preserve
the original packet header (again these algorithms may also
be applied on a CCP or codeword segment basis). Both of
these schemes preserve practically all of the packet header
information, which leads to serious security problems
concerning content security/confidentiality. Therefore a

format-compliant packet header encryption algorithm is dis-
cussed in Sect. 5.4.

5.1 Security issues and attacks

If only parts of the JPEG2000 codestream are encrypted,
these might be identified and replaced [45], thereby tremen-
dously increasing the image quality of a reconstruction as
compared to a reconstruction with the encrypted parts in
place. A way to mimic these kinds of attacks is to exploit
the JPEG2000 built-in error resilience tools [45]: while error
resilience options are optional, they represent the same out-
come that a possible attacker is likely to obtain by identifying
the encrypted portions of the wavelet coefficients by means
of a statistical analysis.

In the case of the JJ2000 decoder—preliminarily the error-
correcting symbols have to be invoked by passing the
-Cseg_symbol on option to the JJ2000 encoder—the
erroneous bitplane and all successive bitplanes are discarded.
This error concealment method protects each cleanup pass
with 4 bits, as at the end of each cleanup pass an addi-
tional symbol is coded in uniform context (0xa). Addition-
ally, further JPEG2000 error concealment strategies can be
employed, such as predictive termination of all coding passes
(invoked with Cterminate all and Cterm_type
predict). Predictive termination of a coding pass protects
the data with 3.5 bits in average, as error concealment infor-
mation is written on the spare least significant bits of the
coding pass.

It has to be noted that the JJ2000 library has minor bugs
in the error concealment code (for details please cf. to [54]
and [53]). The bug-fixed JJ2000 source code is available at
http://www.wavelab.at/~sources/.

Attacks which use the error-concealment mechanisms to
identify and replace the encrypted portions of the codestream
are called error-concealment attacks or replacement attacks.

5.2 Packet body encryption with packet header modification

One of the first contributions to JPEG2000 security was made
by Grosbois, et al. [25]. The packet body data is conven-
tionally encrypted (they propose to XOR the packet body
bytes with key bytes derived from a PRNG), which intro-
duces the problem of superfluous marker generation (conven-
tional encryption does not preserve bitstream compliance),
however, this topic is not further discussed in [25]. They pro-
pose storing security information (e.g., encryption key, hash
value) at the end of a codeblock’s bitstream after an explicit
termination marker. This method was later adapted in sev-
eral contributions, namely by Dufaux and Ebrahimi [13] and
Norcen and Uhl [45].

The application of this method is not as straightforward
as it seems to be. “The codeword segment is considered to

123

D. Engel et al.

be exhausted if all Lmax bytes (all the bytes contributing to
a codeword segment) are read or if any marker code in the
range offf90h throughffffh is encountered.” [56, p. 483].
In practice this means that it is not sufficient to simply add
explicit termination markers at the end of the codeblock’s
bitstream in order to add data to the codestream, further-
more the overall length of the packet has to be adjusted in
the packet header. Nevertheless, it is possible to overwrite
packet body data (then the packet header does not need to be
changed), but this causes noise in the reconstructed image.
Only if the termination marker is placed at the end of the code-
stream (where the desired image quality has already been
reached) the image quality is not lowered. However, it has to
be taken into account that the last packets will be the first to
be removed in the process of rate adaptation.

The approach can avoid special encryption schemes by
storing the information about superfluous markers after the
explicit termination marker. Neither in [25] nor in [45] is
this topic discussed further. Norcen and Uhl [45] define the
encryption process, namely AES in CFB mode.

We propose a simple method to avoid marker sequences:
We use the 0xff8f sequence to signal that a sequence in
excess or equal to 0xff8f has been produced. Hence for
every generated sequence in excess of0xff8e an additional
byte has to be stored. This byte can easily be appended to the
packet body, the subtraction of one (all appended bytes are
in excess of 0x8e) removes the possibility of marker code
generation in the appended bytes.

In [66], Mao and Wu discuss several general communica-
tion-friendly encryption schemes for multimedia. Their work
includes syntax-aware bitstream encryption with bit stuff-
ing that can be applied to JPEG2000 as well. In the basic
approach for JPEG2000, conventional encryption is applied
and for every byte in excess of 0xff an additional zero bit
is stuffed in. In this way, bitstream compliance of the packet
bodies is achieved. The decoder reverts this process by delet-
ing every stuffed zero bit after a 0xff byte in the ciphertext
and then conventionally decrypting the resulting modified
ciphertext.

It has to be considered that the JPEG2000 packet body
has to be byte-aligned. Therefore, if the number of stuffed
bits is not divisible by eight, additional bits have to be added.
We propose simply filling up the remaining part with zero
bits. Thereby no marker can be generated. The resulting
encrypted packet body length then has to be updated in the
packet header. To reconstruct the ciphertext, which is then
decrypted, the bit stuffing procedure is reversed and the super-
fluous zero bits (outside the byte boundary) are ignored.

Compression Compression performance is negligibly
reduced, depending on the method to achieve bitstream com-
pliance. If bitstream compliance is achieved by signaling vio-
lations with 0xff8f, one additional byte for approximately

every 579 bytes is generated (on average every 256th byte is
a0xff byte and the next byte is in 113 of 256 cases in excess
of0x8e). If bitstream compliance is achieved via bit stuffing
on average one bit every 256 bytes plus the 0–7 padding bits
are added.

Security The headers are not encrypted and only slightly
modified.

Performance These schemes perform very well, however,
as the packet headers need to be altered, JPEG2000’s tier2
decoding and encoding has to be (at least partly) conducted.

5.3 Packet body encryption with bitstream-compliant
algorithms

In the following bitstream-compliant encryption algorithms
are presented. Bitstream-compliant encryption algorithms
differ only in terms of information leakage (amount of
preserved plaintext) and computational complexity. The
common properties and an experimental performance anal-
ysis of the discussed schemes are discussed in Sect. 5.3.8.

5.3.1 Conan et al. and Kiya et al.

The algorithm by Conan is not capable of encrypting all of the
packet body data but can be implemented rather efficiently
[6]. Only the 4 LSBits (least significant bits) of a byte are
encrypted, and only if the byte’s value is below 0xf0. In
this way no sequence in excess of 0xff8f is produced. It
is easy to see that no bytes are encrypted to 0xff, because
only the lower half of the bytes below 0xf0 are encrypted.
The byte0xff is preserved. Hence a byte sequence in excess
of 0xff8f could only be produced after a preserved 0xff
byte. However, due to the bitstream-compliance the plaintext
byte after a 0xff byte is not in excess of 8f.

Kiya et al. [35] extend this approach to an even more
lightweight and flexible scheme. They propose encrypting
only one randomly chosen byte out of m bytes. In this way
the choice of the parameter m can trade-off security for per-
formance. Additionally they propose a random shift of the
4 LSBits instead of encryption. The shifting operation can
be applied to the 4 LSBits of all bytes, while preserving bit-
stream compliance.

Security The information leakage is very high, even with the
most secure settings more than half of the compressed coef-
ficient data remains unencrypted. Assuming state-of-the-art
underlying encryption techniques, the encrypted half bytes
are irrecoverable by cryptographic means and therefore the
whole arithmetic codeword is in general irrecoverable.

123

A survey on JPEG2000 encryption

The shifting algorithm is less secure since there are only 4
possible ciphertexts for a half byte as compared to 16 for the
encryption algorithm (which of course have to be different
for every byte). Figures 4 and 5 show the result of the direct
reconstruction, i.e., the full reconstruction of the encrypted
codestream without trying to conceal the encrypted parts, and
the concealment attack and different values of the parame-
ter m. The shifting algorithm preserves more image plaintext
than the encryption algorithm. Apart from error concealment
options (segmentation symbol, predictive termination of all
coding passes and SOP and EPH marker), the compression
parameters have been set to JJ2000 default values, i.e., layer
progression, 32 quality layers and no limit on bitrate (default
bitrate is 100 bpp). If the 4 LSBits are encrypted, hardly any
image information is visible for m up to 10. If the 4 LSBits
are shifted, image information starts to become visible for m
greater than one.

Performance Half byte encryption and permutation cannot
be implemented much more efficiently than byte encryption
on standard CPUs. For every encrypted byte one condition
(is the byte below 0xf0) has to be evaluated.

5.3.2 Wu and Ma

Wu and Ma [65] greatly reduce the amount of information
leakage compared to the algorithm of Conan and Kiya (see
Sect. 5.3.1). They propose two algorithms for format-compli-
ant packet body encryption. Both algorithms only preserve
the 0xff byte and its consecutive byte and can be imple-
mented efficiently.

Fig. 4 Kiya: Encryption of the 4 LSBits: direct reconstruction

Fig. 5 Kiya: Encryption of the 4 LSBits: concealment attack

Stream Cipher Based Algorithm:
Their first algorithm is based on a stream cipher (in [65]

RC4 is employed). To that end a keystream is generated. By
discarding 0xff bytes, a modified keystream S is obtained.
In the following, the term si denotes the i th byte of the key-
stream, mi denotes the i th byte of the packet body (plaintext)
and ci denotes the i th ciphertext byte.

The encryption works byte by byte on the packet body in
the following way:

If m1 equals 0xff
then c1 = m1

else c1 = m1 + s1 mod 0xff
For i = 2 to length

If (mi equals 0xff) or (mi−1 equals 0xff)
then ci = mi

else ci = mi + si mod 0xff;

Every byte that is not a 0xff byte or the successor of
a 0xff byte is encrypted to the range [0x00,0xfe]. The
decryption algorithm works similarly:

If c1 equals 0xff
then m1 = c1

else m1 = c1 − m1 mod 0xff
For i = 2 to length

If (mi equals 0xff) or (mi−1 equals 0xff)
then ci = mi

else mi = ci − si mod 0xff

This algorithm avoids producing values in excess of0xff8f,
since no 0xffs are produced and all two byte sequences
(0xff, X) are preserved.

Block Cipher Based Algorithm:
This algorithm preserves all two byte sequences (0xff,X)

as well, and basically works as follows:

Select all bytes of the packet body that are neither equal to
0xff nor a successor of a 0xff byte.
Split the selected bytes into blocks and encrypt them iter-
atively until no 0xff is contained in the ciphertext.
Replace the selected bytes in the original block with the
encrypted bytes.

When the number of selected bytes is not a multiple of the
blocksize, ciphertext stealing (as described in [51]) is pro-
posed. This algorithm does not contain any feedback mech-
anisms (equal packets yield equal ciphertexts, a basis for
replay attacks). In [65] AES is employed.

123

D. Engel et al.

Security Only (0xff, X) sequences are preserved, which
renders the reconstruction of the image content unfeasible.

Performance The stream cipher based algorithm (as pre-
sented) needs to evaluate two conditions for every encrypted
byte and needs to perform a modulo operation for every
encrypted byte. Every 0xff byte has to be discarded from
the keystream as well, thus slightly more encryption opera-
tions are necessary compared to conventional encryption.

