
c© IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints invoked
by each author’s copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder.

EFFICIENT TRANSPARENT JPEG2000 ENCRYPTIONWITH
FORMAT-COMPLIANT HEADER PROTECTION

Dominik Engel, Thomas Stütz, and Andreas Uhl

Department of Computer Sciences
University of Salzburg
Salzburg, Austria

Email: {dengel,tstuetz,uhl}@cosy.sbg.ac.at

ABSTRACT

Transparent encryption allows the decoding of a preview image
from the encrypted bitstream, even if the key is not available.
We propose a lightweight partial encryption scheme that allows
transparent encryption for JPEG2000. The proposed scheme ef-
ficiently encrypts JPEG2000 packet header information. The
resulting bitstream is fully format-compliant. Apart from low
computational complexity, the proposed scheme has several ben-
eficial properties, e.g. it allows to perform tasks such as rate-
adaptation and visual hashing in the encrypted domain. We eval-
uate the security of the proposed approach and discuss possible
attacks. The proposed approach succeeds in protecting the full-
quality version of the visual content reasonably well, especially
considering its low computational demands.

Index Terms— JPEG2000, format-compliance, packet
header encryption, transparent encryption, lightweight encryp-
tion

1. INTRODUCTION

Scalability in the representation of visual data is quickly becom-
ing more important, as the requirement of serving many different
terminal devices with different display capabilities (especially re-
garding resolution, but also computational capacity) with a sin-
gle bitstream needs to be satisfied. Since the JPEG2000 standard
has been passed, the format has not exactly taken the field by
storm, but because JPEG2000 provides scalability and superior
compression performance compared to JPEG and other formats,
it is to be expected that the use of JPEG2000 will increase signif-
icantly in the future. With a more widespread use of JPEG2000,
different security techniques that cover the range of applications
need to be devised.

“Transparent encryption” denotes encryption schemes for
which a preview image can be decoded from the encrypted stream,
even without the key data [1]. Broadcasting applications, for ex-
ample, benefit from transparent encryption, as they, rather than
preventing unauthorized viewers from receiving and watching
their content completely, often aim at promoting a contract with
non-paying watchers, for whom the availability of a preview ver-
sion (in lower quality) may serve as an incentive to pay for the
full quality version. The straightforward approach to achieve
transparency is to encrypt packet data at the end of the bitstream,
which corresponds to encryption of enhancement layers [2].
Since the major part of the packet body data needs to be en-

This work has been partially supported by the Austrian Science Fund
(FWF) under Project No. P19159-N13 and by the European Commission
through the IST Programme under contract IST-2002-507932 ECRYPT.

crypted, this approach is demanding in terms of computational
complexity.

Another aspect of encryption schemes is whether they of-
fer format-compliance. If a scheme is fully format-compliant,
then the encrypted bitstream can be interpreted by any JPEG2000
compliant decoder. Tasks such as rate-adaption can be performed
in the encrypted domain. There is a number of approaches that
propose format-compliant encryption for JPEG2000, e.g. [3, 4,
5], all of which focus on the encryption of packet bodies. In this
paper we discuss an efficient method for fully format-compliant
transparent encryption that focusses on the packet headers: only
the packet headers are encrypted, the packet body data remain in
plaintext.

2. FORMAT-COMPLIANT HEADER ENCRYPTION

The information contained in the JPEG2000 packet header re-
lates to inclusion of codeblocks in the packet, the length of each
codeblock contribution to the packet (CCP), the number of cod-
ing passes and the number of leading zero bitplanes [6]. If this in-
formation is missing, then a reconstruction will yield a distorted
image, as the packet body data is misinterpreted.

In a format-compliant encryption approach for packet head-
ers, the encrypted header information should be consistent with
the available packet body data. Furthermore, it should of course
be possible to reconstruct the original packet headers from the
encrypted packet header data by the use of a key. In the follow-
ing subsections, we propose a reversible, key-dependent trans-
formation for each piece of information in the packet header.
Thereby the key is used to create a (pseudo-)random keystream.
The choice of random generator can range from a physical source
of randomness to using a symmetric cipher like AES in output
feedback mode. In our tests we use a linear congruential random
generator.

