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Abstract— Two lightweight encryption schemes for fingerprint
images based on a bitplane representation of the data are as-
sessed. We demonstrate a low complexity attack against a scheme
recently proposed in literature which exploits one of several
weaknesses found. A second scheme is evaluated with respect
to two fingerprint recognition systems and recommendations for
its safe use are given.
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I. INTRODUCTION

With the increasing usage of biometric systems the topic
of storing and handling sample data (i.e., the acquired sensor
data) in an optimal way has to be addressed. Recorded and
stored sample data is obviously more sensitive with respect to
privacy issues as compared to template data, therefore a proper
protection of these data is mandatory. One strategy in this
context is to separate the person’s identity from the data files.
Moreover, the encryption of the template data may become
imperative under certain circumstances due to the security and
privacy concerns of the users.

Among other possibilities, encryption technology may be
used in two stages of the processing chain in classical bio-
metric recognition:

1) Storage of reference data: In most template databases
(where the reference data of the enrolled individuals
is stored) only the extracted features required for the
matching step are stored as opposed to retaining the
originally acquired sensor data. However, in case the
features should be replaced for some reason (e.g., when
a superior or license-free matching technique involving
a different feature set becomes available), having stored
only extracted features implies the requirement for all
legitimate users to re-enroll, which can be expensive and
is highly undesired since user-acceptance of the entire
biometric system will suffer. Storing the original sensor
data in addition to the features required for the current
matching technique solves this problem. Of course, these
data need to be stored in an encrypted form.

2) Transmission after sensor data acquisition: In dis-
tributed biometric systems, the data acquisition stage is
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often dislocated from the feature extraction and match-
ing stage (this is true for the enrollment phase as well
as for authentication). In such environments the sensor
data have to be transferred via a network link to the
respective location, in some cases even over wireless
channels. Obviously, sample data has to be protected
during transmission – security may be provided either
by the transmission protocol (e.g., an encrypted network
link like IPSec) or by direct encryption of the image
data.

Usually, classical cryptographic techniques are suggested to
be used for biometric sample data [7]. A small number of
specific techniques has been developed for fingerprint sample
images. A Fourier-type transform-based private encryption
scheme for fingerprints is proposed in [15]. The concept
of “cancelable biometrics” is proposed in [12], where the
acquired biometric signal (i.e., the sample) is distorted with
an intentional repeatable transform before the extraction of
the template. In case of a compromise, the transformation can
simply be changed. A very similar approach are the so-called
“biometric cryptosystems” proposed in [16] and [12]: A secret
transformation is applied to the biometrics templates to render
them useless for intruders. Matching can be performed in the
encrypted domain.

Controlling the computational demand is important, es-
pecially in distributed scenarios with weak and low-power
sensor devices. Classical encryption techniques like AES can
be too demanding to be employed, therefore a careful but
significant reduction of encryption complexity for this type of
applications has been suggested in the literature. One approach
is to use energy efficient stream ciphers that can easily fit small
environments, see, e.g., the ECRYPT eSTREAM project.1 The
limited computational resources in embedded processors are
addressed in recent work by Moon et al. [10], where an
approach involving selective encryption of fingerprint images
employing XOR on a bitplane basis is suggested.

In this work we thoroughly analyze two algorithms dis-
cussed in the latter manuscript. After an investigation of
the properties of fingerprint image bitplanes acquired with
different sensors, we demonstrate several shortcomings and a
computationally efficient attack against the proposed scheme.
The second approach discussed in this manuscript is also
evaluated and we give recommendations for its secure em-
ployment.

1http://www.ecrypt.eu.org/stream/
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(a) DB1 A (b) DB2 A (c) DB3 A (d) DB4 A

Fig. 1. Example fingerprint images from the FVC2004 database.

(a) LSB=1 (b) 2 (c) 4 (d) 8

(e) 16 (f) 32 (g) 64 (h) MSB=128

Fig. 2. Bitplanes of example fingerprint image of DB1 A.

II. ANALYSIS OF LIGHTWEIGHT FINGERPRINT
ENCRYPTION TECHNIQUES

Since both lightweight fingerprint image encryption
schemes analyzed in this work rely on the bitplane repre-
sentation of the corresponding grayscale fingerprint images,
we initially investigate the properties of the corresponding
bitplanes.

