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Abstract—Biometric system security requires cryptographic
protection of sample data under certain circumstances. We assess
low complexity selective encryption schemes applied to JPEG2000
compressed fingerprint data by conducting fingerprint recogni-
tion on the selectively encrypted data. This paper specifically
investigates the effect of considering different sensors for data
acquisition and finds significant dependency of optimal encryption
settings on the sensor employed.

I. INTRODUCTION

The International Organization for Standardization (ISO)
specifies biometric data to be recorded and stored in (raw)
image form (ISO/IEC FDIS 19794), not only in extracted
templates (e.g. minutiae-lists or iris-codes). On the one hand,
such deployments benefit from future improvements (e.g. in
feature extraction stage) which can be easily incorporated
without re-enrollment of registered users. On the other hand,
since biometric templates may depend on patent-registered al-
gorithms, databases of raw images enable more interoperability
and vendor neutrality [1].

The certainly most relevant standard for compressing image
data relevant in biometric systems is JPEG2000, suggested
for lossy compression of fingerprint images in the ISO/IEC
19794 standard suite on Biometric Data Interchange Formats
and the ANSI/NIST-ITL 1-2011 standard on “Data Format
for the Interchange of Fingerprint, Facial & Other Biometric
Information” (former ANSI/NIST-ITL 1-2007).

In (distributed) biometric recognition, biometric sample
data is sent from the acquisition device to the authentication
component and can eventually be read by an eavesdropper on
the channel. Also, biometric enrollment sample databases as
mentioned before can be compromised and the data misused
in fraudulent manner. Therefore, these data, often stored as
JPEG2000 data as described before, require cryptographic
protection for storage and transmission.

In this paper, taking into account the restrictions of biomet-
ric cryptosystems, cancelable biometrics, and homomorphic
encryption techniques [2], we investigate lightweight encryp-
tion schemes for JPEG2000 compressed fingerprint sample
data based on selective bitstream protection. It is important
to notice that, being based on classical AES encryption,
matching in the encrypted domain is not supported. However,
our proposed technique offers extremely low computational
effort and there is absolutely no impact on recognition accuracy
once the data are decrypted. Still, in case a full AES encryption
of the data is feasible in terms of computational resources, this
option is always perferable due to unquestioned security. Thus,
the proposed approach is especially useful for protection of

transmission between sensor and feature extraction / matching
modules when involving low-powered devices and for the
encryption of vast user sample datasets (like present in the
Unique Identification Authority of India’s (UID) Aadhaar
project) where matching in the encrypted domain is not an
absolute prerequisite for sensible deployment.

Section 2 introduces principles of encrypting JPEG2000
data and specifically describes the approach as used in this
paper. The target fingerprint recognition schemes as used in
the experiments are sketched in Section 3. Section 4 describes
a large corpus of experiments, where we specifically assess
the security of the proposed encryption schemes by applying
fingerprint recognition to the (attacked) encrypted data. Section
5 presents the conclusions of this paper.

II. EFFICIENT ENCRYPTION OF FINGERPRINT DATA
A. JPEG2000 Encryption in the Biometric Context

A large variety of custom image and video encryption
schemes have been developed over the last years [3], many
of them being motivated by the potential reduction of com-
putational effort as compared to full encryption (see e.g.
a depreciated scheme for fingerprint image encryption [4]).
Reducing computational encryption effort is of interest in the
context of biometric systems in case either weak hardware
(e.g. mobile sensing devices) or large quantities of data (e.g.
nation-wide sample databases) are involved.

However, when encrypting a JPEG2000 file (or any other
media file) in a non format-compliant manner it is not possible
to assess the security of the chosen encryption strategy since
the encrypted file can not be interpreted by decoding soft-
or hardware (this specifically applies to selective or partial en-
cryption schemes which protect a specific part of a codestream
only). But for assessing security (e.g. applying corresponding
image quality metrics, or, as done in the present paper,
attempting to use the protected data in the target application
context), encrypted visual data usually need to be decoded and
converted back into pictorial information.

Thus, an actual biometric system will opt to employ a
non format-compliant encryption variant in its deployment
installation (e.g. to decrease computational cost or to disable
common decoders to interpret the data). However, we will
consider the corresponding format-compliant counterpart to
facilitate security assessment of the chosen scheme (while the
results are equally valid for the corresponding non-compliant
variants).

For JPEG2000, [5] provides a comprehensive survey of
encryption schemes. In our target application context, only



bitstream oriented techniques are appropriate, i.e. encryption
is applied to the JPEG2000 compressed data, as fingerprint
data might be compressed right after acquisition but encrypted
much later. In a JPEG2000 codestream either packet headers
or packet body data (or both) may be encrypted. For reasons
explained in [2], we consider encryption of packet body data
in this work, while additional packet header encryption may
be used to further strengthen the schemes discussed [6].

