
c© ACM. This is the author’s version of the work. It is posted here by permission of ACM for

your personal use. Not for redistribution.

Format-Compliant JPEG2000 Encryption with Combined
Packet Header and Packet Body Protection

∗

Dominik Engel, Thomas Stütz, and Andreas Uhl
Department of Computer Sciences

University of Salzburg
Salzburg, Austria

{dengel,tstuetz,uhl}@cosy.sbg.ac.at

ABSTRACT

All proposals for format-compliant encryption schemes for
JPEG2000 that have been made to date only encrypt packet
body data, but leave packet header data in plaintext. In this
paper we show that for providing strict confidentiality, leav-
ing the packet header in plaintext severely compromises the
security of these schemes, as discriminative – and for some
settings even visual – information can be extracted from the
header. We propose a set of format-compliant transforma-
tions of the packet header data that confines this information
leakage. Furthermore, we discuss to what extent the pro-
posed header protection scheme may be used to increase the
performance of partial / selective encryption schemes that,
rather than providing full confidentiality, trade off security
for a decrease in computational demands.

Categories and Subject Descriptors

I.4.2 [Image Processing and Computer Vision]: Com-
pression (Coding); E.3 [Data]: Data Encryption

General Terms

Security

Keywords

JPEG2000, packet header encryption, packet body encryp-
tion, format-compliant encryption

1. INTRODUCTION
As scalable representations of visual data are steadily be-

coming more widespread due to the necessity to serve the dif-
ferent needs of the increasing variety of commonly used dis-
play devices – each with distinct capabilities, e.g., in terms

∗This work has been partially supported by the Austrian
Science Fund (FWF) under Project No. P19159-N13 and
by the European Commission through the IST Programme
under contract IST-2002-507932 ECRYPT.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM&Sec’07, September 20–21, 2007, Dallas, Texas, USA.
Copyright 2007 ACM 978-1-59593-857-2/07/0009 ...$5.00.

of display resolution and computing power –, the develop-
ment of security techniques that are tailored to the spe-
cific requirements of scalable representations becomes cru-
cial. In the area of still image coding, JPEG2000 [18] is
the most recent and advanced standard in scalable repre-
sentation of visual data. A large number of propositions has
been made concerning the security of JPEG2000-coded vi-
sual data. One of them is the very recent addition to the
JPEG2000 standard in form of part 8, JPSEC [8].

While the straightforward approach to encrypt the whole
JPEG2000 bitstream (note that our usage of the term “bit-
stream” differs from the nomenclature in the JPEG2000
standard, which refers to the JPEG2000 bitstream as code-
stream) with a classical, strong cryptographic cipher like
AES remains the most secure option, there are several rea-
sons why alternative approaches have been discussed. Two
of the main goals are (a) a decrease in computational de-
mands and (b) the preservation of JPEG2000 functionality.
Some approaches aim at providing both (while still trying
to maintain a high level of security).

There are two ways in which (a) can be achieved. One way
is to employ cryptographic primitives that are less demand-
ing (but also less secure). This is usually called“soft”encryp-
tion. Another way is to selectively encrypt only vital parts of
the bitstream with a secure classical cipher. This is termed
“partial / selective” encryption. Approaches trying to satisfy
(b) seek to transfer some of the functionality of a JPEG2000
bitstream to the encrypted bitstream. Full encryption does
not take into account the features JPEG2000 offers, espe-
cially with respect to scalability: because the resulting bit-
stream cannot be interpreted by the decoder, all function-
ality is destroyed. Approaches which produce an encrypted
bitstream that can be interpreted by the decoder are termed
“format-compliant”. The security of format-compliant en-
cryption schemes is the primary concern of this paper. Note
that by a format-compliant bitstream we refer to a bitstream
that can be interpreted by any JPEG2000 decoder, i.e., the
bitstream is compliant with part 1 of the JPEG2000 stan-
dard (cf. part 4 of the JPEG2000 standard [7]).

A number of approaches have been proposed, which aim
at achieving fully format-compliant encryption (sometimes
in conjunction with a reduction in computational demands),
e.g., [5, 22, 14, 1, 9, 4, 13, 23, 21, 2, 16]. Segment-based en-
cryption as proposed by [20, 19] does not fulfill the require-
ment for full format-compliance in our sense, as in this case
rate-adaption can only be performed by a JPSEC-compliant
decoder. All of these approaches, including the method

87

sketched in FCD-15444-81, and to the best of our knowledge
all related approaches that have been put forward to date,
propose the exclusive encryption of the packet body data.
The packet header data are invariably left in plaintext.

In Section 2 of this paper, we will discuss to what extent
leaving the packet header data in plaintext is problematic
in terms of security for approaches that aim at providing
full confidentiality. (As opposed to approaches that only
offer a degradation in visual quality, these approaches aim
at actually fulfilling the same function as full encryption and
not disclosing any of the visual content.)

In Section 3, we propose a set of transformations that
allows to protect the JPEG2000 packet header data in a
fully format-compliant way, i.e., the resulting bitstream can
be processed like a “normal” JPEG2000 bitstream, by any
decoder compliant with JPEG2000, part 1.

In Section 4, we first discuss general security considera-
tions and then evaluate the proposed scheme with respect to
two scenarios. First, in Section 4.1, we look at how header
protection can confine the leakage of information from the
packet header for encryption schemes that aim at providing
full confidentiality in a format-compliant way. Second, ap-
proaches that aim at format-compliant encryption that pro-
vides sufficient degradation in quality, rather than full con-
fidentiality (and trades off security for a decrease in compu-
tational demands), can be improved by a combination with
the proposed header transformation. We discuss the possi-
bilities and limitations of the proposed scheme with respect
to this second scenario in Section 4.2. Section 5 concludes.