As each of the transformations can be limited to a single
packet, the quality of the preview image can be controlled rel-
atively precisely. The headers of the packets (at the beginning
of the bitstream) that should constitute the preview image are
simply left in plaintext. The decoder needs to be signalled the
amount of data it is allowed to decode in order to obtain the pre-
view image.

2.1. CCP Lengths and Number of Coding Passes

JPEG2000 explicitly signals both, the number of coding passes
and the length of each codeblock contribution [6]. In order to pre-
vent access to this information, we distribute the CCP lengths and
number of coding passes in each packet among all non-empty
codeblocks. The number of coding passes gives only little in-
formation to a potential attacker, the lengths of the codeblock

10671-4244-1236-6/07/$25.00 © 2007 IEEE

2007 IEEE International Conference on Signal Processing and Communications (ICSPC 2007), 24-27 November 2007, Dubai, United Arab Emirates

contributions are a more valuable source of information, as they
are more distinctive. The transformation we propose here can be
applied to both (for clarity of reading we give the description for
lengths only).

The requirements are rather unique for this transformation:
given a vector of non-zero positive integers (the CCP-lengths or
the number of coding passes) and a random keystream, we want
an output vector that randomly redistributes the lengths among
all positions (using all possible mappings), preserves the overall
sum of the lengths, and that has the same number of elements,
each of which has to be a non-zero positive integer. Further-
more, the transformation needs to be reversible: given the ran-
dom keystream and the output vector, the original vector has to
be reconstructible.

To achieve a transformation that adheres to these require-
ments, we change packet lengths (and number of coding passes,
respectively) in overlapping pairs, starting with the first and the
second length, moving on to the second and the third length, and
so on. We redistribute the lengths between a pair of lengths by
adding a random number from 0 to the total length of the two
packets. This addition is performed modulo the packet size mi-
nus one and after the modulo operation we add one. Thus the size
of any packet can never become zero. To avoid that an attacker
can obtain the original sum of the pairs, we shuffle the lengths
before and after redistributing them.

The number of possible alterations depends on the number
of codeblocks, and how they make their contributions to the in-
dividual packets. If a small number of packets contains many
contributions more alterations are possible than if a large num-
ber of packets only contain a small number of contributions each.
Two non-empty codeblock contributions in a packet are enough
to hide their lengths and number of coding passes. Therefore,
in practical scenarios, there will always be ample opportunity
to sufficiently randomize CCP lengths and number of coding
passes.

2.2. Leading Zero Bitplanes

The number of leading zero bitplanes (lzb) for each codeblock is
coded by using tag trees [6]. When the number of lzb is changed,
the length of the output from the associated tag tree might change
as well. This change in length has to be reflected in the tile
header, otherwise the decoder will complain.

To transform the number of leading zero bitplanes we simply
use the keystream to generate random bytes. We then add a ran-
dom byte to the number of leading zero bitplanes modulo a previ-
ously determined maximum number of skipped bitplanes. Note
that the new number of skipped bitplanes needs to be greater or
equal to the original number. As the maximum number of bit-
planes can be derived from information contained in the main
header [7], the main header needs to be changed for full-format
compliance (otherwise decoding will still work, but the decoder
might issue a warning). For decoding, the random byte is sub-
tracted instead of added.

The number of possible alterations obviously depends on the
codeblock size. For smaller sizes, more codeblocks exist, and
more alterations of the lzbs can be performed.

2.3. Inclusion Information

Each packet contains the inclusion information for a certain qual-
ity layer for all codeblocks in the resolution (for the sake of sim-
plicity, we assume that no precinct partitioning is used). There
are four types of inclusions that codeblock c can have in packet
p: FI (c is included in p for the first time, i.e. c has not been
included in any previous packet), NI (c is not included in p and
has never been included in any previous packet), PI (c has been

included in a previous packet and is also included in p), and PN
(c has been included in a previous packet but is not included in
p). The sequence of inclusion information of each codeblock is
coded depending on the type of inclusion. FI and NI are coded
by an inclusion tag tree. For PI and PN, i.e. previous inclusions,
a 1 is coded in the header if the codeblock is included again in
the current packet, and a 0 is coded if it is not included in the
current packet.