A. Fingerprint Images’ Bitplane Properties

For our investigations (in this section and in Section II-C),
we use the four sets of fingerprints from the fingerprint veri-
fication contest 2004 (FVC2004).2 Databases 1 and 2 contain
images of two different optical sensors (DB1, DB2), database
3 originates from a thermal sweeping sensor (DB3), and
database 4 consists of synthetically generated prints (DB4).
Figure 1 displays an example fingerprint from each database.
Figures 2 to 5 show the eight bitplanes of the fingerprints
given in Figure 1.

Figure 2 shows that ridge information is present in all
bitplanes of images acquired with the optical sensor used for
DB1. While ridge structure is most clear in the four most
significant bitplanes (MSB-planes), it is even visible in the
least significant bitplane (LSB-plane). Note that therefore the
statement “the LSB-plane is not correlated with other bitplanes
if the images are acquired by various sensors such as a digital
camera, scanner and other devices” [2] does obviously not hold
in general for fingerprint images. Furthermore, “the LSB looks
similar to a random number field” [10] is also not correct in
our context.

Figure 3 on the other hand exhibits visual properties found
in most digital images. The overall structure of the image

2http://biometrics.cse.msu.edu/fvc04db/index.html

(a) LSB=1 (b) 2 (c) 4 (d) 8

(e) 16 (f) 32 (g) 64 (h) MSB=128

Fig. 3. Bitplanes of example fingerprint image of DB2 A.

(a) LSB=1 (b) 2 (c) 4 (d) 8

(e) 16 (f) 32 (g) 64 (h) MSB=128

Fig. 4. Bitplanes of example fingerprint image of DB3 A.

(i.e., its ridges in our case) is visible in the four or five most
significant bitplanes, especially the LSB-plane in fact looks
like random noise. Recall that, like the images in DB1, the
images in DB2 originate from an optical sensor, in spite of
their contrasting properties.

The bitplanes of an image acquired by a thermal sweeping
sensor are shown in Figure 4. While the three most signifi-
cant bitplanes are almost identical to the original fingerprint,
important ridge structures are recognizable even in the LSB-
plane. The principal findings and corresponding conclusions
with respect to images in DB1 are therefore confirmed. Finally,
the synthetic fingerprint in Figure 5 exhibits a decreasing
amount of ridge information for a decreasing significance of
the bitplanes, the two least significant planes including the
LSB-plane again look similar to random noise.

Figure 6 shows larger versions of the LSB-planes of two
fingerprint images from DB1 and DB3, confirming the above
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(a) LSB=1 (b) 2 (c) 4 (d) 8

(e) 16 (f) 32 (g) 64 (h) MSB=128

Fig. 5. Bitplanes of example fingerprint image of DB4 A.

(a) DB1 A (b) DB3 A

Fig. 6. LSB-planes of fingerprint images from the FVC2004 database.

visual impression. This raises the question how to quantify
these visual properties.

In order to find a measure for quantifying discernibility from
noise, we use two approaches: the number of consecutive runs
and how well the bitplanes can be compressed by an arithmetic
coder. The number of consecutive runs (in raster scan order)
of a given length of bits with the same value is counted in the
lines of the bitplane, and normalized by the number of total
bits. From each set, 100 fingers with 8 prints each are used, the
plots show averaged run counts. The images from DB1 contain
large empty areas (see Figure 2), so they generally have many
more runs. For the sake of a comparison to a “classical” digital
image we also present the values of bitplanes of the Lena
image. As a reference, we have also added the results for
an image that only contains random noise to the plots. The
image was generated by using the Mersenne Twister PRNG
[8] to produce a random byte for each pixel value.

Figures 7 and 8 show typical results as obtained by those
measurements. Bitmask 1 refers to the LSB-plane and bitmask
128 correspondingly refers to the MSB-plane. For the three
least significant bitplanes of the Lena image the number of
runs is equally low and attains the lowest value found. Only the
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Fig. 7. Number of 3-pixel runs of single bitplanes.
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Fig. 8. Number of 5-pixel runs of single bitplanes.

LSB-plane of images in DB4 shows a comparably low value.
The number of runs in LSB-planes increases for images in
DB2, DB3, and DB1, in this order. Note that this corresponds
well with the visual impression that especially the LSB-plane
of DB1 and DB3 contains ridge structures whereas the LSB-
plane of DB2 and DB4 looks more like noise. The higher
number of runs in the more significant planes of the Lena
image is due to the ridges in the fingerprint images which
prevent an equally high number of runs due to the absence of
large regions with uniform gray value (except for images in
DB1 of course).