For the block cipher based algorithm the probability for
a ciphertext that does not contain any 0xff byte has to be
assessed. In general this probability is (255

256)n , where n is the
length of the plaintext and the encryption method is assumed
to be uniformly distributed. This results in a success proba-
bility of approximately 96.9% for a block of 8 bytes, which
increases the encryption time about 3.18% compared to the
underlying encryption routine (AES with 16 bytes or Triple-
DES with 8 byte are proposed in [65]). For a block of 16
bytes the success probability is 93.9%, which corresponds to
an overhead of 6.46%. Thus the overhead induced by addi-
tional encryption is modest as well. However, this algorithm
has additional copy operations (the bytes have to be copied
to a buffer before the iterative encryption).

5.3.3 Dufaux et al.

The encryption algorithm presented by Dufaux et al. [12] is
basically an improvement of the algorithm by Wu and Ma
[65] in terms of reduced information leakage. Only 0xff
bytes are preserved. They propose the usage of the SHA1
PRNG with a seed of 64 bit for keystream generation;
however, any other cryptographically secure method of gen-
erating an appropriate keystream can also be applied. The
encryption procedure is the following:

If mi equals 0xff
then ci = mi

If mi−1 equals 0xff
then ci = mi +si mod 0x8f+1, and si ∈[0x00,0x8f].
If mi−1 does not equal 0xff
then ci = mi + si mod 0xff, and si ∈ [0x00,0xfe].

The proposed method to obtain a number in the right range is
the iterative generation of random numbers until a number in
the right range is produced. Decryption works analogously.

Security The information leakage is further reduced com-
pared to the algorithm by [65], only0xffbytes are preserved
(every 128th byte, cf. Sect. 5.3.8).

Performance Slightly more keystream bytes have to be
used, since the 0xff bytes have to be discarded for the key-
stream and after a 0xff byte, bytes with values in excess

of 0x8f have to be discarded. Additionally, one condition
and one modulo operation have to be evaluated for every
encrypted byte.

5.3.4 A JPSEC technology example

In [32, p. 72] a method for format-compliant encryption is
sketched in Annex B.5 (Technology examples: Encryption
tool for JPEG2000 access control). The document, how-
ever, does not contain all necessary details to implement the
method. On the contrary, in [29] it is pointed out that the
proof for the reversibility of the algorithm is still missing.

The encryption process is defined in the following way:

The packet body is split into two byte sequences.
Every two byte sequence of the packet body is temporarily
encrypted.
If the temporary byte sequence or its relating code is more
than0xff8f it is not encrypted, otherwise the temporarily
encrypted code is outputted as ciphertext.

If the length of the plaintext is odd it is proposed to leave
the byte in plaintext or pad an extra byte. The padding of
an extra byte would require the modification of the packet
header. The decryption process is similarly specified:

The packet body is split into two byte sequences.
Every two byte sequence is temporarily decrypted.
If the temporary byte sequence or its relating code is more
than0xff8f it is not decrypted, otherwise the temporarily
decrypted code is outputted as plaintext.

It is notable that the underlying encryption routine for two
byte sequences must satisfy the following property e(p) =
c = d(p) and thus e(e(p)) = p. This is met by all encryp-
tion modes that xor the plaintext with a keystream (e.g., OFB
mode). The term relating code is not further specified. Fur-
thermore it is possible for an encrypted packet body to end
with0xff, which might lead to problems (a marker sequence
at packet borders is possibly generated).

In [15] an interpretation for the term relating code is given
which makes the scheme reversible (a proof is given):
Let Pj denote the j th plaintext two byte sequence, I j the j th
temporarily encrypted two byte plaintext sequence, C j the
j th two byte ciphertext sequence and D j the j th temporar-
ily decrypted ciphertext sequence. The term X |Y denotes the
concatenation of the second byte of X and the first byte of
Y , where X and Y are arbitrary two byte sequences. If the
following conditions are met, then the ciphertext C j is set to
the temporarily encrypted sequence I j :

123

A survey on JPEG2000 encryption

E1 I j ≤ 0xff8f
Necessary to obtain a bitstream-compliant two byte
ciphertext sequence.

E2 Pj−1|I j ≤ 0xff8f
Necessary to ensure bitstream compliance if the previ-
ous two byte sequence has been left in plaintext.

E3 I j−1|I j ≤ 0xff8f
Necessary to ensure bitstream compliance if the previ-
ous two byte sequence has been replaced by the tem-
porarily encrypted sequence.

E4 I j |Pj+1 ≤ 0xff8f
Necessary to be able to preserve the next two byte
sequence in plaintext.

E5 I j−1|Pj ≤ 0xff8f
Necessary to detect E4 for j − 1.

In order to decrypt the j th ciphertext the following con-
ditions have to be met:

D1 D j ≤ 0xff8f
Detection of the violation of E1 (if E1 has not been met
D1 is not met and the ciphertext is the plaintext).

D2 Pj−1|D j ≤ 0xff8f
Detection of the violation of E2.

D3 I j−1|D j ≤ 0xff8f
Detection of the violation of E3.

D4 D j |C j+1 ≤ 0xff8f
Detection of the violation of E4.

D5 I j−1|C j ≤ 0xff8f
Detection of the violation of E5.

All conditions referencing undefined bytes (e.g., P−1) are
by default true. Note that in the case of an even number of
packet body bytes, the last two byte sequence requires special
treatment. In this case the best solution (in terms of maximum
encryption percentage) is to modify E1 and D1 such that a
byte with value 0xff at the end is forbidden.

Security Information leakage occurs whenever a two byte
sequence of plaintext is preserved. Our experiments, which
implement the algorithm specified in [15], reveal that about
every 128th byte is preserved (cf. Sect. 5.3.8). However,
the preserved two byte sequences are not distinguishable
from the encrypted sequences (compared to the previous
bitstream-compliant algorithms, that always preserve the
0xff byte). Thus the algorithm is an improvement over the
previous bitstream-compliant algorithms, as, for example,
the two encrypted versions (different encryption keys) pre-
serve totally different plaintext bytes.

Performance There is a slight performance overhead, due
to the additional comparisons (five conditions for every two
byte sequence).

5.3.5 Wu and Deng

The iterative encryption which works on CCPs was proposed
by Wu and Deng in [68]. While the iterative encryption algo-
rithm is capable of encrypting all of the packet body data,
it cannot be implemented very efficiently. Contrary to most
other schemes the iterative encryption algorithm does not
preserve any plaintext information (except its length). The
CCPs are recursively encrypted until they are bitstream-com-
pliant. The basic encryption algorithm is the following: For
all CCPs:

ccpmid = encrypt(CCP)
While (isNotBitstreamCompliant(ccpmid))

ccpmid = encrypt(CCP)

Output ccpmid as ciphertext.

In [68] addition modulo 256n is proposed as encryption
method for the CCPs, however, encryption with the ECB
mode of a blockcipher and ciphertext stealing [51] works as
well and can be expected to be more efficient (and is there-
fore used in our experiments, see Sect. 5.3.8). Accordingly,
for decryption the ciphertext is iteratively decrypted until it
is bitstream-compliant. This algorithm is fully reversible and
encrypts 100% of the packet body data.

Theoretically this algorithm can easily be extended to
packet bodies by iteratively encrypting the packet bodies.
However, the computational complexity of this algorithm
will in general prevent the application of this algorithm on a
packet body basis.

Compression If this scheme is applied to CCPs there is no
direct influence on the compression performance, but cer-
tain parameter settings will be required to reduce the CCP
lengths (e.g., enough quality layers [52]) that may reduce the
compression performance.

Security There is no information leakage for the encrypted
packet bodies.

Performance A detailed performance analysis of this
scheme has been conducted by Stütz and Uhl [52] who show
that the complexity of this algorithm increases dramatically
with the length of the plaintext. Thus this algorithm is only
feasible for certain coding settings which guarantee short
CCP lengths, e.g., the choice of enough quality layers is
necessary [52]. No stream processing is possible, the entire
plaintext/ciphertext has to be kept in memory.

123

D. Engel et al.

5.3.6 Zhu et al.

Zhu et al. [70,72] propose to apply their bitstream-compliant
scheme on a codeword segment basis.

1. The plaintext is XOR ed with a keystream.
2. In this intermediate ciphertext every byte is checked to

meet the bitstream compliance. If an illegal byte (its value
concatenated with the value of the next byte is in excess
of 0xff8f) is found (at index currIdx), this and the next
(if there is one) intermediate ciphertext byte are replaced
with the plaintext bytes at the same location (same indi-
ces).

(a) Now it is checked whether this replacement results
in a bitstream syntax violation of the decrypted
intermediate ciphertext.

i Therefore the previous byte of the intermediate
ciphertext is decrypted and together with the
decrypted plaintext byte checked for bitstream
compliance (are the two bytes concatenated in
excess of 0xff8f).

ii If this two byte sequence is illegal, this byte
is also replaced with the plaintext byte in the
intermediate ciphertext.

iii This procedure is conducted backwards until
no more illegal byte sequences are found or a
certain index (lastModIdx+1, which is initial-
ized with −1) is reached.

(b) If any byte has been replaced in (a), the intermedi-
ate ciphertext itself is checked for bitstream com-
pliance.

(i) Therefore the previous byte of the last inter-
mediate ciphertext byte that has been
changed to the plaintext is checked for bit-
stream compliance.

(ii) If it is illegal, it is replaced with the corre-
sponding plaintext byte.

(iii) This procedure is conducted backwards until
no more illegal byte sequences are found or
a certain index (lastModIdx + 1) is reached.

3. (a) and (b) are repeatedly executed until no illegal bytes
are found in (a) and (b).

4. The index lastModIdx is then set to currIdx and the for-
ward search for illegal bytes in the intermediate
ciphertext is continued.

5. At the end the intermediate ciphertext is outputted as
ciphertext.

Why is this scheme reversible and why is the decryp-
tion algorithm the same as the encryption algorithm? If no
replacements have been conducted this is obviously the case
as M XOR S XOR S equals M . A precise argument for the

general case may be rather complex, but the scheme relies
on the simple fact that a certain plaintext sequence and a
certain key sequence result in an illegal ciphertext, which
may be cause for illegal intermediate decrypted sequences
(see (a)) or illegal intermediate ciphertexts (see (b)), which
are all “switched back” to the plaintext. As for those pairs
of sequences the plaintext is preserved, this property is pre-
served for the ciphertext and thus perfect reconstruction is
possible.

Security According to the authors 0.36% of the plaintext
are preserved [70].

Performance The encryption via XOR is very fast, but the
searching for bitstream syntax violations is necessary. The
entire plaintext/ciphertext has to be kept in memory (no
stream processing).

