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Abstract
The necessity of biometric template alignment imposes a sig-
nificant computational load and increases the probability of
false positive occurrences in biometric systems. While for some
modalities, automatic pre-alignment of biometric samples is
utilised, this topic has not yet been explored for systems based
on the iris.

This paper presents a method for pre-alignment of iris im-
ages based on the positions of automatically detected eye cor-
ners. Existing work in the area of automatic eye corner detec-
tion has hitherto only involved visible wavelength images; for
the near-infrared images, used in the vast majority of current
iris recognition systems, this task is significantly more chal-
lenging and as of yet unexplored. A comparative study of two
methods for solving this problem is presented in this paper.
The eye corners detected by the two methods are then used for
the pre-alignment and biometric performance evaluation ex-
periments. The system utilising image pre-alignment is bench-
marked against a baseline iris recognition system on the iris
subset of the BioSecure database. In the benchmark, the work-
load associated with alignment compensation is significantly
reduced, while the biometric performance remains unchanged
or even improves slightly.
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1 Introduction
The iris is one of the main biometric characteristics used in
biometric systems around the world. At the time of this writ-
ing, the Indian Aadhaar system has enrolled over 1 billion sub-
jects’ multi-modal (including iris) biometric data [1]. The bor-
der control system of United Arab Emirates checks every trav-
eller against a growing blacklist consisting of hundreds of thou-
sands of subjects [2]. The deployments of this size and impor-
tance face strenuous requirements in terms of, among other
matters, biometric performance and computational efficiency.

Following Daugman’s approach [3], which is the core of
most public operational systems, four major modules con-
stitute an iris recognition system: (1) acquisition of the near-
infrared image, where most current deployments require sub-
jects to fully cooperate with the capture device in order to
capture images of sufficient quality; (2) pre-processing, which
involves a detection of inner and outer iris boundaries, a detec-
tion of eyelids, an exclusion of eyelashes as well as contact lens
rings, a scrubbing of specular reflections and an estimation
of quality factors [4]. Subsequently, the iris is mapped to di-
mensionless coordinates, i.e. a normalized rectangular texture,
and an according noise mask is stored; (3) feature extraction, in
which a two-dimensional binary feature vector, i.e. iris-code,
is generated by applying adequate filters to the pre-processed
iris texture. This binary data representation enables compact
storage and rapid (4) comparison, which is based on the esti-
mation of Hamming distance (HD) scores between pairs of iris-
codes. In the comparison stage circular bit shifts are applied to
iris-codes and HD scores are estimated at ±𝐾 different shifting
positions, i.e. relative tilt angles, in order to compensate the
biometric sample misalignment. The minimal obtained HD,
which corresponds to an optimal alignment, represents the
final score.

Considering multiple shifting positions during a template
comparison increases the computational workload of the sys-
tem and the probability of a false match with 𝐾 [5]. This is
especially important for identification systems, where an ex-
haustive search of the reference database is performed during
an authentication attempt. By pre-aligning the eye images, the
aforementioned cost (in terms of computational workload and
biometric performance degradation) could be significantly re-
duced, thus partially alleviating the issues created by the neces-
sity of alignment compensation. For the biometric references,
the pre-alignment could be performed at enrollment stage,
while any additional computational cost of pre-alignment of
the biometric probes would be inconsequential in relation to
the template comparison costs, since in any sizeable biomet-
ric identification system, the computational costs are domi-
nated by the template comparisons [6]. Although image pre-
alignment has been utilised in, for instance, fingerprint and
face based biometric systems (see e.g. [7] and [8]), as of yet it
has not been explored in the context of iris recognition systems.

The remainder of this paper is organised as follows: In sec-
tion 2, the related work is presented. Section 3 explains the
usage of eye corners in eye images pre-alignment and outlines
the proposed approaches to automatic detection of eye corners
in near-infrared images. The experimental set-up and obtained

results are presented and discussed in section 4, while conclud-
ing remarks are given in section 5.

2 Related Work
The work presented in this paper combines two areas of re-
search - automatic detection of eye corners and reduction of
the alignment costs in iris identification systems. This section
is accordingly divided into two subsections.

2.1 Eye Corner Detection
Facial landmark detection represents a well-studied area in
computer vision. It forms the basis for numerous types of
applications, such as face recognition or emotion estimation.
Facial landmarks detected by state-of-the-art methods tend to
vary in number and type; however, the vast majority of ap-
proaches extracts eye corner positions as specified in ISO/IEC
19794-5 [9].