The most striking feature of the curves are the slopes –
whereas images with noisy LSB-plane (Lena, DB2, DB4)
exhibit a rather steep slope, images with ridge information
also contained in less significant bitplanes (DB1, DB3) result
in a flatter slope. This behavior corresponds to the fact that the
number of runs is not decreased as much as expected when
decreasing the significance of the bitplanes. Summarizing, we
have found qualitative (i.e., visual) as well as quantitative ar-
guments that for some types of fingerprint images (depending
on the acquiring sensor) the properties of the bitplanes and
especially those of the LSB-planes are different as compared
to “classical” digital images. Specifically, the LSB-plane does
not behave like random noise and contains structural ridge
information under such circumstances.

Another way to assess how close a bitplane is to a random
field is to encode it with an arithmetic coder. The idea is that if
the bitplane can be compressed well, it cannot be very close to
a random field. We use the arithmetic coder proposed by [9] in
a mode where it accepts a sequence of bits without a specific
background model. Figure 9 shows the compression ratio of
each bitplane for the fingerprint images in the four databases
and, as a reference again, for Lena and the randomly generated
image. It can be seen that the arithmetic coder is successful at
compressing all bitplanes of the images in DB1, including the
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Fig. 9. Compression performance of arithmetic coding by bitplane.
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Fig. 10. Correlation of each bitplane with the other bitplanes

LSB-plane. An interesting phenomenon can be observed for
the images in DB3: the thermal sensor yields images for which
the medium bitplanes exhibit more noise than the LSB-plane.
The compression ratios for the LSB-planes of the images in
DB2 and DB4 and also Lena are nearly as low as the results
for the randomly generated image. For these images the lower
bitplanes are closer to random than for the other images.

Another point apart from the randomness of the LSB-plane
is the correlation of each bitplane with the other bitplanes.
To assess this correlation, we compute the sample correlation
of the bitplane under consideration with each other bitplane,
and then average the correlation values. The results for each
bitplane are shown in Figure 10.

For the images of DB1, which have a uniform background,
the correlation is naturally high. The phenomenon of more
noise in the medium bitplanes in the case of DB3 can again be
observed in the lower correlation of these bitplanes, especially
for the fifth bitplane. For DB2 a little correlation can be
observed at lower bitplanes. The lower bitplanes of DB4 and
Lena exhibit no correlation to the other bitplanes, just like the
randomly generated image.

It should be noted that better sensors, due to inherent
(thermal) noise, may produce images with more random LSB-
planes as compared to weaker sensors. Furthermore, if post-
processing is applied, it may influence the randomness of the
LSB-plane in one or the other direction. What our observations
show is that the assumption that all scanners always produce
images for which the LSB-plane is (close to) a random field
that shows no correlation to the other bitplanes is not true and
is, in fact, a dangerous assumption with regard to security.

B. Vigenére LSB Encryption

In recent work [10], a lightweight fingerprint image encryp-
tion technique has been proposed, which has been denoted as

“image-based selective bitplane encryption protocol”. While
the classical notion of selective encryption restricts the appli-
cation of cryptographic techniques to a zone of influence (ZoI)
only, this is not the case in the investigated approach. In fact,
the proposed approach is a Vigenére-cipher. We will therefore
denote this algorithm as “Vigenére LSB encryption”, which is
much more appropriate as will get clear soon.

1) The Proposed Algorithm: Let I be the original 8 bpp
fingerprint image with a width of w pixels and a height of h
pixels. s denotes the size of the image in bits, s = h · w · 8.
Consider now the binary representation of the image I being
given as

I = {b0, b1, · · · , b6, b7, b8, · · · , bs−1}

where bm·8, 0 ≤ m ≤ h · w − 1 is the MSB of the binary
representation of pixel m+1, whereas bm·8−1, 1 ≤ m ≤ h ·w
is the LSB of pixel m. We extract a set of key bits

K0 = {k0, · · · , kh·w−1}

where the m-th keybit km of key K0 is constructed by taking
the LSB of each pixel m, i.e., km = bm·8−1, 1 ≤ m ≤ h · w.
Subsequently, to obtain the encrypted data ci, we apply an
exclusive-or operation (XOR) between I and K0:

ci = bi ⊕ ki , 0 ≤ i ≤ s− 1 .

Since this operation only processes 1/8 of the binary
representation of I , for the remaining binary data of I the
operation is repeated 7 times, using the identical key K0.
Finally, K0 is encrypted using AES [1] and transmitted to the
receiver together with the encrypted data ci, 0 ≤ i ≤ s− 1.