5.3.7 Fang and Sun

The algorithm presented by Fang and Sun in [22] does not
preserve any plaintext byte sequence and can be applied to
CCPs and packet bodies. Nevertheless it is a computation-
ally rather inexpensive procedure that concurrently works on
three consequent plaintext bytes (the other schemes only con-
sider two consequent plaintext bytes). The actual encryption
and decryption algorithms are rather complex, therefore we
will also give their pseudo code.

The first byte is encrypted depending on the second byte.
If the second byte is in excess of 0x8f, then according to
the bitstream syntax, the first byte must not be encrypted to
0xff. If m1 + s1 equals 0xff, then c1 is set to m1 + 2s1,
which cannot yield 0xff too (only possible if s1 is zero and
m1 is0xff, but then, according to the bitstream compliance,
the second byte cannot be in excess of 0x8f).

The second byte (and all following, except the last one)
is encrypted depending on the previously encrypted plain-
text byte, the previous cipher byte and the encryption of the
previous byte (if it employed double encryption), the current
plaintext byte and the next plaintext byte. There are basically
three cases:

1. If mi−1 or ci−1 are 0xff then the current byte is
encrypted to the range 0x00 to 0x8f (this is possible
because both facts indicate that the current plaintext byte
is not in excess of 0x8f).

2. If the current byte is in excess of 0x8f and the previous
byte has been encrypted twice, then this property has to
be preserved (encryption in the range 0x90 to 0xff) to
signal the double encryption in the decryption process.
The next plaintext byte has to be considered as well; if it
is in excess of 0x8f, then the current cipher byte must
not become 0xff, which is again avoided by double
encryption.

123

A survey on JPEG2000 encryption

3. In all other cases the byte is encrypted and double encryp-
tion is conducted if the next byte is in excess of 0x8f
and the cipher byte would be 0xff.

The last byte is encrypted such that it is ensured that the
cipher byte is in the same range (either 0x00 to 0x8f or
0x90 to 0xff).

We can confirm that this encryption process is reversible
(also experimentally). The pseudo code of the encryption and
the decryption algorithm is given.

The encryption algorithm works in the following way:

c1 = cmid = (m1 + s1) mod 256
If cmid equals 0xff and m2 ≥0x90
then c1 = cmid + s1 mod 256
For i = 2 to length − 1

If mi−1 equals 0xff or ci−1 equals 0xff
then ci = (mi + si) mod 0x90, cmid = 0x00
else

if cmid equals 0xff
then cmid = (mi − 0x90+ si) mod 0x70+ 0x90

If cmid equals 0xff and mi+1 ≥ 0x90
then ci = (cmid −0x90+ si) mod 0x70+0x90
else ci = cmid

else cmid = (mi + si) mod 256
If cmid equals 0xff and mi+1 ≥ 0x90
then ci = (cmid + si) mod 256
else ci = cmid

If mlength < 0x90
then clength = (mlength + slength) mod 0x90
else clength = (mlength − 0x90+ slength) mod 0x70+
0x90

If clength equals 0xff
then clength = (clength −0x90+slength) mod 0x70+
0x90

The decryption algorithm works in the following way:

m1 = mmid = (c1 − s1) mod 256
If mmid equals 0xff and c2 ≥ 0x90
then m1 = (mmid − s1) mod 256

For i = 2 to length − 1

If mi−1 equals 0xff or ci−1 equals 0xff
then mi = (ci − si) mod 0x90, mmid = 0x00
else

if mmid equals0xff
then mmid = (ci − 0x90− si) mod 0x70+ 0x90

If mmid equals 0xff and ci+1 ≥ 0x90
then mi = (mmid−0x90−si) mod 0x70+0x90

else mi = mmid

else mmid = (ci − si) mod 256
If mmid equals 0xff and ci+1 ≥ 0x90
then mi = (mmid − si) mod 256
else mi = mmid

If clength < 0x90
then mlength = (clength − slength) mod 0x90
else mlength = (clength − 0x90− slength) mod 0x70+
0x90

If mlength equals 0xff
then mlength = (mlength − 0x90 − sn) mod 0x70 +
0x90

Security No byte sequence is preserved. However, from a
cryptographic point of view there is a small weakness in this
scheme.

The encryption operation (ci +si) mod 0x90 introduces
a bias and therefore does not meet high cryptographic stan-
dards. The same holds for the operation (mmid −0x90+ si)

mod 0x70+ 0x90. However, this bias can be removed by
requiring the proper range for si to be 0x00 to 0x8f in the
first case and 0x00 to 0x6f in the second case. This can
easily be integrated into the algorithm by simply ignoring
out-of-range keystream bytes in case of an encryption to a
restricted range. In case of encryption to the range 0x00 to
0x6f it is more efficient to halve the key byte before testing
its range.

The answer to the question to which extent plaintext infor-
mation is preserved in this scheme is beyond the scope of this
survey paper. It is, however, intuitively dubious that every
possible codeword has the same probability of becoming a
plaintext’s ciphertext. Nevertheless it needs to be pointed out
that the information leakage is considered to be less than in
all other algorithms except the iterative algorithm.

Performance Several conditions have to be evaluated in
order to encrypt a single byte. If bias is to be prevented some
keystream bytes have to be discarded.

5.3.8 Discussion of packet body encryption
with bitstream-compliant algorithms

Several properties are shared by all approaches that employ
bitstream-compliant algorithms.

Compression There is no influence on compression per-
formance if bitstream-compliant encryption algorithms are
applied.

Security The packet headers are preserved if bitstream-com-
pliant encryption algorithms are applied (as proposed in

123

D. Engel et al.

literature). There are known attacks (e.g., the error conceal-
ment attack) concerning selective/partial application of these
bitstream-compliant schemes (see Sect. 5.1). The packet body
encryption with bitstream-compliant encryption algorithms
is not secure under IND-CPA (Indistinguishability under cho-
sen-plaintext attack), as a potential attacker is very likely to
successfully identify the corresponding ciphertext for a plain-
text compressed image.

Most of the proposed schemes preserve plaintext bytes or
properties, which is not a major concern as the headers and
the packet headers already deliver a distinct fingerprint of the
JPEG2000 codestream [15] (which is preserved in any case
for all of the schemes, cf. Sect. 5.4).

However, only the iterative encryption algorithm of Wu
and Deng is expected to be secure against IND-CPA attacks
(only considering a packet body and disregarding the finger-
print obtained by the headers and packet headers).

In the following we present an empirical evaluation of
information leakage of the presented bitstream-compliant
encryption algorithms.

Empiric Information Leakage: In order to assess the
amount of information leakage we give the average number
of bytes until one byte is preserved.

Average number of bytes for one byte preservation
Conan and Kiya (m = 1) 2
Mao and Wu 125.61
Dufaux 251.22
JPSEC techn. example 128.45
Zhu 312.50

The algorithm by Conan and Kiya preserves at least half of
the plaintext, hence linking ciphertext and plaintext is obvi-
ously trivial. Plaintext two byte sequences starting with0xff
are preserved in the ciphertext for the two algorithms by Mao
and Wu, while only the 0xff bytes are preserved for the
algorithm by Dufaux et al. Hence plaintext and ciphertext
have the same number of these sequences or 0xff bytes at
the same positions, which greatly simplifies the linking of
the two. For the JPSEC Technology Example algorithm it is
not known which sequences are preserved since the decision
if a byte is preserved depends on the temporarily encrypted
bytes (unknown to an attacker) as well. Hence the linking
of plaintext and ciphertext has to exploit higher correlation
between the two, which renders the process more compli-
cated and less certain. Zhu’s algorithm significantly reduces
the information leakage (but stream processing is no longer
possible). The algorithm by Fang and Sun does not preserve
any plaintext byte but preserves some of the properties, which
can be again exploited by a statistical analysis. In detail there
are 4,789 bytes encrypted to the range 0x90 to 0xff and
17,159 bytes encrypted to the range 0x00 to 0x8f of a total

of 2,782,951 encrypted bytes. The certainty of the linking is
expected to be further reduced.

Performance For all of the presented bitstream-compliant
encryption algorithms, except the iterative encryption algo-
rithm (see Sect. 5.3.5), the throughput (encrypted bytes per
second) is independent of the plaintext length (disregarding
the initialization overhead for the underlying encryption rou-
tine). All of the algorithms employ a cryptographic primitive
(stream cipher, block cipher, secure random number gener-
ator) to obtain cryptographically secure randomness. How-
ever, the specific choice of primitives to be employed varies
greatly.

In order to experimentally assess the runtime performance
of the bitstream-compliant encryption algorithms discussed
in this survey a single source of randomness is applied,
namely AES. If a stream cipher is employed in the origi-
nal contribution, AES is used in OFB mode to produce the
keystream (in case of the application of a block cipher AES
is used directly in ECB mode). In the following table sta-
ble results (128 MB of plaintext data have been encrypted
150 times to obtain these results) for the throughput of the
bitstream encryption algorithms are presented.

Throughput of bitstream-compliant encryption
AES OFB 42.71 MB/s
Conan and Kiya (m = 1) 37.87 MB/s
Conan and Kiya (m = 10) 156.63 MB/s
Conan and Kiya (m = 40) 606.83 MB/s
Wu and Ma Stream 27.60 MB/s
Wu and Ma Block 1.53 MB/s
Dufaux 28.18 MB/s
JPSEC techn. example 37.81 MB/s
Zhu 29.30 MB/s
Fang and Sun 27.95 MB/s

For a large test set of 1,000 images the following through-
puts have been achieved with SOP/EPH marker parsing
(including all file reads and parsing). Results are presented for
1, 20 and 100% encryption of the packet body data, thereby
covering the encryption percentage for all of the feasible
application scenarios (see Sect. 5.5).

1% Encrypted
Conan and Kiya (m = 1) 41.13 MB/s
Mao and Wu Stream 40.69 MB/s
Mao and Wu Block 40.88 MB/s
Dufaux 40.66 MB/s
JPSEC techn. example 41.01 MB/s
Zhu 40.87 MB/s
Fang and Sun 40.30 MB/s

123

A survey on JPEG2000 encryption

20% Encrypted
Conan and Kiya (m = 1) 33.41 MB/s
Mao and Wu Stream 29.24 MB/s
Mao and Wu Block 16.19 MB/s
Dufaux 29.67 MB/s
JPSEC techn. example 33.48 MB/s
Zhu 31.66 MB/s
Fang and Sun 29.73 MB/s

100% Encrypted
Conan and Kiya (m = 1) 19.27 MB/s
Mao and Wu Stream 14.05 MB/s
Mao and Wu Block 3.83 MB/s
Dufaux 14.39 MB/s
JPSEC techn. example 19.72 MB/s
Zhu 17.24 MB/s
Fang and Sun 14.67 MB/s

The application of the iterative encryption algorithm (see
Sect. 5.3.5) is not feasible in general as its complexity depends
on the plaintext length. At a plaintext length of 4,000 bytes
the iterative encryption algorithm achieves a throughput of
only 0.07 MB/s.