2. JPEG2000 HEADER INFORMATION
The main JPEG2000 header contains general information

on the bitstream, e.g., the coding style settings. The infor-
mation is too general to infer from it anything substantial
with regard to the specific visual content. The same is true
for the tile and tile-part headers.

The situation is different for the packet headers. The
packet headers contain information on four properties of the
packet. We will refer to each different kind of header infor-
mation as a “class” in the following. The four classes are:

• the length of the contribution of each codeblock to the
packet (CCP),

• the number of leading zero-bitplanes (LZB),

• the inclusion information of each codeblock,

• and the number of coding passes that are contained in
the packet for each codeblock.

From the sum of the CCP lengths, the length of the packet
body can be derived.

The packet header information is specific to the visual
content, and it is specific enough to be used as a fingerprint.
Some suggestions have been made in this direction in the
context of indexing, retrieval and classification. [17] use the
number of bytes spent on each subband for texture classifi-
cation. [3] use a set of classifiers based on the packet header
and packet body data to retrieve specified textures from
JPEG2000 image databases. [10] use the number of leading
bitplanes as a fingerprint to retrieve specific images. Any
class of header information alone is discriminative enough

1http://www.jpeg.org/public/fcd15444-8.pdf

(a) wlev=0 (b) wlev=1

Figure 1: LZB images, codeblock size 4 × 4

to be potentially used as a fingerprint (as will be illustrated
in Section 4.1). The combination of all classes definitely is.

In the context of a security application, the fact that the
information contained in the packet headers can be used as
a fingerprint for a specific image is quite problematic, as it
means that an attacker can link an encrypted image to its
plaintext. The more distinctive the fingerprint, the more
accurate is this assignment.

Such a fingerprint alone is problematic enough. The situa-
tion is even worse with respect to the leading zero bitplanes.
While the other classes of header information do not reveal
any visual information, the number of leading zero bitplanes
can be used to get a rough estimate of the original image
from which, especially for small codeblock sizes, the visual
content is discernible. Figure 1 shows images that can be
created from the information on the number of leading zero
bitplanes for the Lena image coded with a small codeblock
size of 4×4. The LZB images are created by interpreting the
number of leading zero-bitplanes as pixel values (normalized
over the range of grayscale values). Figure 1(a) shows the
LZB image that can be created if no wavelet transform is em-
ployed. It can be seen that the LZB image is a crude quan-
tization on a codeblock basis, from which the basic visual
content is easily discernible. Coding settings that employ no
wavelet transform are not very likely to be employed in prac-
tice, but also if the image is wavelet transformed, the edge
information in the highpass subbands (which are not fur-
ther processed regardless of the decomposition depth) that
is revealed by the LZB-information is enough to spoil full
confidentiality, as shown in Figure 1(b). For larger code-
block sizes less information is leaked through the number of
leading zero bitplanes, but in order to provide full confiden-
tiality, this data should generally not be accessible.

3. FORMAT-COMPLIANT HEADER

PROTECTION
In the format-compliant encryption scheme we propose

here, on the one hand, the aim is to destroy the information
needed to create a strong fingerprint. On the other hand,
the information needed to perform such tasks as rate adap-
tion should be kept intact: the distinction between packet
body and packet header and the distinction between indi-
vidual packets has to be made available to the decoder. The
resulting bitstream also needs to be fully format-compliant,
i.e., the transformed header information has to be consistent
with the available (encrypted) packet body data.

88

Furthermore, it should of course be possible to reconstruct
the original packet headers from the encrypted packet header
data by the use of a key. In the following subsections we
propose a reversible, key-dependent transformation for each
class of information in the packet header. Thereby the key
is used to create a (pseudo-)random keystream. The choice
of random generator can range from a physical source of
randomness to using a symmetric cipher like AES in out-
put feedback mode. In our tests we use the standard (linear
congruential) random generator provided by Java 2 Stan-
dard Edition 5.0.

3.1 CCP Lengths and Number of Coding
Passes

JPEG2000 explicitly signals both, the number of coding
passes and the length of each codeblock contribution. (De-
pending on the block coding, in other codecs these numbers
can be derived from each other, in JPEG2000 they are inde-
pendent, see [18]). In order to prevent access to this informa-
tion, we distribute the CCP lengths and number of coding
passes in each packet among all non-empty codeblocks. The
number of coding passes gives only little information to a po-
tential attacker; the lengths of the codeblock contributions
are a more valuable source of information, as they are more
distinctive. The algorithm we propose here can be applied
to both (for clarity of reading we give the description for
lengths only).

We need an approach that is key-dependent and reversible.
Adding a random number modulo the total length of all
CCPs to the offset of each CCP in the packet is not feasible:
some offsets might change their relative positions during this
procedure and the decoder would lack information about
which random number is associated with which CCP. The
situation leads to rather unique requirements for the trans-
formation: given a vector of non-zero positive integers (the
CCP-lengths or the number of coding passes) and a random
keystream, we want an output vector that randomly redis-
tributes these number among all positions (using all possible
mappings), preserves the overall sum of the original vector,
and has the same number of elements, each of which has to
be a non-zero positive integer.