In the context of iris recognition, automatic eye corner de-
tection approaches for visible spectrum images have been pre-
sented by a number of researchers. Xu et al. [10] base their
approach on the semantic features of the inner and outer eye
corners, an angle model based on the eyelids and utilise a lo-
gistic regression classifier for the detection. Xia and Yan [11]
use weighted variance projection function to detect first the
regions of interest and then the eye corners themeselves. Er-
dogmus and Dugelay [12] use the Hough transform to detect
the eyelid contours and subsequently establish the eye corners
at the intersection of polynomials fitted to said contours. San-
tos and Proença [13] perform experiments on low-quality data,
in which they utilise sclera segmentation and eyelid contours
to generate a set of candidate points, from which the final eye
corner locations are chosen based on a fusion of a number of
metrics calculated for all the points in the candidate set. More
recently, Zhang et al. [14] used a two-step process in which the
rough locations of the eye corners are estimated and refined
using image texture information.

All of the above report excellent results, ranging between
90% and 100% correct detection of eye corners - depending on
how the groundtruth was established and what metrics and pa-
rameters were used to measure the detection accuracy. How-
ever, it is important to reiterate, that all of the mentioned ap-
proaches use visible wavelength eye images (or regions of inter-
est extracted from facial images). Eye corner detection in near-
infrared images, which are currently used in operational (large-
scale) iris recognition systems, is a significantly more challeng-
ing task. In contrast to iris images acquired at visible wave-
lengths, near-infrared images exhibit a low contrast between
sclera and skin, cf. figure 4. Hence, a proper sclera segmenta-
tion, which is required in some of the mentioned approaches,
is not feasible for near-infrared images.

2.2 Alignment Cost Reduction
As has been mentioned in section 1, the traditional iris-code
based iris identification systems require significant workload
to be put into alignment compensation. In recent years, some
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interest has been exhibited towards developing methods to
reduce (or even eliminate) the number of relative alignment
positions that need to be considered in order to achieve an
acceptable biometric performance. Du et al. [15] have pre-
sented a feature extractor for iris recognition based on one-
dimensional signatures and showed that such an approach
does not require an alignment of extracted templates. Alonso-
Fernandez et al. [16] suggested to apply scale invariant feature
transform to extract iris texture features prior to the normal-
isation step, where a comparison of keypoint-based feature
vectors does not require the traditional alignment procedure.
A partial alignment-compensating representation of the com-
monly used iris-code matrix was proposed by Rathgeb and
Busch [17]. However, published rotation-invariant feature rep-
resentations either require a more complex comparison pro-
cess or reveal unpractical biometric performance. In the latter
case, these may still be applied in a pre-selection step of a bio-
metric identification scenario, see e.g. work of Konrad et al. [18].
Recently, Rathgeb et al. [19] introduced a method based on an
analysis of the nature of iris-code and comparison scores be-
tween those. In a two-step process, the number of relative
positions that need to be considered for two biometric samples
was significantly decreased.

3 Proposed Methods
In this paper, two methods for eye corner detection in near-
infrared eye images are presented. Before describing these, a
brief outline of how the eye corners are used to pre-align an eye
image is given below. Based on the two – left (𝐿) and right (𝑅)
– eye corner points, the angle of a line through the two points
is calculated as shown in equation 1.

∠(𝐿, 𝑅) = arctan (
𝑅𝑦 − 𝐿𝑦
𝑅𝑥 − 𝐿𝑥

) . (1)

The image is rotated by the given angle, such that a line
drawn between 𝐿 and 𝑅 is horizontal. The image is subse-
quently cropped in order to remove boundary artefacts result-
ing from the rotation. Those artefacts generate strong edges,
which might negatively influence the segmentation process.
The center of rotation 𝐶, which serves as the center of the
cropped area, is based on the corner points as well:

𝐶𝑥 = 𝐿𝑥 + 𝑅𝑥
2 , 𝐶𝑦 =

𝐿𝑦 + 𝑅𝑦
2 . (2)

The size of the cropped image is set to 512 × 400 pixels. Fig-
ure 1 shows the eye corner landmarks, the line between the
landmarks and the framing of the resulting cropping and rota-
tion. As can be seen in the image, the inner eye corner is hard
to define due to missing color information.

This method of absolute image pre-alignment is used with
the eye corner locations produced with the methods outlined
in following subsections. Note, that the aim is to align iris im-
ages prior to the segmentation stage. Alternatively, eye corners
could be detected as part of the segmentation process, which
might allow for an application of geometrical constraints, e.g.
based on the detected pupil center.