Another important aspect is memory consumption. All but
three algorithms (the iterative encryption algorithm by Wu
and Deng, the algorithm by Zhu et al., and the block cipher
based algorithm by Wu and Ma) are capable of stream pro-
cessing (requiring only a few state variables), while the mem-
ory consumption of these three algorithms increases linearly
with the plaintext length.

5.4 Format-compliant packet header encryption

In Sect. 3.1.1 we discussed the structure of the JPEG2000
packet headers. These contain crucial (even visual) infor-
mation of the source image. Especially for high-resolution
images, content security/confidentiality can not be met with-
out encrypting the leading zero bitplane information in the
packet headers (see Figs. 6, 7).

Fig. 6 The LZB information of a high resolution image

Fig. 7 The LZB information of a high resolution image

In [15], Engel et al. propose format-compliant transforma-
tions for each piece of information contained in the packet
header. These transformations make use of a random key-
stream, the knowledge of which allows the decoder to obtain
the original packet header. The resulting codestream is
format-compliant.

CCP Lengths and Number of Coding Passes: JPEG2000
explicitly signals both the number of coding passes and the
length of each codeblock contribution.

The algorithm described in [15] redistributes lengths and
coding passes among the codeblocks in a packet. The proce-
dure in pseudo-code is given below. v[] is a vector of non-zero
positive integers (indexing starts at 1).

shuffle (v)
borders = size(v) − 1
For i = 1 to borders

sum = v[i] + v[i + 1]
r = �random(0,1)*sum�
newBorder = ((v[i] + r) mod (sum-1)) + 1;
v[i] = newBorder;
v[i+1] := sum − newBorder

shuffle(v)

The transformation can be reversed easily by unshuffling the
input, traversing it from end to start, using the random num-
bers in reverse order, setting newBorder as:

newBorder := (v[1] − r − 1) mod (sum − 1)
if (newBorder ≤ 0)
then newBorder = newBorder + (sum − 1)

and finally unshuffling the result again.

Leading Zero Bitplanes: The number of leading zero bit-
planes (LZB) for each codeblock is coded by using tag trees
[56]. As discussed above, this information is even more

123

D. Engel et al.

critical than the other classes of header information, as by
using the number of LZB an attacker can obtain informa-
tion on the visual content of the encrypted image (for small
codeblock sizes or high resolutions).

In [15] a random byte is added to the number of leading
zero bitplanes modulo a previously determined maximum
number. For decoding, the random byte is subtracted instead
of added. The maximum number of skipped bitplanes needs
to be signaled to the decoder, e.g., by inserting it into the key
or by prior arrangement.

Inclusion Information: Each packet contains the inclusion
information for a certain quality layer for all codeblocks in a
precinct. There are four types of inclusions that a codeblock
c can have in packet p.

The sequence of inclusion information of each codeblock
is coded depending on the type of inclusion.

In [15], an algorithm is presented that allows to permute
inclusion information for each packet in such a way that the
original inclusion information cannot be derived without the
key and that the resulting “faked” total inclusion information
complies with the semantics of JPEG2000.

Combined Format-Compliant Header Transformation: The
format-compliant transformation of the different pieces of
information in the packet headers can be combined. The for-
mat compliance of the combined format-compliant header
encryption has been verified experimentally by decoding the
encrypted codestreams with the reference implementations
JasPer and JJ2000.

Compression There is basically no influence on compres-
sion performance.

Security The visual information contained in LZB informa-
tion is effectively encrypted (content security/confidentiality
can be achieved). Even if packet body based encryption and
format-compliant header encryption are combined, security
under IND-CPA can still not be achieved as the packet bor-
ders are preserved.

Performance As packet header data is only a small fraction
of the actual codestream, format-compliant header encryp-
tion only introduces a small overhead.

5.5 Application of bitstream-oriented encryption

Bitstream-oriented JPEG2000 encryption is capable of meet-
ing most of the quality and security constraints of the different
applications (cf. Sect. 2.1).

Content security/confidentiality can be achieved by
encrypting all of the packet body and packet header data
(this can be done format-compliantly).

Sufficient encryption can be achieved by encrypting the
packet body data. Depending on the desired level of pro-
tection, partial/selective application of bitstream-oriented is
feasible.

Transparent/perceptual encryption is feasible as well, via
the partial/selective application of format-compliant bit-
stream-oriented schemes.

Only the highest level of security cannot be achieved, as
certain properties of the image (e.g., its compressibility, trun-
cation points, …) will always be preserved.

Norcen and Uhl evaluate JPEG2000 bitstream-oriented
encryption for content security/confidentiality [45] and show
that it is sufficient to encrypt the first 20% of the JPEG2000
codestream (lossy at a rate of 0.25 or lossless) in order to
confidentially hide all image information. Figure 8 shows the
direct reconstruction (i.e., a reconstruction with the encrypted
parts in place) and the corresponding erroneous error-
concealment attack (without the bug-fix mentioned in
Sect. 5.1). However, if correct error concealment (i.e., a suc-
cessful attack) is applied, it turns out that the rule of thumb
does not hold anymore, as illustrated in Fig. 9 for both layer
and resolution progression. We observe that the SSIM index
is capable of measuring the similarity even for very low
quality images in contrast to the PSNR and the ESS (see
Figs. 8, 9). These results also relativize the claim of data

Fig. 8 Confidentiality with JPEG2000: 20% encrypted

Fig. 9 Concealment attack: 20% encrypted, 2bpp

123

A survey on JPEG2000 encryption

confidentiality for the technology example of Annex B.10
[32, p. 85] (in this example only 1% of JPEG2000 data is
encrypted). In [54] Stütz et al. give a more detailed examina-
tion of this topic, where they conclude that partial/selective
encryption of JPEG2000 cannot guarantee confidentiality.

Transparent/perceptual encryption via bitstream-oriented
JPEG2000 encryption has been evaluated by Obermaier and
Uhl [59]. The packet body data is encrypted starting from a
certain position in the codestream up to the end. This proce-
dure allows the reconstruction of a low quality version from
the encrypted codestream. In [59] the impact of the choice for
the start of encryption is evaluated for different progression
orders, namely resolution and layer progression. A draw-
back of their approach is that most (more than 90%) of the
JPEG2000 codestream has to be encrypted.

More efficient solutions both in terms of computational
complexity and reduced deployment cost have been proposed
by Stütz and Uhl [53]. Their proposed scheme optimizes
the quality of the publicly available low quality version by
employing JPEG2000 error concealment strategies and
encrypts only a small fraction of the JPEG2000 codestream,
namely 1–5%. As a consequence the gap in image quality
between the publicly available low quality version and a pos-
sible attack is reduced.

6 Compression-integrated techniques

Numerous and diverse compression-integrated techniques
have been proposed. Encryption in the compression pipe-
line can be viewed as a compression option (which is kept
secret). All considered compression options are not cov-
ered in JPEG2000 Part 1, thus their application leads to
an encrypted stream not format-compliant with respect to
JPEG2000 Part 1.

A major difference among compression-integrated
approaches is whether they can be implemented with com-
pliant encoders and decoders. The application of compli-
ant compression software/hardware is an advantage for the
practical application of a compression-integrated encryption
scheme. Thus the discussion on compression-integrated tech-
niques is divided into two sections, the first discussing tech-
niques that can be implemented with standard compression
options, while the second presents various approaches that
can only be implemented with non-standard options and with
non-standard compression tools.

6.1 Secret standard compression options

The following two approaches aim at using the degrees of
freedom in the wavelet transform to construct a unique
wavelet domain for the transformation step. By keeping the
wavelet domain secret, these approaches provide lightweight

security. This procedure can be seen as a form of header
encryption, as only the information pertaining to the wavelet
domain needs to be encrypted, the rest of the data remains
in plaintext. In order to use secret transform domains, Part 2
of the JPEG2000 standard has to be employed. Therefore, a
codec that is compliant to JPEG2000 Part 2, is required for
encoding and also for decoding of the image in full quality.
However, for transparent encryption, a codec compliant to
JPEG2000 Part 1, is sufficient to decode the preview image.

6.1.1 Key-dependent wavelet packet subband structures

The wavelet packet decomposition [64] is a generalization
of the pyramidal wavelet decomposition, where recursive
decomposition may be applied to any subband and is not
restricted to the approximation subband. This results in a
large space of possible decomposition structures.

Isotropic Wavelet Packets (IWP) Pommer and Uhl [47,
48] propose the use of wavelet packets for providing con-
fidentiality in a zerotree-based wavelet framework. Wavelet
packet decompositions are created randomly and kept secret.
Engel and Uhl [20] transfer the idea and the central algorithm
to JPEG2000 and adapt it to support transparent encryption.
The aim for a lightweight encryption scheme with wave-
let packets is the definition of a large set of possible bases
that perform reasonably well at compression. The process
that randomly selects one of the bases from this set should
operate in a way that does not give a potential attacker any
advantage in an attack. To provide these properties, the con-
struction process is controlled by several parameters, e.g.,
maximal decomposition depth of certain subbands.

To provide transparent encryption, an additional parame-
ter p is introduced that can be used to optionally specify the
number of higher pyramidal resolution levels. If p is set to
a value greater than zero, the pyramidal wavelet decomposi-
tion is used for resolution levels R0 through Rp . Non-pyrami-
dal wavelet packets are used for the higher resolution levels,
starting from Rp+1. With resolution-layer progressions in the
final codestream, standard JPEG2000 Part 1 codecs can be
used to obtain resolutions R0 to Rp.

Anisotropic Wavelet Packets (AWP) For the isotropic
wavelet packet transform horizontal and vertical decompo-
sition can only occur in pairs. In the anisotropic case this
restriction is lifted. The main motivation to introduce aniso-
tropic wavelet packets for lightweight encryption is a sub-
stantial increase in keyspace size: the space of possible bases
is not only spanned by the decision of decomposing or not, but
also by the direction of each decomposition. The amount of
data that needs to be encrypted remains extremely small. The
complexity of the anisotropic wavelet packet transform is the
same as the complexity of the isotropic wavelet packet trans-

123

D. Engel et al.

form. Like in the isotropic case, compression performance
and keyspace size need to be evaluated.

The method for generating randomized wavelet packets
has been extended for the anisotropic case by Engel and Uhl
[19]. The parameters used to control the generation differ
from the isotropic case to reflect the properties of the aniso-
tropic wavelet packet transform. Most notably, the maximum
degree of anisotropy is restricted to prevent excessive decom-
position into a single direction, as, especially in the case of
the approximation subband, this would lead to inferior energy
compaction in the wavelet domain for the other direction.

Compression For suitable parameter settings (which
facilitate energy compaction, see [19–21]), the average
compression performance of the wavelet packet transform
is comparable to the performance of the pyramidal wavelet
transform.

Security There are two groups of attacks to consider: attacks
that try to determine the wavelet packet structure used for
encoding, and attacks that try to (partially) reconstruct the
transformed image data without knowing the wavelet packet
structure.