To summarize, the proposed algorithm is a Vigenére en-
cryption of the binary representation of the image data where
the key-pad used for the XOR operation consists of the LSBs
of the image’s pixels, which is AES encrypted. Compared
to a full (i.e., 100%) AES encryption, the approach reduces
the AES encryption effort to 12.5% and introduces only little
additional overhead (XOR and extraction of the binary image
data – compare Table 3 in [10]).

2) Problems: Figure 11 displays plaintext and ciphertext
example images as given in the original publication [10]. It is
somewhat surprising to observe dominant ridge structures in
the ciphertext, although concealed by noise (which could be
reduced by classical denoising techniques). This information
leakage raises the suspicion that there might be security
problems in the proposed scheme.

(a) Original Image (b) Ciphertext

Fig. 11. Example images from [10], Figs. 11(g) and (i).
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In fact, the lightweight method for encryption of fingerprint
images proposed by [10] has a number of problems which are
outlined in the following.

Vigenére encryption is only secure if the key has the same
length as the message and if it is truly random [14], i.e., if it
is a one-time pad encryption. Both conditions are violated for
the proposed approach.

a) Key-length: The key-length, which is an eighth of
the message length, gives an attacker the possibility to shift
the ciphertext by the size of the key and XOR it with itself.
This operation removes the key and leaves the attacker with
the plaintext XORed with a version of itself that has been
shifted by the key-length [14]. Figure 12 illustrates this for
a fingerprint image. As can be seen, the image obtained by
this operation yields a lot more information of the original
fingerprint than the ciphertext.

(a) Original Image (b) Ciphertext C (c) C ⊕ (C >>key-
length)

Fig. 12. Illustration of shifting the ciphertext by key-length (part of DB2 2 3).

b) Randomness: Section II-A and Figure 13 show that
the assumption made in [10], that for fingerprint sensors the
LSB is sufficiently random and not correlated with the other
bitplanes, does not hold. In fact, for some sensors there is
significant ridge information present in the LSB-plane and
considerable correlation among bitplanes can be observed. The
image shown in Figure 13 is from database DB1 and has been
acquired with an optical fingerprint sensor. As can be seen, the
LSB does not generally behave like a random number field for
all fingerprint sensors. The ciphertext – if the term is indeed
appropriate in this case – for this fingerprint image is shown
in Figure 13(c).

(a) Original Image (b) LSB-plane (c) Ciphertext

Fig. 13. Random LSB-plane: a counterexample (DB1 1 3).

c) Key XORed with itself: Even if the LSB-plane pro-
duced by the used sensor is assumed to be sufficiently random,
the scheme is not secure. The authors propose to XOR all bits
of the plaintext with the LSB-plane. That means that the LSB-
plane is XORed with itself at some positions. We show below
that this is a fundamental problem. This critical mistake in
the design of the encryption scheme could have easily been
avoided, as we will discuss in Section II-B.4.

d) Data expansion: The ciphertext has 112.5% of the
size of the plaintext. Since the transmission is intended for
weak network links, this property is highly undesired. Similar
to the issue of XORing the key with itself, also data expansion
could have been easily avoided, which will be discussed in
Section II-B.4 as well.

3) Attack: We attack the scheme at its most vulnerable
point: the key being XORed with itself. Let C be the bits
of the ciphertext that are obtained by encrypting I with key
K0. During encryption, each of the keybits (being the LSB
of plaintext pixels) is XORed with an element of K0. We
subsume these elements as K1. Note that K1 ⊆ K0. We
introduce the operation ⊕̂ with the meaning of m ⊕̂n as “the
bit at position m gets encrypted by the bit at position n”.
We can conceive the operation as a mapping from K0 to K1,
where

K1 = {ki ∈ K0 | ∃kj ∈ K0 : kj ⊕̂ ki ∈ C}.

If one or more of the keybits in K0 are mapped to the same
position, then K1 ⊂ K0, i.e., the mapping reduces the number
of key positions. As the ciphertext is known, K0 can be
reconstructed from K1, if the correct settings for the keybits
in K1 can be determined.

We can further investigate the mappings of the keybits in
K1. All of the elements of K1 are mapped to an element of
K1. This can easily be shown: let kj be an element of K1,
then also kj ∈ K0, because K1 ⊆ K0. If we now assume that
kj is mapped to ki ∈ K0\K1, i.e., kj⊕̂ki ∈ C, then by the
definition of K1 and because kj ∈ K0 and ki ∈ K0, it follows
that ki ∈ K1, which contradicts the assumption. Therefore the
set K1 can be mapped to a set K2 with K2 ⊆ K1.