To achieve a transformation that adheres to these require-
ments, we change packet lengths (and number of coding
passes, respectively) in overlapping pairs, starting with the
first and the second length, moving on to the second and the
third length, and so on. We redistribute the lengths between
a pair of lengths by adding a random number from 0 to the
total length of the two packets. This addition is performed
modulo the packet size minus one and after the modulo op-
eration we add one. Thus the size of any packet can never
become zero. To avoid that an attacker can obtain the orig-
inal sum of the pairs, we shuffle the lengths before and after
redistributing them. We give the procedure in pseudo-code
below. v[] is a vector of non-zero positive integers (index-
ing starts at 1). random() returns a random float number
in [0, 1). mod is the modulo operation, which can return a
negative residual (as is the case in many programming lan-
guages).

shuffle (v)

borders := size (v)-1

for i := 1 to borders

sum := v[i] + v[i+1]

r := (int) random ()* sum

newBorder := ((v[i]+r) mod (sum -1)) + 1

v[i] := newBorder

v[i+1] := sum - newBorder

end for

shuffle(v)

The transformation can be reversed easily by unshuffling
the input, traversing it from end to start, using the random
numbers in reverse order, setting newBorder as:

newBorder := (v[1]-r -1) mod (sum -1)

if (newBorder <= 0) then

newBorder := newBorder + (sum -1)

end if

and finally unshuffling the result again.
This approach allows to completely redistribute lengths

and coding passes among the codeblocks in a packet. The
number of possible alterations depends on the number of
codeblocks, and how they make their contributions to the
individual packets. If a small number of packets contains
many contributions, more alterations are possible than if
a large number of packets only contain a small number of
contributions each. Two non-empty codeblock contributions
in a packet are enough to hide their lengths and number of
coding passes. Therefore, in practical scenarios there will
always be ample opportunity to sufficiently randomize CCP
lengths and numbers of coding passes.

3.2 Leading Zero Bitplanes
The number of leading zero bitplanes (LZB) for each code-

block is coded by using tag trees [18]. As discussed above,
this information is even more critical than the other classes
of header information, as by using the number of LZB an
attacker can obtain information on the visual content of the
encrypted image (for small codeblock sizes).

To transform the number of leading zero bitplanes we
simply use the keystream to generate random bytes. We
then add a random byte to the number of leading zero bit-
planes modulo a previously determined maximum number
of skipped bitplanes. For decoding, the random byte is sub-
tracted instead of added. The maximum number of skipped
bitplanes needs to be signalled to the decoder, e.g., by insert-
ing it into the key or by prior arrangement. Note that the
maximum number of skipped bitplanes needs to be greater
or equal to the original maximum number of skipped bit-
planes (otherwise the modulo operation cannot be reversed).
Theoretically the new number could be arbitrarily high (we
found no restrictions in that respect in the standard), but
most implementations will have a maximum number of bit-
planes for the representation of coefficient data that must
not be exceeded.

When the number of leading zero bitplanes is changed,
the length of the output from the associated tag tree might
change as well. This change in length has to be reflected
in the tile header, otherwise the decoder will complain. Al-
ternatively, if only a single tile is used, the length in the
tile header can be set to be unspecified. Furthermore, the
maximum number of bitplanes needed to represent the co-
efficients in each subband can be derived from information
contained in the main header: “The maximum number of
bit-planes available for the representation of coefficients in
any subband, b, is given by Mb as defined in Equation E.2”
([6], p. 70). Equation E.2 in [6] basically derives the number
Mb from information contained in the QCD and QCC marker

89

segments in the main header. Therefore, to achieve full
format-compliance, the main header needs to be changed
accordingly. Otherwise decoding will still work, but the de-
coder might issue a warning. Note, however, that neither of
the reference implementations JJ2000 and JasPer, which we
used in our tests, issued a warning.

The total number of possible changes for all packets de-
pends on the number of available codeblocks. If more code-
blocks exist, more information can be randomized.

3.3 Inclusion Information
Each packet contains the inclusion information for a cer-

tain quality layer for all codeblocks in the precinct associated
with the packet. For the sake of simplicity, we assume that
no precinct partitioning is used. In this case each packet con-
tains inclusion information for all codeblocks of all subbands
in the resolution associated with the packet. There are four
types of inclusion that codeblock c can have in packet p:

FI – c is included in p for the first time, i.e., c has not
been included in any previous packet,

NI – c is not included in p and has never been included in
any previous packet,

PI – c has been included in a previous packet and is also
included in p, and

PN – c has been included in a previous packet but is not
included in p.

The sequence of inclusion information of each codeblock is
coded depending on the type of inclusion. FI and NI are
coded by an inclusion tag tree. For PI and PN, i.e., the
codeblock has been included in a preceding packet, a 1 is
coded in the header if the codeblock is included again in
the current packet, and a 0 is coded if the codeblock is not
included in the current packet.

The goal of the proposed approach is to permute inclusion
information for each packet in such a way that the origi-
nal inclusion information cannot be derived without the key
and that the resulting“faked”inclusion information complies
with the semantics of JPEG2000. We limit the approach
to permutation of the original inclusion information and do
not split available packet body data from one codeblock to
more codeblocks, and we also do not merge contributions
from distinct codeblocks in a single codeblock. Also, the
permutation is applied per packet, i.e., we do not merge the
packet body data from different packets, as this would have a
detrimental effect on the scalability properties of the result-
ing bitstream. These restrictions do not interfere with the
aim to prevent the creation of a strong fingerprint from the
sequence of inclusions (although they would help to hide the
number of inclusions of each type) and have the advantage
of facilitating straightforward reversibility.