We distinguish two kinds of packets: an empty packet is a
packet for which a header is written, but which does not contain
any codeblock contributions, i.e. all codeblocks are included as
NI or PN. In a non-empty packet there is at least one contribution
from one of the codeblocks, i.e. at least one codeblock is included
as FI or PI. We define the inclusion vector vp for a packet p as the
sequence of the inclusion information for each codeblock associ-
ated with p. The order of elements in the inclusion vector follows
the order in which the codeblocks are scanned during image cod-
ing. In JPEG2000 this is an ordering by subband in the sequence
HL, LH, HH followed by a lexicographical ordering over the 2-D
coordinates of all codeblocks in the subband. Obviously, the or-
der in which subsequent items of the same inclusion type appear
are irrelevant, and count as the same permutation.

In order to produce a format-compliant bitstream, after the
first permutation, the permutations for the subsequent packets
have to regard the inclusion information that has been signalled
in the directly preceding packet. The following transitions are
possible:

pl FI NI PI PN

pl−1 NI NI FI,PI,PN FI,PI,PN

A codeblock can only be included as FI or NI in pl if it has been
included as NI in packet pl−1. PI and PN can follow a previous
inclusion of FI,PI, or PN. It follows that permutations can only
be performed for non-empty packets, because for empty pack-
ets the positions of the inclusions of types NI and PN are fully
determined by the previous packet.

Initially, in each resolution, the first packet suitable for per-
mutation is searched: This packet has to have at least one non-
empty codeblock contribution (FI or PI) and one empty inclusion
(NI or PN). Then, for the subsequent non-empty packets, the
inclusion information is permuted regarding the possible tran-
sitions. The inclusion information in empty packets cannot be
permuted and is only updated according to the previous packet.
This procedure results in a (semantically) consistent sequence
of inclusion information for the packets of each resolution. The
number of possible permutations for a given input image depends
primarily on the number of codeblocks, which in turn depends on
the used compression settings. For example, for the test image
shown in figure 1(a) with a bitrate of 1bpp, a codeblock size of
64 × 64, and 32 quality layers, 2987 permutations are possible.

2.4. Combined Format-Compliant Header Transformation

The format-compliant transformation of the different pieces of
information in the packet headers can and should be combined.
The order in which they are applied is arbitrary, only decod-
ing has to apply the reverse transformations in the reverse or-
der. The format compliance of the combined format-compliant
header encryption has been verified experimentally by decod-
ing the encrypted files with the reference implementations JasPer
and JJ2000. The effectiveness of the transformations depends on
the settings of the compression parameters, as discussed above.
For small codeblock sizes and many quality layers, the keyspace
size is increased dramatically. If packet boundaries were crossed
and furthermore inclusion information was split up among code-
blocks, the keyspace could be further increased. However, the

1068

(a) Test image (b) CCP lengths (& num-
ber of coding passes),
PSNR 9.7 dB

(c) Number of lzb,
PSNR 10.6 dB

(d) Inclusion infor-
mation, PSNR 12.1
dB

Figure 1. Test image & visual examples of reconstructions with
transformed packet headers: 1 bpp, cblk. size 32 × 32, 32 layers

downside would be a loss in semantics for the encrypted version
(which would make rate adaption more unreliable, for example).

2.5. Visual Examples

In order to give an illustration of the impact of encrypting each of
the pieces of header information, we give some visual examples.
The test image (courtesy of Jumeirah) is shown in figure 1(a).
It is an 8bpp grayscale image of 1024 × 1024 pixels. For the
illustration we used a bitrate of 1 bpp, a codeblock size of 32×32
and 32 quality layers.

Figures 1(b) to 1(d) show direct reconstructions of the image
with a single piece of header information encrypted (with header
transformation for the encrypted image starting at the first resolu-
tion). The impact of transforming the different parts of the header
information can be observed. Figures 2(a) to 2(c) show the direct
reconstruction for all header transformations combined, with the
start of the transformation set to a different resolution level for
each figure. It can be seen that if the transformations start at a
higher resolution level, lesser distortion is introduced. It should
be noted that the direct reconstructions do not represent the pre-
view images, but rather the result of reconstructing all of the
available (transformed) data (in a way, it is the attacker’s view).
In order to get a preview image, the portion of the bitstream that
has not been distorted needs to be decoded. An actual preview
image is shown in Figure 2(d). This preview image was taken
from a bitstream where the transformations start at resolution 3,
so the preview image is equal to resolution 2 of the original im-
age (i.e. the third resolution contained in the bitstream).