This process can be applied repeatedly. We can map the
keybits in Ki to a set Ki+1, Ki+1 ⊆ Ki:

Ki+1 = {ki ∈ Ki | ∃kj ∈ Ki : kj ⊕̂ ki ∈ C}.

As long as one or more bits from Ki are mapped to the same
bits in Ki+1, Ki+1 is a proper subset of Ki: Ki+1 ⊂ Ki, i.e.,
we reduce the number of referenced keybits. It can be easily
seen that after a number of iterations N , no more reductions
are possible:

∃N ≥ 0 : Ki+1 = Ki for i ≥ N.

If the correct settings for the bits in KN are known, then
KN−1 can be reconstructed. As generally the correct settings
of Ki+1 can be used to reconstruct Ki, the correct settings of
the bits in KN are sufficient to get the settings for all bits in
the key.

It can be shown that for key-lengths of a power of 2, |KN | =
1, i.e., the whole key depends on the setting of a single bit. In
this case, the plaintext can be easily reconstructed by testing
the two possible settings of this bit and then reconstructing
the key. After decryption, one setting will yield the original
plaintext, the other setting will yield the original plaintext with
its pixels inverted.

For images of other sizes, more positions will remain in the
set KN . Note that if the greatest common divisor of s (the size
of the image in bits) and 8 is 1, then KN = K0. Generally, KN
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Fig. 14. Reduction of keybits for n = 72, N = 1.

will be too large for a brute force search. However, the existing
mappings of the bits in KN can be used to further reduce the
number of relevant keybits. The elements of KN are either
mapped to themselves or to another element of KN . During
the encryption process, only a limited number of elements are
actually mapped to themselves. For the rest of the elements we
can define circular chains of keybits. For the keybits in each
of these sequences a mapping exists between each element
and its successor, with the successor of the last element being
the first element. For the example in Figure 14(c), a chain is
formed by k7 and k63, because k7 is mapped to k63 which is
mapped to k7 again. The elements of KN which are mapped
onto themselves, form a chain of length 1. The number of
chains that exist in KN and their lengths depend on the length
of the key.

If the correct setting for one bit in the chain is known, then
the complete chain can be reconstructed. So we can choose
a single element from each chain as a representative. Each
of these representative elements influences a multitude of bit
positions in the plaintext.

The procedure of reducing the keybits is illustrated in Figure
14 for an input image of 72 pixels. During encryption each
element of K0 is XORed with an element of K0 (a). The
referenced elements are collected in K1 (b). For n = 72, no
further reduction is possible after this step, so N = 1. In the
final step, chains of mappings are found in K1 (c). The number
of representative bits for the 72-bit key is reduced to 5 bits.

As an example, we investigate fingerprint images used by
[10]: for two different sensors, they obtain images of 320×440
and 248 × 292, respectively. For the first sensor this leads
to a set KN=3 with 275 elements. These elements can be
grouped into 16 chains of varying length. During encryption,
each chain influences between 4096 and 81920 bit positions in
the plaintext. For the second sensor the reduced set of keybits

(a) Run #1 (b) Run #2 (c) Run #3

Fig. 15. Variance attack on Lena.

(a) Original image (b) Result of variance
attack

(c) Result of neighbor-
hood attack

Fig. 16. Variance versus neighborhood attack (DB3 84 2).

KN=2 has 2263 elements which can be organized into 175
chains. Each chain influences between 256 and 3840 bits in
the plaintext.

For a brute-force search, the number of chains is still too
large. But we can formulate some conditions that should hold
for the plaintext. Because the representative bits influence so
many positions in the image, the condition need not be overly
sophisticated. For natural images, the sample variance can be
used as a simple measure. A hypothesis for the value of the
representative bit of each chain is formed and iteratively tested.
We start by setting each representative bit to zero. Then the
chains are reconstructed to form the set KN . A hypothetical
key is created by reconstructing KN−1 through K0 from KN .
K0 is used to reconstruct an image. In the next step one of
the representative bits is flipped from 0 to 1. Again an image
is reconstructed, and its sample variance is compared to the
previous run. If the sample variance has decreased, then the
bit is left at 1 otherwise it is flipped back to 0. This process
is repeated over the whole set of representative bits, until
the variance no longer changes. For images with a sufficient
degree of smoothness the result will be the original image (or
an inverted version of it, depending on the initial setting of the
representative bits). This iterative refinement of a hypothetical
key is similar to the method for cryptanalysis of substitution
ciphers proposed by [6].