(a) (b)

Figure 1: Iris image with eye corner landmarks (red), the rota-
tion center (green), the horizon line and the frame for cropping
and rotation (a) as well as the resulting image (b).

3.1 Adapting Facial Landmark
Detectors (FaceLD)

There exist many facial landmark detectors, which are made
available in open-source toolboxes, e.g. dlib [20] and Bob [21]
with menpofit [22], which were used in experiments performed
for this paper. Those frameworks include pre-trained machine
learning models, which are capable of detecting a large num-
ber of specific landmarks on a human face, among which are
the eye corners. Naturally, these systems require an entire or
at least a large part of a face to be present in an image. The eye
images captured for the iris recognition systems only include
a small part of the periocular area or are cropped (those two
image formats are standardised by ISO/IEC 19794-6 [23]). A
surprisingly effective idea is to utilise a high quality, noiseless
facial image and insert the eye images into it, as shown in fig-
ure 2, so that the left and right face halves together with the
inserted eye images are mirror reflections of each other. As
an optional post-processing step, a semi-transparent smooth-
ing transformation can be applied along the borders of the eye
images. The two methods of inserting the eye image into the
face image are referred to as basic (2a) and smooth (2b). The fa-
cial landmarks are then detected, as with processing a normal
face image; the landmark positions from the left and right side
of the face are averaged, expecting more robustness. The last
step is to translate the eye corners positions from the coordi-
nate system of the face image to that of the eye image and use
them in the pre-alignment experiments.

3.2 Landmark Detection for
Eye Images (EyeLD)

A logical next step is to train a model dedicated for eye images
alone. The open-source dlib package [20] implements a land-
marking model presented by Kazemi and Sullivan [24], which
relies on an ensemble of randomized regression trees. For the
training, a groundtruth of 9 landmarks marked by a single
operator is used; it contains the eye corners themselves, pupil
center and points along the lower and upper eyelid arches,
as shown in figure 3. In the pre-alignment experiments, the
detected eye corners are used directly or computed using the
intersection between the polynomials or circles fitted (least-
squares sense) to the eyelid landmarks.
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(a) Eye image plainly inserted upon
the facial image.

(b) A semi-transparent transform ap-
plied around the eye image edges.

Figure 2: Insertion of an iris image to a high resolution frontal
face image.

Figure 3: The 9 landmarks automatically detected by the model
on a sample image. The curves show locating the eye corners
by fitting circles (green) and polynomials (blue) to the eyelid
landmarks.

4 Results
The evaluation of the proposed approaches is focused on fol-
lowing matters:

Biometric performance By pre-aligning the images, the num-
ber of shifting positions considered at the comparison
stage is changed. This obviously affects the biometric
performance of the system, which is evaluated by calcu-
lating the equal-error rate (EER) and the false non-match
rate measured at false match rate of 0.01% (FNMR0.01).
We are interested in the minimum EER found and also
define diminishing returns (DR) of the EER, where we
allow the EER to be up to 10% over the minimum EER.
This usually results in a drastically reduced remaining
rotation. The cause for this are the outliers, which allow
to slightly improve the EER at a much higher cost of align-
ment compensation.

Workload The required alignment compensation (±𝐾) after
the pre-alignment step.

Pre-alignment accuracy How far are the results yielded by the
pre-alignment step from the objectively optimal align-
ment.

Figure 4: Example images from the BioSecure database.

Table 1: Baseline and groundtruth results (in %).

Method
Minimum DR

𝐾 EER FNMR0.01 𝐾 EER FNMR0.01

Baseline ±20 2.506 4.296 ±10 2.705 4.795

Groundtruth
Eye corners ±7 2.148 3.690 ±5 2.336 4.288

Polynomial fitting ±5 2.188 3.496 ±3 2.347 4.171
Circle fitting ±15 2.347 3.699 ±5 2.506 4.178

The dataset chosen for the evaluation of the proposed ap-
proaches is the iris subset of the BioSecure database [25]. It con-
tains 1680 left and right eye images from 210 subjects; the im-
ages of size 640×480 pixels were captured using a near-infrared
camera. Most of the publicly available iris datasets come in
the cropped image format, which makes them unsuitable for
our experiments; the images in the BioSecure dataset are un-
cropped. Additionally, the quality of images varies in terms of
eye position, rotation and illumination conditions, as shown in
figure 4. For the model training (see subsection 3.2), the dataset
is divided into 5 subsets, each containing 1344 training images
and 336 test images. This allows to generate landmarks for the
whole dataset, while ensuring that the training and test sets are
always disjoint.