Reconstruction of Decomposition Structure: Possible
attacks that try to determine the wavelet packet structure
used for encoding are (a) breaking the cipher with which the
decomposition structure was encrypted, (b) inferring the
wavelet packet structure from statistical properties of
the wavelet coefficients, (c) inferring the wavelet packet
structure from the codestream, or (d) performing a full search.

The feasibility of attack (a) is equivalent to the feasi-
bility of breaking the used cipher. Attack (b), inferring the
decomposition structure from the codestream tries to use the
inclusion metadata in the JPEG2000 codestream. JPEG2000
employs so-called tag trees [55] to signal inclusion informa-
tion: In a highly contextualized coding scheme, the contri-
butions of each codeblock contained in a packet are linked
to the subband structure. Thereby the subband structure is
used as context to interpret the output of the tag trees. In
order to gather information on either subband structure or
coefficients an attacker would have to make a large number
of assumptions. However, there are cases (e.g., few quality
layers combined with use of markers for packet boundaries)
for which fewer possibilities exist and an attacker will have a
higher chance of deciphering (some of) the headers. To pre-
vent information leakage, the headers can be encrypted (at
the cost of additional computational complexity).

The feasibility of attack (c) is linked to attack (b). If the
subband decomposition structure is unknown, the attacker
has no way of correctly associating the contributions of a
codeblock to the correct coefficients. The attacker therefore
lacks full access to the coefficient data (partial access is pos-
sible though, see below).

The feasibility of attack (d) depends on the size of the
keyspace, which is the number of wavelet packet bases for
the used parameters. The number of isotropic wavelet packet
bases up to a certain decomposition depth j can be deter-
mined recursively, as shown by Xu and Do [69]. Based on
this formula, Engel and Uhl [19,21] determine the number
of isotropic and anisotropic bases of decomposition level up
to j , recursively.

For both, isotropic and anisotropic wavelet packet decom-
positions, the number of bases obtained with practical param-
eter settings (i.e., already considering restriction imposed
by compression quality requirements) lies above the com-
plexity of a brute-force attack against a 256-bit-key AES
cipher.

Partial Reconstruction: Rather than trying to find the used
wavelet packet decomposition structure, an attacker can try
to partially decode the available data.

For the lower resolutions this approach is successful, pro-
hibiting the use of secret wavelet packet decompositions for
full confidentiality. This is due to the fact that the packets
of the lowest resolution of any (isotropic) wavelet packet
decomposition are the same as the packets produced by a
pyramidal decomposition of the same image.

In contrast to encryption for full confidentiality, in a trans-
parent encryption scheme the accessibility of the lower reso-
lutions R0 (or up to Rp) is desired. Security is only required
for the full quality version.

In order to obtain an image of higher quality than Rp, an
attacker could try to read a fraction of the coefficient data
of Rp+1 into the pyramidal structure and then attempt a full
resolution reconstruction. However, typically the intersec-
tion of the randomly generated decomposition structures and
the pyramidal structure is far too small to obtain data that
allows reconstruction at a substantial quality gain (compared
to Rp).

When trying to reconstruct the full quality image, the
attacker’s problem is how to associate packet data with code-
blocks, i.e., spatial location. Again it is the highly contextual
coding of JPEG2000 that makes it computationally infeasible
for the attacker to correctly perform this association. Engel
et al. [16] discuss this issue in more detail.

Performance Wavelet packets bring an increase in com-
plexity as compared to the pyramidal wavelet decomposi-
tion: The order of complexity for a level l full wavelet packet

decomposition of an image of size N 2 is Ø
(∑l

i=1 22(i−1)

N 2

22(i−1)

)
compared to Ø

(∑l
i=1

N 2

22(i−1)

)
for the pyramidal

decomposition, with the randomized wavelet packet decom-
positions ranging in-between. With the parameters used in
our empirical tests the average time needed for the trans-
form stage increased by 45% as compared to the pyramidal

123

A survey on JPEG2000 encryption

transform. The average time taken for the whole compression
pipeline increased by 25%.

The anisotropic wavelet packet transform does not
increase complexity compared to the isotropic case. As more
bases can be constructed with lower decomposition depths,
the use of the anisotropic wavelet packet transform lowers
the computational demands of the scheme.

In general, wavelet packets dramatically reduce the effort
for encryption compared to full encryption and other partial
or selective encryption schemes. This circumstance makes
encryption with a public key scheme feasible, which reduces
the effort for key management considerably.

However, the considerable computational complexity that
is introduced for the transform step needs to be taken into
account for potential application scenarios. For some appli-
cation scenarios the decrease of complexity in the encryption
stage might not suffice to justify the increase of complexity
in the compression stage.

6.1.2 Parameterized lifting schemes

Three wavelet parameterization schemes have been investi-
gated in the context of lightweight encryption: the parame-
terization for a family of orthogonal wavelets proposed by
Schneid and Pittner [50], the parameterization for even and
odd length biorthogonal filters proposed by Hartenstein et al.
[26], and the lifting parameterization of the CDF 9/7 wavelet
proposed by Zhong and Jiao [71]. Köckerbauer and Uhl [36]
report that in the context of JPEG2000 the first parameteri-
zation produces unreliable compression results.

Engel and Uhl [17] use the biorthogonal lifting parame-
terization presented by Zhong and Jiao [71] with JPEG2000
and report compression performance that is superior to the
other parameterization schemes. The used parameterization
constructs derivations of the original CDF 9/7 wavelet based
on a single parameter α.

Compression Compression performance of the produced
filters and their utility for JPEG2000 lightweight encryption
are investigated in [17]. The tests show that the range in
which the parameterized filters achieve good compression
results on the one hand and exhibit sufficient variation to
withstand a brute-force attack is rather limited. In [18], Engel
and Uhl argue that, because filters vary much more for lower
absolute values of α, discretization bins should not be uni-
form. In order to enlarge the keyspace, they further propose
to use different parameters for the horizontal and the verti-
cal wavelet decomposition on different decomposition levels.
These techniques have been called “non-stationary” (varying
on each decomposition level) and “inhomogeneous” (vary-
ing in vertical and horizontal orientation) in the context of
adaptive compression [58]. Neither of these methods results
in a significant deterioration of compression performance.

The distortion introduced by this scheme is a loss of
luminance information rather than a loss of structural infor-
mation. Figure 10 shows some examples of reconstructed
version of the Lena image encrypted with parameter α = 2.5:
(a) shows the image reconstructed with the correct parameter,
(b), (c) and (d) show the image reconstructed with incorrect
parameters.

Security Brute-force: It is reported in [18] that for keys of
small individual values for all parameters in each direction
and each level a brute-force search for the full-quality ver-
sion remains unsuccessful. However, keys exist where each
parameter is of higher absolute value for which the brute-
force attack comes close to the full quality version.

Symbolic Attack: A principal attack on parameterized
lifting schemes is presented by Engel et al. in [14]. It is
based on the symbolic computation of the inverse wavelet
transform.

An attacker, who does not know the parameter values for
the parameterized transform, can build a symbolic expres-
sion for each pixel value in the reconstructed image contain-
ing the necessary operations for the inverse transformation.

Fig. 10 Parameterized wavelet filters: reconstructed images and qual-
ity measure results for the Lena image (αenc = −2.5), rate 1 bpp

123

D. Engel et al.

The resulting term will depend on the transform coefficients,
which are known to the attacker. The only unknowns are
formed by the parameters of the transform. By performing a
full symbolic inverse wavelet transformation, the attacker can
construct a complete symbolic description of the operations
necessary to reconstruct the plaintext image.

A ciphertext only attack in this context remains largely
unsuccessful. This is due to the lack of a reliable non-
reference image quality metric.

Known-plaintext attacks are much more successful. If the
full plaintext is known, then the symbolic representation can
be used to determine the used parameters. This also works if
more parameters are used (as in the case of inhomogeneous
and non-stationary variation).

Also if only partial plaintext information is available, the
symbolic representation yields successful attacks.

Engel et al. [14] discuss two possible scenarios in this
context: For the pixel samples attack, the attacker is assumed
to have obtained individual pixel samples from the recon-
structed image; for the average luminance value attack only
the average luminance value from a preview image is required.
For both cases, the attacker can obtain a more or less accurate
solution for the used wavelet parameters.

Inhomogeneous and non-stationary variation as well as
higher-dimensional parameterizations of the wavelet trans-
form increase the number of parameters and therefore make
the attack more difficult. However, on a principal note, these
symbolic attacks show a general problem of lightweight
encryption schemes that rely on linear transforms for pro-
viding security. Such attacks severely compromise the secu-
rity of encryption schemes that use a parameterized wavelet
transform, even if their claim is to provide only lightweight
encryption.

Performance The filter parameterization comes at virtually
no cost: Apart from five values in the lifting scheme that have
to be computed for each used parameter value, no additional
complexity is introduced.

6.2 Secret non-standard compression options

Many proposals for compression-integrated encryption mod-
ify parts of the compression pipeline in a non-standardized
fashion.

6.2.1 Wavelet coefficient sign encryption

The signs of the wavelet coefficients are scrambled in a num-
ber of contributions [9–13], mainly with the goal to preserve
privacy. In [11], as well as in [10], flipping the signs of
selected coefficients is proposed for “privacy enabling tech-
nology for video surveillance”. This scheme may also be

applied selectively in the transform domain, scrambling only
parts of the image.

Compression There is only a small negative influence on
compression performance. According to [10] the bitrate is
increased by less than 10% bitrate (i.e., less than 1dB for a
wide range of compression ratios).

Security The pseudo-random flipping of wavelet coefficient
signs may be subject to specific cryptoanalysis. In [49] Said
shows the insecurity of DCT sign encryption; however, he
uses strong assumptions for his cryptoanalytic framework as
well as for his attack.

Performance The introduced overhead is negligible [10].

6.2.2 Random permutations

Norcen and Uhl [43,44] have investigated the usage of ran-
dom permutations applied to wavelet coefficients within the
JPEG2000 coding pipeline. Both confidential and transparent
encryption can be implemented by applying permutations to
the appropriate subbands, however, one has to keep the inher-
ent security concerns regarding permutations in mind (e.g.,
vulnerability against known plaintext attacks).

Norcen and Uhl [43] have investigated the permutation of
single coefficients within wavelet subbands. In this approach
the compression performance is degraded significantly,
because the intra-subband dependencies of the coefficients
are destroyed. They show that a key generation algorithm has
to be employed, since the direct embedding of the permuta-
tion key is not feasible from a compression point of view.

In later work [44] aim at improving the rate-distortion per-
formance of permutation based schemes by permuting and
rotating differently sized blocks of coefficients (instead of
single coefficients) within wavelet subbands. The best com-
promise with respect to the tradeoff between compression
performance and security turns out to be the blockwise-fully-
adaptive scheme where each subband is divided into the same
number of blocks (e.g., 64) which are then permuted. Addi-
tionally to the permutation on a block basis, the blocks can be
rotated, which increases the keyspace but does not influence
compression quality.