The process is illustrated for a version of the Lena test image
of size 248×292 in Figure 15. Each image represents a whole
run over the 175 chain bits. After run number 3 the variance
does not change any more and the image is found.

The variance for testing the hypothesis does not only work
for most natural images but also for many of the tested
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(a) Original image (b) Ciphertext (c) Result of attack

Fig. 17. Example: attack on DB4 1 8.

fingerprint images. However, some of the fingerprint images
exhibit strong oscillatory patterns. An example image, which
was captured by a thermal sweeping sensor, is shown in
Figure 16(a). In such cases, the minimum variance fails as a
condition for the correct plaintext image, as shown in Figure
16(b). Therefore we use a more local measure that reflects
the properties of fingerprint images in a better way: For each
pixel in the image decrypted with the hypothetical key, we
measure the difference of this pixel to all pixels surrounding it.
The sum of these differences should be minimized. We found
that considering the eight immediately surrounding pixels is
sufficient. With the neighborhood measure we can decrypt
both, fingerprint and natural images. Figure 16(c) shows the
attack result for one of the fingerprint images, for which
the sample variance failed. Figure 17 shows the attack on
a (synthetic) fingerprint image for which both variance and
neighborhood attacks work.

Note that the proposed attack does not depend on the
randomness of the LSB-plane: even for a truly random LSB-
plane the encrypted image can be easily decrypted without
knowing the key. If the proposed attack is successful, then the
image decrypted with the proposed attack is bitwise identical
to the original image. Depending on the used measure, if there
exists an image that is not the original plaintext (but possibly
similar to it) and which has a lower measure than the real
plaintext, then the iteration will terminate, and the result of
the attack in this case would not be the perfect plaintext.

The computational demands of the attack depend on the
number of representative bits (which in turn depends on the
size of the image). Table I shows the time the attack needed
for the images discussed above. The results were obtained with
a Java implementation running on an AMD Athlon 1.6 GHz
with 2 GB of RAM. It can be seen that the costs for the attack
are low. Using the sample variance in an attack on DB3 84 2
was unsuccessful (*), all other attacks produced the original
plaintext image. The last image represents a special case for
which the keybits can be reduced to a single representative
bit. In this case, the attack is extremely fast and no measure
is necessary.

4) Improvements:
a) Key XORed with itself: In this respect, the scheme can

be designed in a more secure way: only XOR the bitplanes
apart from the LSB-plane with the LSB key, i.e., bitplanes 7
through 1, but leave the LSB untouched. The original scheme
proposes to encrypt the LSB-plane with AES anyway. The

Image Size R. Bits Variance Neighborhood

Lena (mod.) 248 × 292 175 60.28 s 65.76 s
DB1 1 3 640 × 480 8 13.44 s 7.54 s
DB3 84 2 300 × 480 32 *25.01 s 14.78 s
DB4 1 8 233 × 384 8 4.42 s 4.8 s

DB2 3 3 (mod.) 256 × 256 1 1.2 s

TABLE I
TIMING RESULTS.

encrypted version can be inserted into the ciphertext at the
LSB positions. Apart from enhancing security by avoiding
the key being XORed with itself, this modification brings
another advantage: unlike in the original scheme, the LSB-
plane information is not transmitted twice, therefore also
solving the data expansion problem.

b) Randomness: In order to produce a keystream that
exhibits more properties of a random number field, we suggest
to extract the LSB-plane (or any other bitplane) first, encrypt
it with AES, and use the resulting data as the keystream for
the XOR operation. Of course, AES ciphertext is not truly
random, but at least it passes several strong statistical tests for
randomness [5]. It has to be noted, however, that with this
approach, the encrypted bitplane has to be regarded as proper
key material and has to be transferred over a secure channel.

c) Key-length: The length of the key remains restricted to
1/7 of the data size even if implementing the improvements as
suggested so far. This is a major obstacle. A possible solution
would be to additionally introduce 6 different permutations of
the key data at the cost of additional key material. It is doubtful
(and of course depends on the type of permutations applied) if
such a scheme would still be more efficient and equally secure
as compared to full encryption with a fast stream cipher (e.g.
[13], [3], [4]).

Note that these suggestions can be used to improve the
scheme, but they do not make the scheme secure from a
cryptographical point of view. Even with the improvements the
scheme remains insecure and should not be used in practical
applications.