B. Selective JPEG2000 Encryption Approaches

In the following, we introduce a systematic approach
to assess selective encryption techniques wrt. the question
how to apply encryption to different parts of the JPEG2000
codestream.

We aim to achieve format compliance to enable secur-
ity assessment as discussed above, while actual encryption
schemes deployed in practice would not care about format
compliance (while still following the same approaches where
and to which extent encryption should be applied). Each packet
within the JPEG2000 code stream eventually contains start of
packet header (SOP) and end of packet header (EOP) markers.
For this purpose, the used encoding software, i.e. JJ2000, is
executed with the —Psop and —Peph options which enable
these optional markers. These markers are used for orientation
within the file and for excluding all header information from
the encryption process. Additional care must be taken when
replacing the packet data with the generated encrypted bytes.
If the result of the encryption operation results in a value of
a SOP or EOP header marker (or any other non-admissible
packet value), a second encryption iteration is conducted to
maintain format-compliance [7].

In the following, we consider a specific type of selective
encryption methodology, i.e. “Windowed Encryption”, which
is used to accurately spot the encryption location in the
JPEG2000 bitstream with the biggest impact (in our context
on matching rates when automated fingerprint identification
systems (AFIS) are applied to encrypted data). “Windowed
Encryption” is operated by moving a fixed window (of the
size of some percent of the filesize in our experiments) across
the packet data. While the percentage of encrypted data does
not change during the experiments, only the position of the
window is changed in fixed steps within packet data. In this
manner, recognition experiments on the protected data reveal
the parts of the JPEG2000 codestream that contain the most
“valuable” fingerprint information exploited by the different
AFIS for matching purposes, i.e. that is most sensitive if
protected by encryption.

In recent work [2] we have compared different ways how
to apply encryption to different parts of a fingerprint-image
JPEG2000 codestream, specifically focusing on the question
if encryption should preferably be applied to one single
chunk of data right at the start of the codestream (“Absolute
Encryption”) or if it is better to encrypt smaller contiguous
chunks distributed over the packets of the codestream (“Se-
quential Encryption” and “Distributed Encryption”). While the
corresponding results indicate highest security for the approach
distributing the encryption as uniformly as possible across the
codestream (thus favoring “Distributed Encryption”), experi-
ments have been limited to the minutiae-based NIST NBIS

AFIS system and have ignored the question which are the most
sensitive, i.e. confidentiality-relevant, parts of the codestream.

In applying “Windowed Encryption” in subsequent work
[8], we have been looking into the question if the location
of the most sensitive parts of the JPEG2000 codestream
depends on (i) the AFIS employed to attempt recognition on
the protected data and on (ii) the progression order of the
JPEG2000 codestream. The latter question has been discussed
in general JPEG2000 selective encryption schemes and it
has been found that the choice of either protecting layer
progressive or resolution progressive JPEG2000 codestreams
indeed has a significant impact wrt. the extent of confidentiality
achieved [9].

In this work, we will adopt the methodology of [8] to
investigate if the location of the most sensitive parts of the
JPEG2000 codestream additionally also depends on the sensor
used to acquire the data. If this is indeed found to be true, each
specific application scenario has to be optimised separately
wrt. the most efficient selective encryption configuration as
significant AFIS type dependency has already been demon-
strated [8].

1) Security Assessment: When assessing the security of
format compliantly encrypted visual data, the data can simply
be decoded with the encrypted parts (called “direct decoding”).
Due to format compliance, this is possible with any given de-
coding scheme, however, the encrypted parts introduce noise-
type distortion into the data which kind of overlay the visual
information still present in the data (see Fig. 1). An informed
attacker can certainly do better than this naive approach.
Therefore, a highly efficient attack is obtained when removing
the encrypted parts before decoding and replacing them by
suited data minimising error metrics. This can be done most
efficiently using codec specific error concealment tools, which
treat encrypted data like any type of bitstream error (“error
concealment attack™). Thus, any serious security analysis needs
to consider encrypted imagery being attacked using this error
concealment approach at least. The JJ2000 version used in
the experiments includes the patches and enhancements to
JPEG2000 error concealment provided by [10], [8].

As visible in Fig. 1 (leftmost two images) especially after
error concealment attacks ridge and valley information can still
be present, which could be improved further with fingerprint
specific quality enhancement techniques (thus, images like
those cannot be assumed to be sufficiently secured). Only
the error concealment example with better protection in Fig.
1 (rightmost image) does no longer exhibit any fingerprint
related structures which could be exploited by an attacker.