We distinguish two kinds of packets: an empty packet is
a packet for which a header is written, but which does not
contain any codeblock contributions, i.e., all codeblocks are
included as NI or PN. In a non-empty packet there is at
least one contribution from one of the codeblocks, i.e., at
least one codeblock is included as FI or PI.

We define the inclusion vector vp for a packet p as the
sequence of the inclusion information for each codeblock as-
sociated with p (i.e., each codeblock in the subbands of the
resolution associated with p):

v = [Ici
],∀ci ∈ p, Ici

∈ {FI,NI, PI,PN}.

The order of elements in the inclusion vector follows the or-
der in which the codeblocks are scanned during image cod-
ing. In JPEG2000 this is an ordering by subband in the se-
quence HL, LH, HH followed by a lexicographical ordering
over the 2-D coordinates of all codeblocks in the subband.
Obviously, the order in which subsequent items of the same
inclusion type appear are irrelevant, and count as the same
permutation. We give the number of possible distinct per-
mutations further below.

An arbitrary permutation of the inclusion vector of each
packet would not produce a format-compliant bitstream.
Consider the following example: After the permutation of
the inclusion vectors for two packets pl and pl+1 let code-
block c be included in packet pl as FI. An arbitrary per-
mutation could assign inclusion type NI to c in pl+1. This
would lead to a contradiction because c can never be NI
after its first inclusion.

Only the first permutation in a resolution r may be an
unrestricted permutation (but permutations do not neces-
sarily have to start at the first packet of the first layer).
After the first permutation, the permutations for the subse-
quent packets have to regard the inclusion information that
has been signaled in the directly preceding packet. The fol-
lowing transitions are possible:

pl FI NI PI PN

pl−1 NI NI FI,PI,PN FI,PI,PN

A codeblock can only be included as FI or NI in pl if it
has been included as NI in packet pl−1. PI and PN can
follow a previous inclusion of FI,PI, or PN. It follows that
permutations can only be performed for non-empty packets,
because for empty packets the positions of the inclusions
of types NI and PN are fully determined by the previous
packet. Also note that the number of inclusions of type FI
plus the number of inclusion of type NI in pl is always equal
to the number of inclusions of type NI in pl−1. The same is
true for inclusions of type PI and PN: their number in pl is
equal to the number of inclusions of type FI, PI, and PN in
pl−1.

We perform the permutations in compliance with these
transition rules to produce a – syntactically as well as se-
mantically – consistent sequence of inclusion information
over the packets of each resolution. First, in each resolu-
tion, the first packet suitable for permutation is searched:
This packet has to have at least one non-empty codeblock
contribution (FI or PI) and one empty inclusion (NI or PN).
Packets for which the codeblocks all have the same inclusion
information are obviously not suitable for permutation, and
packets with mixed FI and PI only occur after the first candi-
date packet. The inclusion information in the first candidate
packet is permuted.

For the subsequent non-empty packets, the inclusion in-
formation of the immediately preceding packets is regarded
in the permutation. The inclusion vector v for a packet pl is
split into two vectors: v(1) contains all FI and NI inclusions,
and v(2) contains all inclusions of type PI and PN. Both vec-
tors are permuted randomly (using the key-stream) to form

v̂(1) and v̂(2). According to the possible transitions given
above, the elements of v̂(1) are assigned (in the randomized
order) to the positions that are marked as NI in the packet

of the previous layer, pl−1. The elements of v̂(2) are assigned
to the remaining positions (again in the randomized order).

90

The inclusions in pl that mark a non-empty codeblock con-
tribution, i.e., FI and PI, are assigned the length and num-
ber of new coding passes of the non-empty codeblock con-
tributions of the correct inclusion vector v in the order in
which these contributions appear in v (these CCP lengths
and number of coding passes may be subject to transforma-
tion later, or maybe have already been transformed). All

first inclusions (FI) in v̂(1) are assigned the number of lead-
ing zero-bitplanes in the order of FI-inclusions in v. After
all packets have been processed, the new header information
is written. If the key that has been used for the permuta-
tion is known, this procedure is reversible. Note that the
permutation in this approach crosses subband boundaries:
the inclusion information is reassigned over all codeblocks in
the packet.

For empty packets, no permutation is possible. For these
packets, the inclusion information only needs to be updated
based on the inclusion information in the previous packet,
according to the possible transitions.

To illustrate the process of format-compliant permutation
we give an example. Let vpl

= [FI,NI,NI] be the inclusion
vector of the first candidate package pl in a resolution with
three codeblocks c0, c1, c2. After permutation the new in-
clusion information is v̂pl

= [NI,NI, FI]. The length of the
codeblock contribution and number of leading zero-bitplanes
is transferred from c0 to c2. In the next packet pl+1 let the
real inclusion information be given by vpl+1

= [PI,FI,NI].

This vector is split into v
(1)
pl+1

= [FI,NI] and v
(2)
pl+1

= [PI].
Considering the “faked” inclusion information v̂pl

of the pre-
vious packet, the positions of codeblocks c0 and c1 are the

candidate positions for inclusions of type FI and NI. v
(1)
pl+1

is permuted to form v̂
(1)
pl+1

= [NI,FI] and the new inclu-
sion information is assigned to the respective positions of
c0 and c1. The length of the contribution and the num-
ber of coding passes and leading zero-bitplanes are updated

for the non-empty contribution. In this example, v
(2)
pl+1

only
has one element which has to be assigned to the position
of codeblock c2 to form a consistent sequence of inclusion
information. The length of the contribution and the num-
ber of coding passes is updated for this codeblock. The new
inclusion information for pl+1 is [NI,FI,PI].