C. Selective Bitplane Encryption

A second lightweight encryption scheme for fingerprint
images is also briefly discussed in the manuscript by Moon et
al. [10]. This approach uses the concept of selective bitplane
encryption as proposed for image protection [11] and try-and-
buy scenarios [2] previously. The basic idea is to encrypt
a subset of the bitplanes only, starting with the MSB and
proceeding towards the less significant bitplanes as a higher
degree of security is required. This approach with encrypting
two bitplanes is rated as being insecure by visual inspection
of an attacked fingerprint image (Figure 6 in [10]).

Here, we try to give the analysis a more sound basis by
assessing the actual matching performance of a fingerprint
recognition system applied to selectively encrypted images.
From each set of the FVC2004 data, 100 fingers with 8
prints each are used. The bitplanes are extracted from every
fingerprint image, and converted to grayscale by shifting bright
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pixels to a medium gray in order to lower contrast. This
strategy improves matching behavior for VeriFinger. In case
the MSB of all pixels is 0, pixel values are multiplied by two.

The converted grayscale images are matched against the 8
original images. This results in 64 matching scores for each
finger and bitplane. The average of 100 fingers or 6400 scores
is then plotted for each bitplane.

Matching is done using the NFIS2 minutiae matching soft-
ware from NIST.3 The mindtct software extracts minutiae
information from the original fingerprints and from the prints
consisting only of single bitplanes (or with single bitplanes
masked out). The program bozorth3 is then used to generate
matching scores between minutiae sets of different finger
prints. In the following plots, we use the term “bitmask” to
denote which parts of the binary representation of a pixel (an
image) is used in the matching process. The bitmask is the
unique decimal value which is obtained by setting omitted bit
positions to 0 and used bit positions to 1. For example, bitmask
128 = 10000000 denotes an image where only the MSB bits
are kept for all pixels, 63 = 00111111 is an image which
consists of all but the MSB-plane and the next significant
bitplane.

Figure 18 shows the average matching score of the single
8 bitplanes. For the three most significant bitplanes (masks
32, 64, 128) of the third database DB3 (the thermal sweeping
sensor), the scores are even greater than 40 on average, which
the NFIS documentation gives as the score above which
prints usually can be considered matching. For the two optical
sensors of DB1 and DB2 and the generated finger prints
(DB4), the most significant bitplane shows a good matching
score as well. Note that this exactly corresponds to the visual
impression in Section II-A where the three most significant
bitplanes have been considered as being almost identical to
the original. In the images acquired by this sensor, the ridge
information is almost given as black & white, so the significant
bitplanes contain roughly the same information as the images
themselves. The less significant bitplanes of the images in DB1
and DB3 have been shown to contain ridge information in
Section II-A – this is also reflected in the matching scores
which are clearly higher as compared to the values for DB2
and DB4; in perfect accordance to the visual impression, the
LSB of DB1 images scores highest whereas DB3 takes the
lead for bitmasks 4 to 128 (i.e., MSB).
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Fig. 18. Average minutiae matching scores of single bitplanes against 8
impressions from the databases.

Figure 19 shows the scores for the same images if instead of

3http://fingerprint.nist.gov/NFIS/

extracting single bitplanes from the original, single bitplanes
are missing. Note that this experiment simulates a selective
encryption of a single bitplane with perfect replacement attack,
see [10] and [11]. With the most significant bitplane missing
(mask 127), the scores are 41.4 for DB1, 22.1 for DB2, 61.7
for DB3 and 12.9 for DB4. The scores from DB1 and from
DB3 are always above the 40 mark which indicates that this
strategy is highly insecure if applied for encrypting fingerprint
images. The synthetic prints from DB4 are on average below
40 only when the MSB is missing. Note that the results of DB1
are not monotonically increasing as would have been expected
when the less significant bitplanes are omitted, but the values
are in fact decreasing up to the 5th bitplane (contrasting to the
other DBs). Especially the 5th most significant bitplane has
the most severe impact if missing which questions the general
strategy to restrict encryption to the MSB and subsequent
planes. With only the three least significant planes missing
(masks 251, 253, 254) the matching score is only slightly
less than that of the unmodified prints for all four databases,
with scores around 100. This result suggests that a selective
encryption of 4 or 5 bitplanes could lead to a rather secure
strategy since the remaining less significant bitplanes do hardly
contribute to the matching score at all.
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Fig. 19. Average matching scores with single bitplanes missing.