In the employed iris recognition system, the iris of a given
sample image is detected and transformed to a normalised rect-
angular texture of 512×64 pixels. The normalised iris texture is
divided into texture stripes to obtain 10 one-dimensional sig-
nals, each one averaged from adjacent texture rows. A row-
wise convolution with a Log-Gabor wavelet is performed on
each signal and the two bits of phase information are used to
generate a 512×20 bits iris-code. During alignment compensa-
tion, the rotation per bit corresponds to 360

512 ≈ 0.7°. We have
employed the algorithm that was made available in [26] and de-
scribed in detail in [27]. For the biometric performance evalua-
tion, all possible template comparisons are considered. This re-
sults in a total of 2520 genuine comparisons and almost 1.4 mil-
lion impostor comparisons. It should, however, be noted, that
the results presented in the following sections can be achieved
irrespective of the chosen feature extraction algorithm.

4.1 Baseline and Groundtruth
First, in order to create a reference point for the proposed meth-
ods, baseline and groundtruth results are established. The base-
line is a normal, iris-code based system, which performs 𝐾 =
±24 bit shifts during a template comparison. The groundtruth
consists of the manually marked landmark types shown in fig-
ure 3; the eye corners for pre-alignment calculations are used
directly or computed as the intersection of polynomials or cir-
cles fitted to eyelid landmarks. Those results are listed in ta-
ble 1.

4



Figure 5: Eye with muscles responsible for torsional movement
in the eye socket highlighted. Images by Patrick J. Lynch, medical illustrator

(CC BY 2.5).

When benchmarked against the baseline system, the pro-
posed pre-alignment technique allows to significantly reduce
the required remaining alignment compensation (𝐾). This ver-
ifies the conceptual soundness of the approach with manually
marked landmark points. The diminishing returns (DR) allows
for a trade-off between biometric performance improvement
and workload reduction. As can be seen in table 1, the dimin-
ishing returns EER for the groundtruth is the same (or bet-
ter) as for the baseline with full alignment compensation (min-
imum EER). In other words, by pre-aligning the samples, the
required workload can be dramatically decreased without neg-
atively affecting the biometric performance of the system.

It is also important to address, why the pre-alignment does
not fully eliminate the need for further alignment compen-
sation at the iris-code template comparison stage, i.e. why
𝐾 ≠ 0. This remaining rotation of up to ±7Bit ≈ ±4.92° is to
be expected, since landmarks from the periocular region and
not from the eye itself are used. The eye can rotate in the eye
socket; this includes torsional movement induced by the supe-
rior/inferior rectus and superior/inferior oblique muscles [28]
(see figure 5), with a range of motion that is “generally limited
to angles of less than 10°” [29]. In recent years, methods for eye
alignment during refractive surgery have been developed [30].
While extremely accurate, they depend on either continuous,
active tracking (video) or static tracking based on a set of points
marked in a reference image. The methods presented in this
paper, however, perform the pre-alignment based on a single
sample image.

4.2 Algorithmic Landmark Detection
Figure 6 shows various example images with landmarks de-
tected by the proposed approaches marked. The results for
the biometric performance and workload evaluation of the two
approaches (subsections 3.1 and 3.2) are shown in table 2 and
figure 7. Of interest are the benchmark against the baseline,
i.e. by how much 𝐾 decreased in an automated setting and
the benchmark against the groundtruth (especially in case of
EyeLD), i.e. by how much the automated approaches could
still be improved.

For both approach classes, we observe an improvement
over the baseline in both the minimum and diminishing re-
turns EER setting. In all cases (except for circle fitting), 𝐾
is significantly reduced (up to being halved), while the bio-

Figure 6: Example images with landmarks detected by the pro-
posed approaches: FaceLD - basic (black), EyeLD - Corners
(red), EyeLD - Polynomial (green), EyeLD - Circle (blue).

Table 2: Algorithmic results.