Figure 1. Examples - Distributed Encryption (0.5% encrypted with direct
reconstruction and error concealment; the same for 3.0% encrypted)

The general assessment of the security of low quality
encrypted visual data (as obtained by direct decoding or error



concealment attacks) is difficult. Although classical image
and video quality metrics (IVQM) like SSIM or even PSNR
have been repeatedly applied to such data, it has been shown
recently that this does not correlate well to human perception
[11]. Also, IVQM specifically developed to assess the security
(i.e. confidentiality / protection level) of encrypted visual data
have been recently shown not to meet the design expectations
[12]. Moreover, the general quality appearance to human ob-
servers is not at all relevant in our setting. Only the assessment
of forensic fingerprint experts would meake sense in terms of
human judgement.

However, in our case, security assessment does not need
to rely on human specialists — since our application context
is highly specific and well defined, we apply AFIS to the
protected data to verify if the protection is sufficiently strong
to prevent the use of the encrypted fingerprint data in an
automated recognition context.

III. FINGERPRINT RECOGNITION

Different types of AFIS react differently to image degrad-
ations. Therefore, we will consider fundamentally different
types of fingerprint feature extraction and matching schemes,
based on the discriminative characteristics fingerprints do
contain [13]:

Correlation-Based Matcher: These approaches use the fin-
gerprint images in their entirety, the global ridge and valley
structure of a fingerprint is decisive. Images are correlated
at different rotational and translational alignments, image
transform techniques may be utilised for that purpose. As a
representative of this class, we use a custom implementation
of the phase only correlation (POC) matcher [14] the details
of which are described in recent work [15].

Ridge Feature-Based Matcher: Matching algorithms in this
category deal with the overall ridge and valley structure in the
fingerprint, yet in a localised manner. Characteristics like local
ridge orientation or local ridge frequency are used to generate
a set of appropriate features representing the individual finger-
print. As a representative of the ridge feature-based matcher
type we use a custom implementation of the fingercode ap-
proach (FC) [16] the details of which are described in recent
work [15].

Minutiae-Based Matcher: The set of minutiae within each
fingerprint is determined and stored as list, each minutia
being represented (at least) by its location and direction. The
matching process then basically tries to establish an optimal
alignment between the minutiae sets of two fingerprints to
be matched, resulting in a maximum number of pairings
between minutiae from one set with compatible ones from
the other set. As the first representative of the minutiae-based
matcher type we use mindtct and bozorth3 from the “NIST
Biometric Image Software” (NBIS, denoted “BOZ” in the
plots) package (available at http://fingerprint.nist.gov/NBIS/)
for minutiae detection and matching, respectively. Addition-
ally, to complement NBIS with a commercial system, we
habe employed the Griaule Biometrics Fingerprint SDK 2009
(GF - http://www.griaulebiometrics.com/). It has been honored
to be “ [..] the most precise in the open category” at the
Fingerprint Verification Competition (FVC) in 2006. One of
the important differences to NBIS is the consideration of

3 minutiae interconnected by polygons where in matching,
internal angles, sides and each minutia angle are computed.

IV. EXPERIMENTS
A. Experimental Settings

All experiments are based on images taken from databases
of the 2004 Fingerprint Verification Competition (FVC). In
particular, our results are based on set A of the three natural
datasets of the FVC 2004 (DB1: Optical sensor, 500dpi, 640 x
480 pixels resolution, DB2: Optical sensor, 500dpi, 328 pixels
resolution, and DB3: thermal sweeping sensor, 512 dpi, 300 x
480 pixels resolution). Set A contains 100 different fingers (8
imprints each).

Images are compressed into lossless JPEG2000 format
using JJ2000 in layer as well as resolution progressive order-
ing, respectively. Subsequently they are encrypted using the
different variants of “Windowed Encryption” with different
positions where to start the encryption. Subsequently data
are either directly decoded or decoded with enabled error
concealment with the JJ2000 variant mentioned [10].

The procedure used for matching the decoded / encrypted
fingerprint images is chosen to be exactly the same as FVC
demands for performance evaluation [2], [8]. Overall, we
consider equal error rate (EER) and receiver operating curves
(ROC) to compare the protection capabilites of the different
encryption schemes. Obviously, higher EER corresponds to
better data protection as well as worse ROC behaviour is
preferred for better data protection.

B. Experimental Results
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Figure 2. ROC on plaintext datasets DB1 - DB3 of FVC2004 data.