We now turn to the investigation of the number of possible
permutations. For the lower resolutions, there will typically
be only few codeblocks that contribute to each packet, so the
number of permutations will be very limited. As the per-
mutation of packet headers is only used in conjunction with
the encryption of packet bodies, this is not a problem. The
fingerprint that could be derived from the inclusion informa-
tion in the lower resolutions is not very distinctive, the main
point is to destroy fingerprints in the higher resolutions.

We can give the number of possible permutations for a
packet pl which contains the codeblock contributions for
layer l (for a specific resolution). Let |Cpl

| be the total
number of codeblocks that are relevant for pl, and |FIpl

|,
|NIpl

|, |PIpl
|, |PNpl

| the number of codeblocks in pl with
inclusion type FI, NI, PI and PN, respectively. If p is the
first packet to be permuted, we have no restrictions in the
possible permutations. Furthermore, in this case the inclu-
sion information in p will consist of either only FI and NI or
of PN and PI (because otherwise a previous packet would
have been the first to be permuted).

Cblk. size rate (bpp) layers perm.

64 × 64 3 32 10217

32 × 32 3 32 10938

64 × 64 3 12 1056

32 × 32 3 12 10257

64 × 64 0.25 32 1042

32 × 32 0.25 32 10146

Table 1: Number of possible format-compliant per-
mutations of the inclusion information for Lena
(wlev= 5)

Without loss of generality, we assign the positions for in-
clusions of type FI and PI. The number of possible permu-
tations is then given as:

|Cpl
|

|FIpl
|

!

|Cpl
|

|PIpl
|

!

. (1)

If p is a packet that pertains to a higher layer than the
first candidate, the inclusion information of the preceding
packet pl−1 has to be taken into account. Inclusions of type
FI and NI in p can go into positions that are included as
NI in pl−1. The rest of the positions can be assigned to
inclusions of type PI and PN in pl. The number of possible
permutations is determined by

|NIpl−1
|

|FIpl
|

!

|FIpl−1
| + |PIpl−1

| + |PNpl−1
|

|PIpl
|

!

. (2)

The actual number of permutations for a given input im-
age depends on a variety of factors. The used compres-
sion parameters influence the number of codeblocks that are
available for permutation in the first place. With small code-
block sizes the number of available codeblocks increases. If
the number of quality layers is increased, then there are also
more packets and therefore more permutations can be per-
formed. The bitrate with which the image is encoded also
influences the number of packets that are included in the
codestream. Finally, the number of permutations that can
be applied to the packets of a resolution is influenced by the
point at which the first candidate packet is found, and by
how diverse the inclusion information is in this packet and
the following packets. If all the codeblocks of a resolution
always have the same inclusion information in each packet,
then no permutation of inclusion information is possible.
Luckily, this case is extremely unlikely in practice. Table 1
shows the number of possible permutations (perm.) for the
Lena image (512 × 512 pixels) with different compression
settings (codeblock size, rate, number of quality layers).

3.4 Combined Format-Compliant Header
Transformation

The format-compliant transformation of the different pie-
ces of information in the packet headers can and should be
combined. The format compliance of the combined format-
compliant header encryption has been verified experimen-
tally by decoding the encrypted files with the reference im-
plementations JasPer and JJ2000. The order in which they
are applied is arbitrary, only decoding has to apply the re-
verse transformations in the reverse order.

91

(a) Number of LZB
transformed, wlev = 0

(b) Number of LZB
transformed, wlev = 1

Figure 2: Visualization of attack after LZB trans-
formations (for wlev=0 and codeblock size 4 × 4)

4. EVALUATION
Generally it should be noted that the proposed key-de-

pendent transformations use permutations, which are prin-
cipally vulnerable to known-plaintext attacks. Therefore,
the key for the transformation of header information should
under no circumstances be derived from the key that is used
for the encryption of the packet bodies.

In the following, we evaluate the proposed scheme in the
two – very different – scenarios. First, we look at format-
compliant packet body encryption schemes that aim at pro-
viding full confidentiality. In these scenarios we deal with a
situation in which all packet body data are encrypted. The
motivation to use header protection in this scenario is to
avoid the creation of a fingerprint.

The other scenario is format-compliant partial / selective
encryption that aims at a reduction in computational com-
plexity. As portions of the data remain in plaintext, partial
/ selective encryption schemes are not well suited for full
confidentiality (even if the data cannot be used to create a
visual reconstruction, they can always be used as a finger-
print). The aim here is to introduce sufficient reduction of
the visual quality to prevent a pleasant viewing experience.
Traditional approaches encrypt packet bodies in a format-
compliant way. We investigate if a combination with header
protection can improve such a scheme.

4.1 Confinement of Information Leakage
The visual information contained in the packet header as

the number of leading zero bitplanes is a severe security
problem for applications that require full confidentiality, as
this information is preserved in the encrypted bitstream af-
ter packet body encryption. The proposed header protection
scheme solves this security problem: the LZB information
is completely destroyed by the transformation. Figure 2
shows the same LZB-images for Lena as Figure 1, but with
the headers transformed. As can be seen, no visual content
is discernible anymore.