Compression Compression performance may suffer from
the destruction of coefficient statistics and cross correlations
through permutation and rotation. In [43] it has been shown
that permutation applied to single coefficients severely
reduces the compression performance (up to 35%). Schemes
applying permutations to blocks of coefficients have been
found to be more suited with respect to compression quality
[44]—the image quality is augmented with increasing block-
size, however, security is decreased with increasing blocksize

123

A survey on JPEG2000 encryption

(see below). In the blockwise-fully-adaptive scheme
compression performance loss can be kept below 10%.

Security The security of the presented permutation schemes
strongly relies on the blocksize used. Basically there are
n! permutations of n elements, in this case, coefficients or
blocks of coefficients. The keyspace of a specific subband
thus is n! where n is the number of its blocks (or single coef-
ficients). The whole keyspace is the product of the keyspaces
of all subbands. For the block-based permutation the key-
space for a certain subband is (width × height/blocksize2)!.
If additionally a random rotation is applied, then the key-
space of a certain subband is 4bb!, where b is the number of
blocks. For the blockwise-full-adaptive case each subband
has 64! different permutations. If random rotation is applied,
this number is increased to 46464! (except if the remaining
block consists only of one coefficient).

In fact not all of the blocks are different (in the high fre-
quency subbands zero coefficients are very likely). If k blocks
are similar, then the number of permutations is decreased
by k! For the blockwise-full-adaptive scheme for 15 similar
blocks there are still 64!/15! = 2 × 1026 possible permuta-
tions.

However, the security of a system is not entirely deter-
mined by its keyspace. Keeping in mind that the lower sub-
bands contain the visually most important information, it has
to be pointed out that those are naturally secured by a smaller
keyspace.

Moreover, the actual strength of the permutation approach
is reduced since correlations among neighboring block bor-
ders can be exploited. Hence the bigger the blocks, the less
secure the scheme.

An image with permuted 16×16 blocks reveals a consid-
erable amount of image information, mostly due to the fact
that the lowest resolution subband is not modified at all (it
contains exactly one 16 × 16 block). In general the problem
with fixed size permutations is that the visually more impor-
tant subbands are not better secured, hence the full keyspace
is a wrong assumption, because an attacker might be able to
deduce information from the lower subbands without even
considering the higher frequency parts. This is especially true
if the blocksizes are in excess of 16×16, which mostly leads
to unencrypted low frequency subbands.

In the blockwise-fully-adaptive scheme, the number of
blocks can be adjusted to a certain security level and the
problems with fixed sized blocks are resolved.

A permutation per coefficient destroys all block correla-
tions and can therefore be considered the most secure type of
permutation. As a consequence there is a trade-off between
security and compression performance.

Another important aspect is information leakage. Since
the wavelet coefficients are not changed with this encryption
scheme, a simple comparison between the coefficients of an

assumed plaintext image and that of the encrypted image will
reveal its identity.

Performance The entire compression pipeline has to be run
through, but the additional effort is negligibly small (accord-
ing to our experimental tests).

6.2.3 Mixed perturbations

Lian et al. [37,38] propose the combination of several com-
pression-integrated encryption schemes, such as sign encryp-
tion of the wavelet coefficients, inter block permutation and
bitplane permutation. Additionally they introduce a param-
eter q, the quality factor ranging from 0 to 100, to adjust
the encryption strength and the actual image quality of a
reconstruction. Hence their scheme may be employed to
implement transparent encryption among other application
scenarios. In more detail, the quality factor determines the
percentage of coefficients for which sign encryption is con-
ducted (for a quality factor of 0 the signs of all coefficients
are encrypted, while for a quality factor of 100 no sign is
encrypted), the number of intra-permuted codeblocks (bit-
plane permutation) and a boolean decision whether inter
block permutation is employed (which is conducted on a
codeblock basis). The order in which both codeblocks and
coefficients are treated is from high frequency to low fre-
quency and thus the quality decreases rather smoothly with
a decrease of the quality factor.

Compression The compression ratio is reduced. An exam-
ple is given where the degradation is less than 1.5dB for all
bitrates in [37]. To put the loss of compression performance
into context, JPEG2000 outperforms JPEG by about 2.5dB
(PSNR) for a wide range of compression ratios (for the well-
known Lena image of size 512 × 512 pixels).

Security There are no known attacks against this scheme;
however, every single perturbation may be subject to specific
cryptoanalysis.

Performance For a quality factor of 0 (lowest quality) the
encryption process takes 7.5–13.2% (as reported in [37])
of the compression (details about the applied software and
parameters are not known).

6.2.4 Randomized arithmetic coding (RAC)

Grangetto et al. [24] propose JPEG2000 encryption by ran-
domized arithmetic coding. Although the arithmetic coder
of the JPEG2000 pipeline is altered, their approach has no
influence on the compression performance. The basic idea of
their approach is to change the order of the probability inter-
vals in the arithmetic coding process. For the partitioning of

123

D. Engel et al.

the probability interval, it is a convention (agreed upon by
both the encoder and the decoder) which interval (either that
of the most probable or that of the least probable symbol)
is the preceding one. In [24], for every encoded decision bit
the ordering of the intervals is chosen securely randomly (by
using a random bit from the PRNG).

Selective/partial application of this encryption approach
is possible.

Compression There is no influence on compression perfor-
mance.

Security Packet header information is left unencrypted and
thus the same considerations as for packet body based for-
mat-compliant encryption schemes apply (cf. Sects. 5.3.8).
An entire section in [24] is dedicated to the cryptoanalysis of
their method. It is noted that their method might be suscep-
tible to known-plaintext attacks, but it is argued that these
kinds of attacks are not relevant for the proposed encryption
systems. A possible counter-argument to this assumption is
that, as codeblocks in higher frequency subbands tend to be
quantized to zero, it is likely that compressed codeblock con-
tributions of higher frequencies represent bitplanes with a
vast majority of zeros.

Due to performance issues, Grangetto et al. propose the
usage of a weaker PRNG (with a 32 bit key) based on the
standard rand function of the Linux C library. The analysis
of the security of this PRNG is out of the scope of this paper,
but it can be considered a possible vulnerability. A key size
of 32 bit is too short for serious security anyway. Alterna-
tively, the secure random number generator proposed in [3]
is employed. However, more secure and efficient PRNG can
be considered, e.g., AES in OFB mode.

Performance The entire compression pipeline has to be run
through, the additional effort arises from the intensive usage
of the PRNG. For every decision bit (one per coefficient and
per bitplane) coded in the arithmetic coder, a random bit is
required. This amount of randomness (basically the same as
for raw encryption) induces the authors to employ a faster
random number generator (encryption time of 0.33 s for the
Lena image with 512 × 512 pixel). Using a secure random
number generator [3], the authors report an encryption time
of 370.01 s for the full encryption of the Lena image with
512 × 512 pixel. However, the usage of such a computation-
ally complex PRNG is not justified and instead AES in OFB
mode could be used as PRNG. Employing our implemen-
tation of the AES OFB mode, the generation of the pseudo
random keystream of the appropriate length for the Lena
image with 512×512 pixel only takes 0.045 s. Thus even for
secure settings the increase in complexity is not that exorbi-
tant.

However, the computational complexity of this approach
is high.

6.2.5 Secret initial tables in the MQ-coder

This approach has been proposed by Liu [39] and as in
the previously discussed approach of RAC (see Sect. 6.2.4),
the entropy coding stage is modified. The arithmetic coding
engine (the MQ-coder) receives a context label and a decision
(MPS, more probable symbol or LPS, less probable symbol).
There are 19 context labels in JPEG2000. The estimation of
current interval size for a context is conducted via a finite
state machine with 47 states. At the start of entropy coding,
each context label is assigned an initial state [34, p. 89]. Liu
proposes to randomly select these initial states in order to pre-
vent standard JPEG2000 decoders from correctly decoding
the data.

Like the RAC approach, this approach is closely related
to packet body encryption with bitstream-compliant algo-
rithms. Selective/partial application of this encryption
approach is possible as well.

Compression According to [39] the compression overhead
is negligible (compressibility equivalent).

Security Packet header information is left unencrypted and
thus the same considerations as for packet body based for-
mat-compliant encryption schemes apply (cf. Sects. 5.3.8).

According to [39] the approach is computationally secure
as there are 4719 (approx. 2105.5) possible initial tables. How-
ever, a huge key space may not prevent specifically tailored
attacks against this scheme.

Performance The computational complexity remains
almost the same as for the standard JPEG2000 Part 1 com-
pression pipeline; the only effort is to build the random initial
table.

7 Discussion and overview

In this Section, we will provide a general discussion on which
techniques are appropriate for the different application sce-
narios discussed in the introduction.

The naive encryption technique, i.e., encrypting the entire
JPEG2000 codestream with a classical cipher, of course
achieves a higher data throughput as compared to all for-
mat-compliant bitstream-oriented techniques at the highest
level of security. Additionally, information leakage occurs
neither for header information nor for packet data. There-
fore, if format compliance and all associated functionalities
that rely on the JPEG2000 codestream structure are not an
issue in the target application, naive encryption is the method

123

A survey on JPEG2000 encryption

of choice (e.g., as in the DCI security scheme discussed in
Sect. 3.6.1).

The discussed format-compliant bitstream-oriented
techniques can meet the demands of both on-line and off-
line scenarios. Furthermore, an almost arbitrary range of
confidentiality levels may be supported by employing partial/
selective encryption, ranging from transparent/perceptual
encryption where even a certain quality of the visual data in
encrypted form has to be guaranteed, to sufficient encryption
where strict security is not the major goal but only pleasant
viewing has to be impossible. Of course, also high secu-
rity scenarios may be supported by simply encrypting all the
packet data and/or even packet header data. These facts taken
together make format-compliant bitstream-oriented encryp-
tion techniques the most flexible and most generally appli-
cable schemes discussed.

Considering all approaches including segment based
encryption, the KLV approach of the DCI standard and of
course all format-compliant encryption schemes one has to
mention that a small fingerprint of the image (the compressed
size) is preserved by all. For a single image this information
can be regarded as insignificant, however, a series of these
fingerprints, e.g., obtained from an encrypted movie, iden-
tifies the source data in a rather unique way. (Of course the
identification only works, if the rate is dynamically adjusted.)

Compression-integrated techniques can only be applied in
a sensible way in on-line application scenarios. When com-
pared to bitstream-oriented techniques, the computational
demand for encryption is significantly reduced, however, the
reduction of complexity for encryption comes at the cost of a
(more or less significant) rise in complexity in the compres-
sion pipeline. In all schemes considered the impact on com-
pression performance can be kept to a minimum if applied
with care.