Method
Minimum DR

𝐾 EER FNMR0.01 𝐾 EER FNMR0.01

FaceLD
Basic ±10 2.589 3.961 ±6 2.748 4.625

Smooth ±12 2.665 4.280 ±7 2.864 4.654

EyeLD
Eye corners ±13 2.352 4.027 ±11 2.467 4.142

Polynomial fitting ±17 2.193 3.558 ±12 2.313 3.868
Circle fitting ±23 2.396 3.836 ±11 2.592 4.214

metric performance in terms of EER and FNMR0.01 remains
unchanged or is improved. The FaceLD approach based on
the Bob framework [21] and menpofit [22] model performs
well. The model offered by the dlib [20] package was also
tried, but was left out due to very poor results. The smoothing
transform around the eye image edges in FaceLD approach
performs worse than the basic version of FaceLD approach.
This could be due to the eye corners being blurred out when
they are located near the border of the eye image. Thus, po-
tentially a more sophisticated approach would have to be ap-
plied. In terms of alignment workload reduction, the FaceLD
approaches outperform the EyeLD approaches. On the other
hand, the biometric performance of EyeLD approaches is bet-
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(a) Adaptation of facial landmarks detection.
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(b) Dedicated eye landmarks detection.

Figure 7: Biometric performance comparison for the evaluated
approaches (note the logarithmic scale of the y-axis).

Table 3: Parameters of the impostor scores distributions.
𝐾 0 1 2 3 4 8 16 24

mean 0.498 0.495 0.492 0.489 0.486 0.478 0.469 0.466

st. deviation 0.024 0.023 0.023 0.022 0.021 0.018 0.016 0.014

skewness -0.026 -0.034 -0.052 -0.083 -0.127 -0.351 -0.598 -0.717

ex. kurtosis 0.291 0.378 0.466 0.550 0.650 1.202 2.225 2.842

ter than both the FaceLD approaches and the baseline. It is also
worth noting, that while in terms of 𝐾 reduction, the EyeLD ap-
proaches do not match the results achieved by the groundtruth,
one could safely assume that with a large enough training cor-
pus, the results of the groundtruth and the automated method
would converge. One idea for future work is to mirror and
rotate the available images in each training set fold, thus dra-
matically enlarging the training set and thereby the landmark
detection accuracy.

Figure 8 shows a cumulative distribution of the distance
from optimal alignment after the pre-alignment step performed
by the proposed approaches. For example, it can be seen, that
after a pre-alignment step around 80% of the images are less
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Figure 8: Cumulative distributions of the distance from the op-
timal alignment achieved by the presented pre-alignment ap-
proaches.
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Figure 9: Kernel density estimate of impostor scores from no
(red) to 𝐾 = ±24 bits (blue) rotation compensation.

than 8 bits from the optimal alignment. Note, that this fig-
ure does not necessarily reflect the EER scores, since optimal
alignment is not a guarantee for an optimal score (bad quality
images can have a high HD score even at the optimal alignment
position). In other words, the distance from the optimal align-
ment would only be a good predictor of biometric performance,
if and only if the quality of images (apart from rotational vari-
ation) was very high.

While the pre-alignment is not expected to have a signifi-
cant positive impact on the genuine scores, it affects the impos-
tor scores significantly. As can be seen in figure 9 and table
3, when no alignment compensation is applied (i.e. 𝐾 = 0),
the impostor scores approximate a normal distribution around
HD = 0.5. However, with the growing 𝐾 value, the distribution
moves towards left (i.e. towards genuine scores distribution).
As has been mentioned in section 1, this increases the probabil-
ity of false positives due to larger overlap between the genuine
and impostor distributions. By pre-aligning and decreasing 𝐾,
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this effect is counteracted, thereby slightly improving the bio-
metric performance in addition to reducing the workload.

5 Conclusion
In this paper, a software-based approach to alignment cost re-
duction in iris recognition systems has been introduced. Exper-
iments conducted on the iris subset of the BioSecure database
have lead to following key findings:

• Pre-alignment improves the biometric performance in
terms of EER and FNMR0.01 when benchmarked against
a baseline system.

• Pre-alignment reduces the required alignment compen-
sation workload in terms of 𝐾 when benchmarked against
a baseline system.

• Proposed landmark detection approaches work, but as
the groundtruth experiments demonstrate, there is still
room for improvement.

While there exists a number of approaches for automatic
corner detection in visible spectrum images, the authors are not
aware of such work in the near-infrared spectrum. In this pa-
per, two methods for achieving this task were presented with
the resulting landmarks used for image pre-alignment. In ad-
dition to eye landmark detection accuracy refinement, a poten-
tially interesting area for future work is investigating the pos-
sibility of application of the presented approaches to cropped
eye images, as defined in ISO/IEC 19794-6 [23]. It is worth not-
ing, that many areas of biometric research could benefit from
iris image pre-alignment. This pertains in particular to privacy-
enhancing technologies, i.e. biometric template protection [31],
in which comparisons are performed in an encrypted domain,
such that a proper alignment is (in many cases) not feasible.
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