As discussed in Section 2, the information contained in the
header information can also be used as a distinctive finger-
print. This fingerprint remains even if all of the packet body
data is encrypted. Figure 3 illustrates this point. We have
tested 175 images, all taken with the same camera model
and cropped to 512× 512 pixels at 8 bpp. All of the images
are encoded with JPEG2000 at a bitrate of 0.25 bpp with 32

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

S
im

ila
ri
ty

 i
n
 H

e
a
d
e
r

In
fo

rm
a
ti
o
n

Image #

Inclusion Info
Skipped LZB-planes

CCP lengths
No. of Coding Passes

Figure 3: Comparison of similarity in header infor-
mation for 175 images

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

S
im

ila
ri
ty

 i
n
 H

e
a
d
e
r

In
fo

rm
a
ti
o
n

Image #

Inclusion Info
Skipped LZB-planes

CCP lengths
No. of Coding Passes

Figure 4: Comparison of similarity in header infor-
mation for transformed header information

quality layers and a codeblock size of 32 × 32. The header
information in all the packets of each image is recorded. We
then compare the header information of a single image from
the set to the header information of each other image in the
set. The ratio of the number of items in the header infor-
mation that have the same value (at the same position) to
the total number of items is recorded. In the plots, the or-
dinate shows this value for each class of header information
and each image. Note that for CCP lengths and number of
coding passes we ignore positions in the header for which the
information is 0 for both the reference and comparison im-
age. Figure 3 shows the similarity in header information of
one image (# 23) with the other images. It can be seen that
the similarity measures to other images are confined within
a certain range of variance. It is not surprising to see that
the similarity of the CCP-lengths is very small for differing
images. Interestingly, the number of corresponding items in
the inclusion information is very large. This is due to the
fact that for the inclusion information we also counted all
the inclusions of type NI which at this bitrate occur a lot.
The variance of the similarity of the inclusion information is
confined relatively strictly and therefore also the inclusion
information may serve as a discriminating feature.

92

Obviously the situation will be different if the reference
image is re-encoded with different compression parameter
settings. But as this illustration shows, any class of header
information can be used to link a known JPEG2000 plaintext
to a packet-body encrypted ciphertext. For many applica-
tions that require full confidentiality such a leak of informa-
tion constitutes a major compromise of security.

The proposed transformations can be used to prevent the
creation of a fingerprint which uses the details of the packet
headers, such as proposed by [10, 3, 17]. Figure 4 shows
the same comparison as Figure 3, but this time with the
header information of the reference image transformed. It
can be observed that the proposed transformation methods
obstruct the identification of the image in the set of 175
images: the transformed header bears no similarity to the
original header. Only for the codeblock lengths a minute
trace remains. This is due to packets of the lowest two reso-
lutions which only contain a single codeblock each. For the
used compression settings no transformation was possible
for these packets.

Note that as the proposed scheme preserves packet bound-
aries and does not merge or split the data in the packets,
some information does of course remain. A fingerprint that
uses the size of the individual packets can still be created.
Furthermore, the number of inclusions of each inclusion type
stays the same as in the plaintext image. This informa-
tion could be used to obtain a fingerprint, albeit a much
weaker one than if the order of inclusions was known. If
packet boundaries were crossed and furthermore inclusion
information was split up among codeblocks, a possible fin-
gerprint would be further weakened. However, the down-
side would be a loss in semantics for the encrypted version
(which would make rescaling more unreliable, for example).
The highly discriminative fingerprints based on the detailed
packet header information are successfully prevented.

4.2 Improvement of Partial / Selective Packet
Body Encryption

In this section we evaluate if header transformation can
improve partial / selective encryption schemes. Before we go
into detail, we need to look at the computational demands
of the header transformations compared to packet body en-
cryption. As the array-based permutations are all of low
complexity, the header transformations are computationally
cheap. The necessary operations in each substep are the gen-
eration of a random number and exchanging the places of
two items in the array. The cipher used for packet body en-
cryption will usually be computationally more demanding.
Furthermore, for practical compression settings the ratio of
packet header data to packet body data is very small, as
illustrated by Table 2 for the Lena image, which shows the
percentage of packet body data and packet header data, re-
spectively, to the size of the total bitstream (compression at
full rate, nearly lossless).

Typical partial / selective encryption schemes for
JPEG2000, like the one proposed by [13], encrypt a cer-
tain percentage of the packet body data, starting from the
beginning of the bitstream. This can be done either in layer
or resolution progression mode (for a comparison see [13]).
Even if small portions of the bitstream are encrypted, high
distortion in visual quality can be achieved.

A straightforward attack is discussed by [13]: The conceal-
ment attack discards all encrypted parts of the bitstream.

Cblk. Size Layers Packet Header Packet Body

64 × 64 16 0.84% 99.02%
64 × 64 32 1.15% 98.71%
32 × 32 32 2.97% 96.98 %
16 × 16 32 7.94% 91.94%

Table 2: Distribution of data between packet header
and packet body in percent of the total bitstream

The authors simulate the attack by using JPEG2000 error
concealment. During encoding, an error resilience segmen-
tation symbol is inserted at the end of each bitplane. If the
decoder cannot decode the segmentation symbol, an error
has been detected. We have adapted the error concealment
to handle encrypted bitstreams: If the segmentation symbol
cannot be decoded correctly, then the affected codeblock
contribution is discarded as a whole (“zero concealment”).
The attack lowers the level of reduction in visual quality for
the encryption scheme. This is illustrated by Figure 5, for
which 1% of the packet body data has been encrypted: (a)
shows the direct reconstruction without error concealment.
It can be seen that there is a high degree of visual distor-
tion. However, as (b) shows, the zero concealment achieves
a reconstruction that is of a higher visual quality.