Fig. 2 displays the recognition performance in terms of
ROC measured on unencrypted data with the four AFIS
considered. We notice a very different behaviour for the three
datasets. On DB1 and DB3, for FMR < 10%, NBIS exhibits
the lowest FNMR followed by GF, FC and POC. For larger
FMR, POC stays the worst technique, but FC and GF take
the lead while NBIS looses performance. On DB2, POC is
the best performing technique for FMR < 10%, while GF
is the worst performing one across the entire range of ROC
parameters. FC is best performing for FMR > 10%. So overall,



we observe a comparable ranking of the four AFIS on datasets
DB1 and DB3, although these data are fairly different (visually
and in terms of sensor technology), while the results for DB2
are very different even though the capturing device is also an
optical sensor (and thus could be expected to behave similarly
to DB1).

Fig. 3 shows results in case Windowed Encryption is
applied to 2% of the JPEG2000 packet data of a bitstream in
layer progressive ordering. The range of encryption is varied
from the start of the bitstream (0.0%) in 0.2% steps and we
display the EER values for direct reconstruction and error
concealment reconstruction (the latter denoted as “seg” in the
plots’ legend). The three plots show the results for the three
datasets considered.
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Figure 3. EER for DB1 - DB3 when windowed encryption is applied to
JPEG2000 data in layer progressive ordering at different starting positions.

The highest EER (i.e. best protection) is seen when GF
recognition is conducted on directly reconstructed data which
is encrypted right from the bitstream start (0.0 - 0.4% on the
x-axis) no matter which dataset is considered. However, the
lowest EER (i.e. worst protection) when considering direct

reconstruction is highly data set dependent: For DBI, it is
obtained for FC at 1.2% of the data (EER =~ 25%), for DB2
it is obtained for FC/POC at 1.2% of the data (EER =~ 32%),
and for DB3 it is obtained for NBIS at 2% of the data (EER ~
23%). Thus, we have a high dependence on datasets and actual
AFIS used. However, as discussed before, error concealment
reconstruction is more important for security assessment.

The highest EER (i.e. best protection) on data reconstructed
with error concealment is also dataset dependent as follows:
For DB, it is observed for POC recognition starting at 0.6%
of the data (EER = 38%), for DB2 it is observed for GF
also at 0.6% of the data (EER =~ 36%), and for DB3 it is
observed for NBIS at bitstream start (EER ~ 30%). On the
other hand, the lowest EER (worst protection), is seen for both
DBI1 and DB2 for FC recognition at 1.0% and 1.2% of the data
respectively (EER =~ 19% and 16%). For DB3, the lowest
EER is attained for NBIS at 2.0% of the data with EER ~
12% only. Overall, when considering EER only, we observe
very significant dependence on the datasets considered when
looking for the most and least secure protection strategies (i.e.
most and least sensitive areas of the bitstream).

To provide more insight on the entire ROC range, we
exemplary visualise ROC plots of NBIS recognition comparing
the three datasets and again varying the position encyption is
applied to the bitstream. Here (Fig. 4), data is again considered
in layer progressive ordering and only error concealment
reconstruction is considered.

We are able to constitute different ROC behaviour for the
three datasets. While the worst results in terms of protection
(lowest error values) are identical for all three datasets (i.e.
starting at 1.8% and 2.0% of the data), the best results (highest
error rates) are dataset dependent: Starting the encryption at
0.4% and 0.6% of the data for DB1 and DB2 and at 0.0% and

0.2% for DB3.
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Figure 4. ROC for DB1 - DB3 for data in layer progressive ordering using
NBIS under error concealment.

What is even more striking, is the different range of error
results seen for the three datasets (i.e. the spread of the
different curves representing the different encryption starting
positions). While for DB1, the variability is rather low (e.g.
EER in [22,29]), it is much higher for DB3 (in [11, 30]). EER
variability for DB2 is in [25, 34].



Having observed the different results when comparing
optimal encryption configuration for image data in JPEG2000
layer and resolution progressive ordering [8], we discuss
resolution progressive JPEG2000 data in the following. Fig.
5 shows results in case Windowed Encryption is applied to
2% of the JPEG2000 packet data of a bitstream.
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Figure 5. EER for DB1 - DB3 when windowed encryption is applied
to JPEG2000 data in resolution progressive ordering at different starting
positions.

By analogy to the case of layer progressive ordering before,
the range of encryption is varied in 0.2% steps and we
display the EER values for direct reconstruction and error
concealment reconstruction (the latter denoted as “seg” in the
plots’ legend). The three plots show the results for the three
datasets considered where the location of the encryption start
has been selected in accordance to earlier results on most
sensitive bitstream parts in resolution progressive bitstream
organisation [8], i.e. at 3% of the bitstream length.