In a certain sense, the use of key-dependent wavelet trans-
forms in encryption is an extreme case of selective/partial
encryption since encryption is limited to the actual subband
structure/filter choice. The corresponding amount of data
to be encrypted is so small, that this approach can directly
employ public key encryption schemes and benefit from their
superior key management. Another advantage is that because
even though the coefficient data cannot be interpreted with-
out the correct transform at hand, it can be used to perform
signal processing in the encrypted domain. For example, this
can be useful in a retrieval-based application for creating
hashes of encrypted visual data, which facilitates search in the
encrypted domain. With respect to the level of confidentiality
that can be supported, both wavelet packet and parameterized
filters based schemes are found to be restricted to the trans-
parent/perceptual (potentially also to the sufficient) encryp-
tion application scenario—real privacy cannot be achieved.
Whereas the increase in complexity that is shifted to the
compression pipeline can be considered significant for the

wavelet packet case, in the case of parameterized filters there
is only negligible additional cost. The successful attacks
against the approach based on parameterized filters renders
this technique almost useless in environments where sincere
attacks are to be expected. At most, in settings that require
soft encryption, e.g., in the area of mobile multimedia appli-
cations, the level of security might suffice and the extremely
low computational demands could be an incentive for using
parameterized wavelet filters. It has to be pointed out that the
low amount of encryption required for transparent encryption
in key-dependent transform techniques makes those espe-
cially attractive since the classical approach for transparent
encryption in bitstream-oriented techniques requires almost
the entire codestream to be encrypted (compare Sect. 5.5).
However, more recent techniques [53] only require a fraction
of the encryption amounts. Engel et al. [16] discuss various
application scenarios for transparent encryption where one
or the other approach might be of advantage.

Finally, employing permutations within the JPEG2000
pipeline is a classical case of soft encryption. The compu-
tational overhead remains negligible, however, permutations
are of course vulnerable to known plaintext attacks unless
the keys are exchanged frequently. Contrasting to the previ-
ous techniques also higher levels of confidentiality may be
targeted (this just depends on which subbands are subject
to permutations), however, the security flaws present with
permutations should be kept in mind.

Information leakage is significantly higher in compres-
sion-integrated techniques as compared to bitstream-oriented
ones. The entire coefficient information is available in plain-
text—due to the missing context this cannot be exploited
for reconstructing the original data, but all sorts of statistical
analyses may be conducted on these data potentially allowing
an attacker to identify an image in encrypted form. There-
fore, the security level of for these compression-integrated
schemes has to be assessed to be lower as compared to
bitstream-oriented ones in general.

A completely different approach is randomized arithme-
tic coding as proposed by Grangetto et al. It is closely linked
to the bitstream-compliant encryption approaches discussed
in Sect. 5 as it targets the coefficient data contained in the
packet bodies. However, the drawbacks of this solution are
the increased complexity compared to bitstream-compliant
approaches. If bitstream-compliant approaches are applied
on a CCP basis there is no difference in the preserved func-
tionality (given the appropriate key management for both
schemes). Thus the randomized arithmetic coding approach
has the same functionality as the bitstream-compliant
approaches, but obvious disadvantages. Secret initial tables
may be an interesting option; however, the security of this
approach against specifically tailored attacks remains to be
proven. The selective/partial application cannot gain sub-
stantial performance gains, as the encryption only takes a

123

D. Engel et al.

Table 1 An overview of JPEG2000 encryption approaches

Approach Naive Segment-based Bitstream-compliant Wavelet packets Filters Permutations RAC

Compression None Slightly None Moderately Slightly Moderately None

decrease

Confidentiality Privacy All levels All levels Transparent Transparent All levels All levels

(ZOI) (ZOI) (ZOI) (ZOI)

Security Very high High–very high High Medium–high Low Medium Medium–high

Transcodability None Partial, segment On packet JPEG2000 JPEG2000 JPEG2000 JPEG2000

based basis

Transcode Very Very Very low JPEG2000 JPEG2000 JPEG2000 JPEG2000

complexity high low with markers

Create complexity Low Low–medium Low High* Very low–low* Very low* High*

Compression pipeline Full Tier2 No Full Full Full Full

Consume complexity Low Low–medium Low High Very low–low Very low Medium

Uninformed consume Impossible Impossible Possible Possible Possible Possible Possible

Error propagation Avalanche eff. Within segment Mostly JPEG2000 JPEG2000 JPEG2000 JPEG2000 JPEG2000

negligible fraction of the entire compression and encryption
system (cf. Sect. 5.3.8).

In Table 1, we provide a concise summary of the vari-
ous aspects discussed in this and the preceding Sections. A
“*” indicates that the entire compression pipeline has to be
conducted and the given information is with respect to the
additional effort within the compression pipeline.

8 Conclusion

In this survey we have discussed and compared various tech-
niques for protecting JPEG2000 codestreams by encryption
technology. As to be expected, some techniques turn out to be
more beneficial than others and some methods hardly seem
to make sense in any application context. In any case, a large
variety of approaches exhibiting very different properties can
be considered useful and covers almost any thinkable mul-
timedia application scenario. This survey provides a guide
to find the proper JPEG2000 encryption scheme for a target
application.

References

1. Apostolopoulos, J., Wee, S., Dufaux, F., Ebrahimi, T., Sun, Q.,
Zhang, Z.: The emerging JPEG2000 security (JPSEC) standard.
In: Proceedings of International Symposium on Circuits and Sys-
tems, ISCAS’06. IEEE, May 2006

2. Apostolopoulos, J.G., Wee S.J: Supporting secure transcoding in
JPSEC. In: Tescher, A.G. (ed.) Applications of Digital Image Pro-
cessing XXVIII, vol. 5909, p. 59090J. SPIE (2005)

3. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-
random number generator. SIAM J. Comput. 15(2), 364–383
(1986)

4. Bradley, J.N., Brislawn, C.M., Hopper, T.: The FBI wavelet/scalar
quantization standard for gray-scale fingerprint image compres-

sion. In: SPIE Proceedings, Visual Information Processing II, vol.
1961, pp. 293–304, Orlando, FL, USA, April (1993)

5. Conan, V., Sadourny, Y., Jean-Marie, K., Chan, C., Wee, S.,
Apostolopoulos, J.: Study and validation of tools interoperability
in JPSEC. In: Tescher, A.G. (ed.) Applications of Digital Image
Processing XXVIII, vol. 5909, p. 59090H. SPIE (2005)

6. Conan, V., Sadourny, Y., Thomann, S.: Symmetric block cipher
based protection: Contribution to JPSEC. ISO/IEC JTC 1/SC
29/WG 1 N 2771 (2003)

7. Daemen, J., Rijmen, V.: The Design of Rijndael: AES—The
Advanced Encryption Standard. Springer, Berlin (2002)

8. Digital Cinema Initiatives, LLC (DCI). Digital cinema system
specification v1.2. online presentation, March (2008)

9. Dufaux, F., Ebrahimi, T.: Region-based transform-domain video
scrambling. In: Proceedings of Visual Communications and Image
Processing, VCIP’06. SPIE (2006)

10. Dufaux, F., Ebrahimi, T.: Scrambling for video surveillance with
privacy. In Proceedings of the 2006 Conference on Computer
Vision and Pattern Recognition Workshop, CVPRW ’06. IEEE
(2006)

11. Dufaux, F., Ouaret, M., Abdeljaoued, Y., Navarro, A., Vergnenegre,
F., Ebrahimi, T.: Privacy enabling technology for video surveil-
lance. In: Proceedings of SPIE, Mobile Multimedia/Image Pro-
cessing for Military and Security Applications, vol. 6250. SPIE
(2006)

12. Dufaux, F., Wee, S., Apostolopoulos J., Ebrahimi T.: JPSEC for
secure imaging in JPEG2000. In: Tescher, A.G. (ed.) Applications
of Digital Image Processing XXVII, vol. 5558, pp. 319–330. SPIE
(2004)

13. Dufaux, F., Ebrahimi, T.: Securing JPEG2000 compressed images.
In: Tescher, A.G. (ed.) Applications of Digital Image Processing
XXVI, vol. 5203, pp. 397–406. SPIE (2003)

14. Engel, D., Kutil, R., Uhl, A.: A symbolic transform attack on light-
weight encryption based on wavelet filter parameterization. In: Pro-
ceedings of ACM Multimedia and Security Workshop, MM-SEC
’06, pp. 202–207, Geneva, Switzerland, September (2006)

15. Engel, D., Stütz, T., Uhl, A.: Format-compliant JPEG2000 encryp-
tion in JPSEC: Security, applicability and the impact of compres-
sion parameters. EURASIP J. Inform. Secur. (Article ID 94565),
20 (2007). doi:10.1155/2007/94565

16. Engel, D., Stütz, T., Uhl, A.: Efficient transparent JPEG2000
encryption. In: Li, C.-T. (ed.) Multimedia Forensics and Security,
pp. 336–359. IGI Global, Hershey, PA, USA (2008)

123

A survey on JPEG2000 encryption

17. Engel, D., Uhl, A.: Parameterized biorthogonal wavelet lifting
for lightweight JPEG2000 transparent encryption. In: Proceedings
of ACM Multimedia and Security Workshop, MM-SEC ’05, pp.
63–70, New York, NY, USA, August (2005)

18. Engel, D., Uhl, A.: Security enhancement for lightweight
JPEG2000 transparent encryption. In: Proceedings of Fifth Interna-
tional Conference on Information, Communication and Signal Pro-
cessing, ICICS ’05, pp. 1102–1106, Bangkok, Thailand, December
(2005)

19. Engel, D., Uhl, A.: Lightweight JPEG2000 encryption with aniso-
tropic wavelet packets. In: Proceedings of International Confer-
ence on Multimedia and Expo, ICME ’06, pp. 2177–2180, Toronto,
Canada, July 2006. IEEE (2006)

20. Engel, D., Uhl, A.: Secret wavelet packet decompositions for
JPEG2000 lightweight encryption. In: Proceedings of 31st Inter-
national Conference on Acoustics, Speech, and Signal Processing,
ICASSP ’06, vol. V, pp. 465–468, Toulouse, France, May 2006.
IEEE (2006)

21. Engel, D., Uhl, A.: An evaluation of lightweight JPEG2000 encryp-
tion with anisotropic wavelet packets. In: Delp, E.J., Wong, P.W.
(eds.) Security, Steganography, and Watermarking of Multimedia
Contents IX. Proceedings of SPIE, pp. 65051S1–65051S10, San
Jose, CA, USA, January 2007. SPIE (2007)

22. Fang, J., Sun, J.: Compliant encryption scheme for JPEG2000
image code streams. J. Electron. Imaging 15(4) (2006)

23. Furht, B., Kirovski, D. (eds.): Multimedia Security Handbook.
CRC Press, Boca Raton, (2005)

24. Grangetto, M., Magli, E., Olmo, G.: Multimedia selective encryp-
tion by means of randomized arithmetic coding. IEEE Trans. Mul-
timed. 8(5), 905–917 (2006)

25. Grosbois, R., Gerbelot, P., Ebrahimi, T.: Authentication and access
control in the JPEG2000 compressed domain. In: Tescher, A.G.
(ed.) Applications of Digital Image Processing XXIV. Proceed-
ings of SPIE, vol. 4472, pp. 95–104, San Diego, CA, USA, July
(2001)