(a) direct reconstruc-
tion

(b) zero concealment

Figure 5: 1% of body data encrypted

The concealment attack can be completely prevented if,
apart from a part of the packet body data, all packet headers
are encrypted. The header transformation of a packet causes
the error concealment procedure to regard the packet body
data as erroneous and discard it. The result is shown for
the Lena image at a compression rate of 0.25 bpp in Fig-
ure 6. As the peak-signal-to-noise-ratio (PSNR) is not suit-
able as a measure for images of such low quality, we have
used the edge similarity score (ESS) proposed by [12]. The
ESS is computed by block-based gradient comparison and
ranges, with increasing similarity, between 0 and 1. We use
the weights and blocksizes proposed by [12] in combination
with Sobel edge detection. Figure 6 shows that for low en-
cryption rates the partial packet body approach preserves a
lot of edge information. If the packet body approach is com-
bined with full packet header protection, then the edge in-
formation disappears from the reconstruction even for very
small packet body encryption rates, and a high minimum
level of distortion can be guaranteed. Some visual exam-
ples are shown in Figure 7. It can be seen that compared

93

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

E
S

S

Percentage of Encrypted Packet Body Data

Body Only
Body and Header

Figure 6: ESS comparison of concealment at-
tack with encrypted header and without encrypted
header

(a) direct reconstruc-
tion

(b) zero concealment

Figure 7: 1% of body data encrypted plus all packet
headers transformed

to the packet body only approach, the additional packet
header encryption prevents both, direct reconstruction and
zero concealment attacks.

Of course, this comes at the cost of encrypting all headers.
But, as we discussed above, for practical coding settings, the
size of the packet header data will be only a small fraction of
the packet body data. So, rather than encrypting a larger
portion of the packet body data, it is advisable for most
compression settings to encrypt all packet headers, as for
this approach the costs are low and the distortion is high.
As an example we take the 512×512 pixel Lena image at 0.25
bpp, 32 quality layers and a codeblock size of 64×64 pixels.
In this case, the packet header data is 3.5% and the body
data is 94.7% of the total bitstream (the rest is main header
data). As Figure 6 illustrates, the distortion introduced by
1% packet body encryption and full packet header encryp-
tion is comparable to the distortion introduced by approx-
imately 45% packet body encryption. Encrypting 45% of
the packet body data in these settings amounts to encrypt-
ing 42% of the total bitstream. The combined approach of
encrypting 1% of the body data and transforming all header
data amounts to dealing with data that corresponds to 4.4%
of the total bitstream.

In combination with the encryption of a small portion of
the packet body data, the packet header protection scheme
can be used in applications that do not strive for full confi-
dentiality. The overall number of possible transformations is

too high for a successful brute-force attack. Only the pack-
ets in the lowest resolutions have few enough codeblocks to
make trying all possible headers an option. So while an at-
tacker could gain an idea of the visual content by attacking
the packets of the lower resolutions for which only the packet
headers but not the packet bodies have been protected, the
full visual quality version of the original content remains
protected. This is also true in the presence of a preview
image that could have been obtained from side information.
As [15] points out, many partial encryption schemes are vul-
nerable to low complexity attacks based on the availability
of such side information. In the context of the proposed
scheme, a low quality preview image cannot be used to re-
construct the JPEG2000 packet header information. We
have also found no way to reconstruct the packet header
from the unencrypted packet body data.

The question arises whether, as the header transforma-
tion guarantees a high level of reduction in visual quality, it
would be a good approach to only use packet header protec-
tion for the whole bitstream and leave the packet bodies in
plaintext. Such an approach would only be a feasible option
if the desired reduction in visual quality was very low (i.e.,
if the desired encryption scheme is what is commonly called
“transparent”[11]). This is also because the lower resolutions
in the bitstream only have a small number of possible trans-
formations. For practical coding settings, the lowest resolu-
tion will often only be constituted of a single codeblock. In
this case, the packets of this resolution will invariably only
have a single entry of inclusion information, CCP length,
LZB information and number of truncation points. Only the
higher resolutions offer a large number of possible transfor-
mations. For high visual distortion it is therefore inevitable
to use packet body based encryption at the beginning of the
bitstream.

5. CONCLUSION
We have proposed a fully format-compliant protection

scheme for JPEG2000 packet headers. In the context of
encryption schemes that aim at sufficient distortion of vi-
sual quality rather than at providing full confidentiality, we
have shown that the proposed scheme can help to improve
the level of guaranteed visual distortion.

More importantly, the proposed scheme can be used to
confine the information leakage that is present in all en-
cryption scheme that selectively encrypt packet body data.
The visual information contained in the JPEG2000 packet
header is destroyed. Furthermore, the strong fingerprint
based on the details of the packet headers is prevented by the
scheme. As the scheme preserves packet boundaries, finger-
prints based on more general information like overall packet
lengths are not destroyed. However, if format-compliance
is desired in a sense that allows to perform tasks like rate
adaption in the encrypted domain, the information needed
for these tasks will always need to be preserved to some ex-
tent. Therefore, while the proposed scheme significantly im-
proves the security of format-compliant encryption schemes
that rely on the encryption of packet body data, the com-
bined schemes can never be as secure as full encryption. The
straightforward approach to encrypt the full bitstream with
a cryptographically strong cipher is and remains the only
option that is secure in the strong cryptographic sense.

94

6. REFERENCES
[1] V. Conan, Y. Sadourny, K. Jean-Marie, C. Chan,

S. Wee, and J. Apostolopoulos. Study and validation
of tools interoperability in JPSEC. In A. G. Tescher,
editor, Applications of Digital Image Processing
XXVIII, volume 5909, page 59090H. SPIE, 2005.