In Figure 20 we display matching results in case more
bitplanes are “encrypted” (i.e., more bitplanes are missing).
Bitmasks 63 to 7 simulate scenarios where the MSB-plane plus
additional subsequent bitplanes are encrypted (and attacked).
Results indicate that encryption of the MSB-plane plus at least
two bitplanes lead to results sufficiently below the “acceptance
score” of 40. This is true in any case for DB2 and D4, DB1
and DB3 give higher values but those DBs seem to give higher
matching values also in other scenarios (compare Figure 18).

In Figure 19 for DB1, bitmask 247 showed the lowest score
value, which seems to indicate that the 5th significant bitplane
might have the strongest impact if missing for these data.
For this reason, bitmasks 71 to 231 simulate scenarios where
this bitplane and additional bitplanes with varying significance
are encrypted (and attacked). Interestingly, while the expected
behavior for DB1 (i.e., low score values) can be observed
in Figure 20 for bitmask 71, it does not show up for the
bitmasks 135, 199, and 231. Instead, the results for DB1 for
these bitmasks show another unexpected behavior – bitmasks
135 and 199 give a higher score than mask 231 although more
bitplanes (i.e., more information) are missing. The reason is
that missing binary positions in the pixels representation may
lead to artifacts negatively influencing matching behavior. For
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bitmask 71 one encrypts the MSB-plane in addition to the 5th

bitplane (among others) which gives the lowest score for all
bitmasks not containing the 5th bitplane, including those for
DB1. This shows that for all data considered selective bitplane
encryption should involve protection of the MSB-plane.
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Fig. 20. Average matching scores with various bitplanes missing.

In the following, we relate our findings to a different
fingerprint recognition system and a different set of images.
Figures 21 to 23 show a comparison of the NFIS matcher
with VeriFinger from Neurotechnologija,4 using the average
of 3 selected fingerprints (these images come with the dis-
tribution of the demonstration software of VeriFinger which
relies on minutiae matching without employing core and delta
points and claims tolerance to translation and rotation). The
VeriFinger data are obtained from manually matching the 24
bitmasked images for each fingerprint with the demo version
of the application. The same bitmasks of the same fingerprints
are matched with the NFIS matcher, the score shown is the
relative matching score of a bitmask to the score obtained by
matching the print to itself.
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Fig. 21. Comparison of NFIS and VeriFinger (single bitplanes).

While observing a similar behavior for the matching scores
of single bitplanes (Figure 21), the simulation of selective bit-
plane encryption reveals that VeriFinger is much less sensitive
to the absence of single bitplanes. Therefore, the effect of
selective bitplane encryption is highly dependent of the em-
ployed fingerprint recognition system. Additionally, the shape
of the “scores-curve” is again not monotonically increasing for
a decreased significance of the omitted bitplane and is quite
different from all four curves obtained from the FVC2004 data.
As a consequence, selective bitplane encryption needs also to
be tuned to the type of fingerprint sensor employed.

However, when considering the results when protecting the
MSB-plane and subsequent significant bitplanes (see bitmasks

4http://neurotechnologija.com
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Fig. 22. Comparison of NFIS and VeriFinger (single bitplanes missing).

7 to 63 and 71 in Figure 23) it turns out that this strategy is also
sensible for the VeriFinger scheme and not only for the NIST
software. It should be noted that the encryption complexity is
reduced only to 37.5% if the MSB-plane and two additional
bitplanes are encrypted, and it remains questionable if there
indeed exist application scenarios where this makes sense.
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Fig. 23. Comparison of NFIS and VeriFinger (various bitplanes missing).

III. CONCLUSION

We have analyzed two lightweight encryption schemes
for fingerprints relying on the bitplane representation of the
images. The first approach, employing an XOR-encryption
between the image data and the fingerprints LSB data (used
as key in repeated manner) with subsequent AES encryption
of the key data, is shown to suffer from several shortcomings.
We demonstrate a computationally low-cost attack exploiting
the fact that key data is XORed with itself which renders
this encryption strategy useless. In this context we propose
a few improvements of the scheme. The security of the
second approach, based on selective encryption of fingerprint
bitplanes, is shown to be highly dependent on the actual
fingerprint recognition scheme used and has to be optimized
with respect to the used fingerprint sensor to acquire the image
data. A strategy which protects the MSB-plane and at least two
additional bitplanes has been shown to be secure in terms of
low matching scores for two fingerprint recognition systems.

We have shown that simple schemes used to secure finger-
print image data may be a severe threat to the security of
that kind of biometric authentication schemes. It has to be
pointed out that fundamental knowledge in the cryptographic
area has to be obeyed as well, when designing lightweight
encryption schemes and that it may be necessary to optimize
such schemes with respect to the actual environment where
they are employed.
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