26. Hartenstein, F.: Parametrization of discrete finite biorthogonal
wavelets with linear phase. In: Proceedings of the 1997 Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP’97), April (1997)

27. Imaizumi, S., Watanabe, O., Fujiyoshi, M., Kiya, H.: General-
ized hierarchical encryption of JPEG2000 codestreams for access
control. In: Proceedings of the IEEE International Conference on
Image Processing (ICIP’05), vol. 2. IEEE, September (2005)

28. Imaizumi, S., Fujiyoshi, M., Abe, Y., Kiya, H.: Collusion attack-
resilient hierarchical encryption of JPEG 2000 codestreams with
scalable access control. In: Image Processing, 2007. ICIP 2007.
IEEE International Conference on, vol. 2, pp. 137–140, September
(2007)

29. ISO/IEC 15444-8, Final Committee Draft. Information technol-
ogy—JPEG2000 image coding system, Part 8: Secure JPEG2000.
Technical report, ISO, November (2004)

30. ISO/IEC 15444-1. Information technology—JPEG2000 image
coding system, Part 1: Core coding system, December (2000)

31. ISO/IEC 15444-4. Information technology—JPEG2000 image
coding system, Part 4: Conformance testing, December (2004)

32. ISO/IEC 15444-8. Information technology—JPEG2000 image
coding system, Part 8: Secure JPEG2000, April (2007)

33. ITU-T H.264. Advanced video coding for generic audivisual ser-
vices, November (2007)

34. ITU-T T.800. Information technology—JPEG2000 image coding
system, Part 1: Core coding system, August (2002)

35. Kiya, H., Imaizumi, D., Watanabe O.: Partial-scrambling of image
encoded using JPEG2000 without generating marker codes. In:
Proceedings of the IEEE International Conference on Image
Processing (ICIP’03), vol. III, pp. 205–208, Barcelona, Spain,
September (2003)

36. Köckerbauer, T., Kumar, M., Uhl, A.: Lightweight JPEG2000 con-
fidentiality for mobile environments. In: Proceedings of the IEEE
International Conference on Multimedia and Expo, ICME ’04,
Taipei, Taiwan, June (2004)

37. Lian, S., Sun, J., Wang, Z.: Perceptual cryptography on JPEG2000
compressed images or videos. In: 4th International Conference on
Computer and Information Technology, Wuhan, China, September
2004. IEEE (2004)

38. Lian, S., Sun, J., Zhang, D., Wang, Z.: A selective image encryp-
tion scheme based on JPEG2000 codec. In: Nakamura, Y., Aizawa,
K., Satoh, S. (eds.) Proceedings of the 5th Pacific Rim Conference
on Multimedia. Lecture Notes in Computer Science, vol. 3332,
pp. 65–72. Springer, Berlin (2004)

39. Liu, J.-L.: Efficient selective encryption for jpeg 2000 images using
private initial table. Pattern Recognit. 39(8), 1509–1517 (2006)

40. Lo, S.-C.B., Li, H., Freedman, M.T.: Optimization of wave-
let decomposition for image compression and feature preserva-
tion. IEEE Trans. Med. Imaging 22(9), 1141–1151 (2003)

41. Macq, B.M., Quisquater, J.-J.: Cryptology for digital TV broad-
casting. Proc. IEEE 83(6), 944–957 (1995)

42. Mao, Y., Wu, M.: Security evaluation for communication-friendly
encryption of multimedia. In: Proceedings of the IEEE Inter-
national Conference on Image Processing (ICIP’04), Singapore,
October 2004. IEEE Signal Processing Society (2004)

43. Norcen, R., Uhl, A.: Encryption of wavelet-coded imagery using
random permutations. In: Proceedings of the IEEE International
Conference on Image Processing (ICIP’04), Singapore, October
2004. IEEE Signal Processing Society (2004)

44. Norcen, R., Uhl, A.: Performance analysis of block-based permu-
tations in securing JPEG2000 and SPIHT compression. In: Li, S.,
Pereira, F., Shum ,H.-Y., Tescher, A.G. (eds.) Visual Communica-
tions and Image Processing 2005 (VCIP’05). SPIE Proceedings,
vol. 5960, pp. 944–952, Beijing, China, July 2005. SPIE (2005)

45. Norcen, R., Uhl, A.: Selective encryption of the JPEG2000 bit-
stream. In: Lioy, A., Mazzocchi, D. (eds.) Communications and
Multimedia Security. Proceedings of the IFIP TC6/TC11 Sixth
Joint Working Conference on Communications and Multimedia
Security, CMS ’03. Lecture Notes on Computer Science, vol. 2828,
pp. 194–204, Turin, Italy, October 2003. Springer, Berlin (2003)

46. Pommer, A., Uhl, A.: Application scenarios for selective encryp-
tion of visual data. In: Dittmann, J., Fridrich, J., Wohlmacher,
P. (eds.) Multimedia and Security Workshop, ACM Multimedia,
pp. 71–74, Juan-les-Pins, France, December (2002)

47. Pommer, A., Uhl, A.: Selective encryption of wavelet packet sub-
band structures for secure transmission of visual data. In: Dittmann,
J., Fridrich, J., Wohlmacher, P. (eds) Multimedia and Security
Workshop, ACM Multimedia. pp. 67–70, Juan-les-Pins, France,
December (2002)

48. Pommer, A., Uhl, A.: Selective encryption of wavelet-packet
encoded image data—efficiency and security. ACM Multimed.
Syst. (Special Issue Multimed. Secur.) 9(3), 279–287 (2003)

49. Said, A.: Measuring the strength of partial encryption schemes.
In: Proceedings of the IEEE International Conference on Image
Processing (ICIP’05), vol. 2, September (2005)

50. Schneid, J., Pittner, S.: On the parametrization of the coefficients
of dilation equations for compactly supported wavelets. Comput-
ing 51, 165–173 (1993)

51. Schneier, B.: Applied cryptography: protocols, algorithms and
source code in C, 2nd edn. Wiley, New York (1996)

52. Stütz, T., Uhl, A.: On format-compliant iterative encryption of
JPEG2000. In: Proceedings of the Eighth IEEE International Sym-
posium on Multimedia (ISM’06), pp. 985–990, San Diego, CA,
USA, December 2006. IEEE Computer Society (2006)

53. Stütz, T., Uhl, A.: On efficient transparent JPEG2000 encryp-
tion. In Proceedings of ACM Multimedia and Security Workshop,

123

D. Engel et al.

MM-SEC ’07, pp. 97–108, New York, NY, USA, September 2007.
ACM Press

54. Stütz, T., Uhl, A.: On JPEG2000 error concealment attacks. In: Pro-
ceedings of the 3rd Pacific-Rim Symposium on Image and Video
Technology, PSIVT ’09, Lecture Notes in Computer Science,
Tokyo, Japan, January 2009. Springer, Berlin (2009, to appear)

55. Taubman, D.: High performance scalable image compression with
EBCOT. IEEE Trans. Image Process. 9(7), 1158–1170 (2000)

56. Taubman, D., Marcellin, M.W.: JPEG2000—Image Compression
Fundamentals, Standards and Practice. Kluwer, Dordrecht (2002)

57. Tolba, A.S.: Wavelet packet compression of medical images. Digit.
Signal Process. 12(4), 441–470 (2002)

58. Uhl, A.: Image compression using non-stationary and inhomoge-
neous multiresolution analyses. Image Vis. Comput. 14(5), 365–
371 (1996)

59. Uhl, A., Obermair, Ch.: Transparent encryption of JPEG2000 bit-
streams. In: Podhradsky, P. et al. (eds.) Proceedings EC-SIP-M
2005 (5th EURASIP Conference focused on Speech and Image
Processing, Multimedia Communications and Services), pp 322–
327, Smolenice, Slovak Republic (2005)

60. Uhl, A., Pommer, A.: Image and Video Encryption. From Dig-
ital Rights Management to Secured Personal Communication.
Advances in Information Security, vol. 15. Springer, Berlin (2005)

61. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image qual-
ity assessment: from error visibility to structural similarity. IEEE
Trans. Image Process. 13(4) (2004)

62. Wee, S., Apostolopoulos, J.: Secure transcoding with JPSEC con-
fidentiality and authentication. In: Proceedings of the IEEE Inter-
national Conference on Image Processing (ICIP’04), Singapore,
Singapore, October (2004)

63. Wee, S.J., Apostolopoulos, J.G.: Secure scalable streaming and
secure transcoding with JPEG2000. In: Proceedings of the IEEE
International Conference on Image Processing (ICIP’03), vol. I,
pp. 547–551, Barcelona, Spain, September (2003)

64. Wickerhauser, M.V.: Adapted Wavelet Analysis from Theory to
Software. A.K. Peters, Wellesley (1994)

65. Wu, H., Ma, D.: Efficient and secure encryption schemes for
JPEG2000. In: Proceedings of the 2004 International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP 2004),
pp. 869–872, May (2004)

66. Wu, M., Mao, V.: Communication-friendly encryption of multi-
media. In: Proceedings of the IEEE Multimedia Signal Process-
ing Workshop, MMSP ’02, St. Thomas, Virgin Islands, USA,
December (2002)

67. Wu, Y., Deng, R., Ma, D.: Securing JPEG2000 code-streams. In:
Lee, D., Shieh, S., Tygar, J., (eds.) Computer Security in the 21st
Century, pp. 229–254 (2005)

68. Wu, Y., Deng, R.H.: Compliant encryption of JPEG2000 code-
streams. In: Proceedings of the IEEE International Conference on
Image Processing (ICIP’04), Singapure, October 2004. IEEE Sig-
nal Processing Society (2004)

69. Xu, D., Do, M.N.: Anisotropic 2-D wavelet packets and rectangu-
lar tiling: theory and algorithms. In: Unser, M.A., Aldroubi, A.,
Laine, A.F. (eds.) Proceedings of SPIE Conference on Wavelet
Applications in Signal and Image Processing X. SPIE Proceed-
ings, vol. 5207, pp. 619–630, San Diego, CA, USA, August 2003.
SPIE (2003)

70. Yang, Y., Zhu, B.B., Yang, Y., Li, S., Yu N.: Efficient and syntax-
compliant JPEG2000 encryption preserving original fine granular-
ity of scalability. EURASIP J. Inform. Secur. (2007)

71. Zhong, G., Cheng, L., Chen, H.: A simple 9/7-tap wavelet filter
based on lifting scheme. In: Proceedings of the IEEE International
Conference on Image Processing (ICIP’01), pp. 249–252, October
(2001)

72. Zhu, B., Yang, Y., Li, S.: JPEG2000 syntax-compliant encryp-
tion preserving full scalability. In: Proceedings of the IEEE
International Conference on Image Processing (ICIP’05), vol. 3,
September (2005)

123