[2] R. H. Deng, W. S. Di Ma, and Y. Wu. Scalable
trusted online dissemination of JPEG2000 images.
Multimedia Systems, 11(1):60 – 67, Nov. 2005.

[3] A. Descampe, P. Vandergheynst, C. D. Vleeschouwer,
and B. Macq. Coarse-to-fine textures retrieval in the
JPEG 2000 compressed domain for fast browsing of
large image databases. In B. Günsel, A. K. Jain, A. M.
Tekalp, and B. Sankur, editors, Proc. Multimedia
Content Representation, Classification and Security,
MRCS 2006, volume 4105 of Lecture Notes in
Computer Science, pages 282–289, Berlin, Heidelberg,
New York, Tokyo, Sept. 2006. Springer-Verlag.

[4] F. Dufaux and T. Ebrahimi. Securing JPEG2000
compressed images. In A. G. Tescher, editor,
Applications of Digital Image Processing XXVI,
volume 5203, pages 397–406. SPIE, 2003.

[5] R. Grosbois, P. Gerbelot, and T. Ebrahimi.
Authentication and access control in the JPEG2000
compressed domain. In A. Tescher, editor,
Applications of Digital Image Processing XXIV,
volume 4472 of Proceedings of SPIE, pages 95–104,
San Diego, CA, USA, July 2001.

[6] ISO/IEC 15444-1. Information technology –
JPEG2000 image coding system, Part 1: Core coding
system, Dec. 2000.

[7] ISO/IEC 15444-4. Information technology –
JPEG2000 image coding system, Part 4: Conformance
testing, Dec. 2004.

[8] ISO/IEC 15444-8. Information technology –
JPEG2000 image coding system, Part 8: Secure
JPEG2000, Apr. 2007.

[9] H. Kiya, D. Imaizumi, and O. Watanabe.
Partial-scrambling of image encoded using JPEG2000
without generating marker codes. In Proceedings of the
IEEE International Conference on Image Processing
(ICIP’03), volume III, pages 205–208, Barcelona,
Spain, Sept. 2003.

[10] C. Liu and M. Mandal. Fast image indexing based on
JPEG2000 packet header. In Proceedings of the 2001
ACM workshops on Multimedia: Multimedia
Information Retrieval, pages 46–49, New York, NY,
USA, 2001. ACM Press.

[11] B. M. Macq and J.-J. Quisquater. Cryptology for
digital TV broadcasting. Proceedings of the IEEE,
83(6):944–957, June 1995.

[12] Y. Mao and M. Wu. Security evaluation for
communication-friendly encryption of multimedia. In
Proceedings of the IEEE International Conference on
Image Processing (ICIP’04), Singapore, Oct. 2004.
IEEE Signal Processing Society.

[13] R. Norcen and A. Uhl. Selective encryption of the
JPEG2000 bitstream. In A. Lioy and D. Mazzocchi,
editors, Communications and Multimedia Security.
Proceedings of the IFIP TC6/TC11 Sixth Joint
Working Conference on Communications and
Multimedia Security, CMS ’03, volume 2828 of Lecture
Notes on Computer Science, pages 194 – 204, Turin,
Italy, Oct. 2003. Springer-Verlag.

[14] Y. Sadourny and V. Conan. A proposal for supporting
selective encryption in JPSEC. IEEE Transactions on
Consumer Electronics, 49(4):846– 849, Nov. 2003.

[15] A. Said. Measuring the strength of partial encryption
schemes. In Proceedings of the IEEE International
Conference on Image Processing (ICIP’05), volume 2,
Sept. 2005.

[16] T. Stütz and A. Uhl. On format-compliant iterative
encryption of JPEG2000. In Proceedings of the Eighth
IEEE International Symposium on Multimedia
(ISM’06), pages 985–990, Los Alamitos, CA, USA,
2006. IEEE Computer Society.

[17] A. Tabesh, A. Bilgin, K. Krishnan, and M. W.
Marcellin. JPEG2000 and motion JPEG2000 content
analysis using codestream length information. In Proc.
Data Compression Conference, DCC 2005, pages
329–337. IEEE Computer Society Press, Mar. 2005.

[18] D. Taubman and M. Marcellin. JPEG2000 — Image
Compression Fundamentals, Standards and Practice.
Kluwer Academic Publishers, 2002.

[19] S. Wee and J. Apostolopoulos. Secure scalable
streaming enabling transcoding without decryption. In
Proceedings of the IEEE International Conference on
Image Processing (ICIP’01), Thessaloniki, Greece,
Oct. 2001.

[20] S. Wee and J. Apostolopoulos. Secure scalable video
streaming for wireless networks. In Proceedings of the
2001 International Conference on Acoustics, Speech
and Signal Processing (ICASSP 2001), Salt Lake City,
Utah, USA, Apr. 2001. invited paper.

[21] H. Wu and D. Ma. Efficient and secure encryption
schemes for JPEG2000. In Proceedings of the 2004
International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2004), pages 869–872,
May 2004.

[22] M. Wu and V. Mao. Communication-friendly
encryption of multimedia. In Proceedings of the IEEE
Multimedia Signal Processing Workshop, MMSP ’02,
St. Thomas, Virgin Islands, USA, Dec. 2002.

[23] Y. Wu and R. H. Deng. Progressive protection of
JPEG2000 codestreams. In Proceedings of the IEEE
International Conference on Image Processing
(ICIP’04), Singapore, Oct. 2004. IEEE Signal
Processing Society.

95