When comparing the overall shape of the results, we
immediately recognise an effect caused by the dependency of
the results on the sensor used. For the DB1 results, we notice

a bump-like shape almost in the centre of the plot, while the
bump is shifted to the left for DB2 and not present at all (even
more shifted to the left) for DB3. Since the start position of the
encryption has been determined based on results of [8] (which
in turn is based on set B of all the FVC datasets) this effect
already underpins the significant influence of the sensor used
to capture the data.

Discussing directly reconstructed data first, the highest
EER (best protection) is attained at encryption start 3.8%
with POC (DB1, EER =~ 57%) and at 3.4% with GF (DB2,
EER =~ 60) while the corresponding DB3 values is located at
starting position clearly < 3.0% of the data (but not in the
depicted range). Lowest EERs for directly reconstructed data
(worst protection) are seen at start 5.0% with EER ~ 19%
using FC (DB1, but with even lower values outside of the plot
range), at start 5.0% with EER ~ 10% (DB2) using FC, and
at start 5.0% with EER ~ 8% using NBIS (DB3). Thus, when
comparing the values to layer progressive JPEG2000 bitstream
organisation we are able to confirm earlier results [8] that the
type of bitstream progrssiveness has significant impact on the
parameters for deploying optimal selective encryption. And
again, we observe high dependence on the sensor considered.

The results for data after error conceralment attack exhibit
similar data / sensor dependencies. The highest EERs are
delivered by POC recognition (DB, start at 4.0%, EER =~
35) or GF recognition (DB2, start at 3.4%, EER ~ 37), while
the highest EER for DB3 also for this setting is outside of the
plot range. Lowest EERs after error concealment are found for
FC (DB1 and DB2 starting at 5.0% of the data with EERs of
15% and 10%, respectively) and NBIS (DB2, also at 5.0% of
the data with EER ~ 8%). Thus, results differ in dependency
of the underlying dataset wrt. optimal encryption location and
the most and least successful recognition scheme.
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Figure 6.
using NBIS under error concealment.

ROC for DB1 - DB3 for data in resolution progressive ordering

To once more provide more insight on the entire ROC
range, we exemplary visualise ROC plots of NBIS and FC
recognition comparing the three datasets and again varying
the position encyption is applied to the bitstream organised
in resolution progressive organisation. Fig. 6 shows the NBIS
results. In addition to the different spreads of the curves already
noted for data in layer progrssive ordering we notice even



more varying behaviour: For DB1, starting encryption at 0.0%
(the bitstream start) leads to “best” ROC behaviour (worst
protection), while for DB3, this leads to the best protection
setting (for DB2, starting encryption at the beginning leads
to mediocre results). Additionally, the range of EERs is again
very different: [18,26] for DB1, [12,32] for DB2, and [5,17]
for DB3.

Also the results for FC as shown in Fig. 7 exhibit results
with significant sensor dependency: Considerably different
ranges of EERs (and of course correspondingly highly varying
overall ROC behaviour) — [15,18] for DB1, [10,25] for DB2,
and [8,11] for DB3 — as well as different encryption starting
positions leading to best or worst ROC behaviour, e.g. the
configuration starting to encrypt at 4.2% of the data leads to
“worst” ROC behaviour for DB1 (most secure), while for DB2
and DB3 it is one of the least secure options.

Figure 7. ROC for DB1 - DB3 for data in resolution progressive ordering
using FC under error concealment.

V. CONCLUSION

We have investigated the sensitivity of certain parts of fin-
gerprint data compressed into JPEG2000 format wrt. selective
protection / encryption. Evaluations are done by comparing
AFIS recognition performance on encrypted data after con-
ducting attacks. We have found that sensitivity / robustness
against partially encrypted data is highly dependent on the
sensor used to acquire the data under investigation. Also,
results have confirmed high dependence on the actual recog-
nition scheme used and do not correspond to the recognition
performance ranking of the different AFIS seen on clear data.
Moreover, there is a significant difference if the JPEG2000
codestream is organised in layer progressive or resolution
progressive ordering. Overall it can be stated that it is not
possible to formulate general guidelines which parts of the
JPEG2000 bitstream are most sensitive against protection (i.e.
carry the information most important to AFIS recognition
success). Thus, given a fingerprint recognition system, a pro-
tection scheme aiming to employ selective encryption of the
FP images’ JPEG2000 bitstream needs to be carefully tuned
for the specific combination of FP sensor used to acquire the
data and AFIS employed in recognition for optimal protection
performance.
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