3. EFFICIENCY

The transformations used in the proposed scheme are computa-
tionally cheap. The array-based permutations used in the trans-

(a) Transformations start
at resolution 0, PSNR
7.2 dB

(b) Transformations start
at resolution 2, PSNR
9.7 dB

(c) Transformations start
at resolution 3, PSNR
9.8 dB

(d) Preview image for
2(c) (yields resolution
2), PSNR 10.2 dB

Figure 2. Visual examples of reconstructions for all transforma-
tions and different levels of transparency

formations are all of linear complexity. The necessary operations
in each substep are the generation of a random number and ex-
changing the places of two items in the array. The size of the
packet headers compared to the packet bodies depend on the
compression settings. As an example, we take the test image
shown in figure 1(a) of 1024× 1024 pixels at a compression rate
of 1 bpp. The following table shows the number of header and
body bytes and the ratio of header bytes to the total number of
bytes in the bitstream.
Cblk. Size Layers Header Bytes Body Bytes Ratio

64 × 64 16 1823 129072 1.4%
32 × 32 32 4603 126283 3.5%
16 × 16 32 11379 119510 8.5%
8 × 8 32 25748 105176 18.6%

As can be seen, the size of the headers increases with the
number of codeblocks and the number of layers. With more
information in the headers to be permuted, the scheme needs
more computational complexity, but also gives more security, as
the number of possible transformations increases. The proposed
scheme is significantly more efficient than the straightforward
approach that needs to encrypt the major part of the packet data.

4. SECURITY

The complexity of a brute-force attack that tries to obtain the
full quality version of the image depends on the number of pos-
sible transformations. For practical settings the obtained num-
ber of possible combined transformation will be very high (2987

for the inclusion information alone in the example used above).
However, the complexity of a brute-force attack can only give an
upper-bound for security, often there will be easier attacks. This
is especially true for partial encryption [8].

1069

The proposed key-dependent transformations use permuta-
tions, which are principally vulnerable to known-plaintext at-
tacks. Another security threat for the proposed scheme is the
fact that an attacker can iteratively try to get a better quality than
allowed. The attacker can make a guess on the header informa-
tion (using the information that is preserved by the encryption,
e.g. the types of inclusions in the packet), and then iteratively
perform systematic alterations on the header information and re-
construct an image. In each iteration, if the quality improves
compared to the previous construction, the alteration is accepted,
otherwise the previous state is restored.

The problem for the attacker is that there is no measure with
which to assess the quality of the obtained image (apart from us-
ing a human observer). The demands for an attack increase with
the number of resolutions. The lower resolutions will have sig-
nificantly fewer packets than the higher resolutions, therefore an
attack will be easier (and possibly be performable by a human
observer) on the lower resolutions, while the protection of the
higher resolutions is stronger. However, it should be taken into
account that obtaining a version of better visual quality than the
preview image is possible without too much effort, and (com-
pression) settings should be chosen accordingly.

Full confidentiality, i.e. no preview image at all and high se-
curity for the visual data, cannot be provided by the proposed
scheme, even if the packet body data for the lowest resolution
is encrypted. This is because the protection for the lower reso-
lutions is significantly weaker than the protection of the higher
resolutions, and it will almost always be possible for an attacker
to get a rough estimate of the visual content from these lower
resolutions.

5. APPLICABILITY

Apart from the advantages that are normally gained with format-
compliant encryption, the fact that the packet body data remains
in plaintext also enables techniques that can be used for indexing,
retrieval and classification. For example, visual hashing [9] can
be applied without the need to decrypt. Generally, applications
that use the packet body data for classification, indexing and re-
trieval will work with the proposed scheme. Also, schemes that
use general information from the header will work. For exam-
ple, the scheme proposed by [10] uses the number of bytes spent
on each subband as a texture classification tool. Although this
data is retrieved from the header, this scheme will still work with
encrypted headers, as the sum of all codeblock contributions is
preserved by the proposed encryption scheme. The possibility to
perform these tasks in the encrypted domain can be an important
feature, which the packet-body-based techniques cannot provide.

On the other hand, classification, indexing and retrieval tech-
niques based on detailed features of the packet header can be
disabled by the proposed scheme. For example, the approach by
[11], which uses the number of leading zero bitplanes as a fin-
gerprint, can be disabled, just as the approach by [12] which uses
a set of classifiers based on the packet header and packet body
data.

6. CONCLUSION

The proposed transparent encryption scheme offers two advan-
tages: efficiency and format-compliance. As only the header in-
formation needs to be encrypted, the proposed scheme has low
computational demands, even compared to other partial encryp-
tion schemes. Full format-compliance allows to perform vari-
ous tasks in the encrypted domain, including indexing, classifi-
cation and retrieval techniques. The quality of a preview image
for transparent encryption can be controlled quite precisely by
choosing an appropriate point in the sequence of packets where
to start header transformation.

As regards security, the scheme definitely and expressly has
to be denoted lightweight. The use of permutations makes it vul-
nerable to known-plaintext attacks, iterative attacks can obtain
higher quality images than the preview image. However, the full
quality version remains reasonably secure, considering the low
effort used for encryption.

7. REFERENCES

[1] B. M. Macq and J.-J. Quisquater, “Cryptology for digi-
tal TV broadcasting,” Proceedings of the IEEE, vol. 83,
pp. 944–957, June 1995.

[2] A. Uhl and C. Obermair, “Transparent encryption of
JPEG2000 bitstreams,” in Proceedings EC-SIP-M 2005
(5th EURASIP Conference focused on Speech and Image
Processing, Multimedia Communications and Services)
(P. Podhradsky et al., eds.), (Smolenice, Slovak Republic),
pp. 322–327, 2005.

[3] T. Stütz and A. Uhl, “On format-compliant iterative en-
cryption of JPEG2000,” in Proceedings of the Eighth IEEE
International Symposium on Multimedia (ISM’06), (Los
Alamitos, CA, USA), pp. 985–990, IEEE Computer Soci-
ety, 2006.

[4] H. Kiya, D. Imaizumi, and O. Watanabe, “Partial-
scrambling of image encoded using JPEG2000 without
generating marker codes,” in Proceedings of the IEEE In-
ternational Conference on Image Processing (ICIP’03),
vol. III, (Barcelona, Spain), pp. 205–208, Sept. 2003.

[5] Y. Wu and R. H. Deng, “Compliant encryption of
JPEG2000 codestreams,” in Proceedings of the IEEE Inter-
national Conference on Image Processing (ICIP’04), (Sin-
gapure), IEEE Signal Processing Society, Oct. 2004.

[6] D. Taubman and M. Marcellin, JPEG2000 — Image Com-
pression Fundamentals, Standards and Practice. Kluwer
Academic Publishers, 2002.

[7] ISO/EIC 15444-1, “Information technology – JPEG2000
image coding system, Part 1: Core coding system,” Dec.
2000.

[8] A. Said, “Measuring the strength of partial encryption
schemes,” in Proceedings of the IEEE International Con-
ference on Image Processing (ICIP’05), vol. 2, Sept. 2005.

[9] R. Norcen and A. Uhl, “Robust visual hashing us-
ing JPEG2000,” in Eighth IFIP TC6/TC11 Conference
on Communications and Multimedia Security (CMS’04)
(D. Chadwick and B. Preneel, eds.), (Lake Windermere,
GB), pp. 223–236, Springer-Verlag, Sept. 2004.

[10] A. Tabesh, A. Bilgin, K. Krishnan, and M. W. Marcellin,
“JPEG2000 and motion JPEG2000 content analysis using
codestream length information,” in Proc. Data Compres-
sion Conference, DCC 2005, pp. 329–337, IEEE Computer
Society Press, Mar. 2005.

[11] C. Liu and M. Mandal, “Fast image indexing based on
JPEG2000 packet header,” in Proceedings of the 2001 ACM
workshops on Multimedia: Multimedia Information Re-
trieval, (New York, NY, USA), pp. 46–49, ACM Press,
2001.

[12] A. Descampe, P. Vandergheynst, C. D. Vleeschouwer, and
B. Macq, “Coarse-to-fine textures retrieval in the JPEG
2000 compressed domain for fast browsing of large image
databases,” in Proc. Multimedia Content Representation,
Classification and Security, MRCS 2006 (B. Günsel, A. K.
Jain, A. M. Tekalp, and B. Sankur, eds.), vol. 4105 of Lec-
ture Notes in Computer Science, (Berlin, Heidelberg, New
York, Tokyo), pp. 282–289, Springer-Verlag, Sept. 2006.

1070

