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Abstract—In this paper, wood cross-section (CS) segmentation
of RGB images is treated. CS segmentation has already been
studied for computed tomography images, but few study focuses
on RGB images. CS segmentation in rough log ends is an
important feature for the both assessment of wood quality and
wood traceability. Indeed, it allows to extract other features like
pith, eccentricity (distance between the pith and the geometric
centre) or annual tree rings which are related to mechanical
strength. In image processing, neural networks have been widely
used to solve the problem of objects segmentation. In this paper,
we propose to compare different state-of-the-art neural networks
for CS segmentation task. In particular, we consider U-Net,
Mask R-CNN, RefineNet and SegNet. We create an imageset
which has been split into 6 subsets . Considered neural networks
have been trained on each subset in order to compare their
performance on different type of images. Results show different
behaviors between neural networks. On the one hand, overall
U-Net learns better on small dataset than the others. On the
other hand, RefineNet learns well on huge dataset. While SegNet
is less efficient and Mask R-CNN does not provide a detailed
segmentation. This offers a preliminary result on neural network
performances for CS segmentation.

Index Terms—Deep convolutional neural networks, Pixel-wise
segmentation, Wood quality, Sawmill scenes

I. INTRODUCTION

In this paper, we focus on neural networks to segment wood

cross-section (CS). There are few publications on wood cross-

section analysis with RGB camera. Cross-section analysis

focuses on computed tomographic (CT) images which allow

to estimate both external and internal characteristics. Those

characteristics can be used to estimate wood quality. More

precisely, the wood quality is defined by some properties [1]

among which:

• mechanical resistance;

• dimensional stability. Wood is hygroscopic meaning that

it can gain or lose moisture from the surrounding air that

could be source of trouble;

• durability, that is the ability to resist to fungi and insects

without chemical treatments;

• aesthetic for furniture or apparent beams in building

(looking forward to regularity in tree rings).

All of these characteristics are unfortunately not directly

measurable on CS images. However, they can be estimated

by obtaining intermediate characteristics which are visible on

images. For instance, annual tree ring width is an indication

to wood mechanical properties [2].

A lot of techniques have been proposed to segment CS on

timber trucks or log stacked in a pile [3]–[5]. Samdangdech

et al. [4] used neural network to segment log-end on timber

trucks. For such task, a dataset with log pile images have been

proposed [6]. But, our task is different as there is one CS (or

very few CS) in our images (see Figure1). Our images are

taken close to the CS contrary to log pile or timber trucks.

(a) Log file from [6] (b) Ground truth for 1a

(c) Image from our imagesets (d) Ground truth for 1c

Fig. 1: Examples of images from a log pile and our imageset.

To estimate the wood features we need to segment, in the

images, the cross-section from the background. In addition to

a high segmentation accuracy, the time performance is also a

high criteria for real world applications (industry or scientific

applications). To our knowledge, for segmenting automatically

the CS only one method have been assessed [7].

The proposed method in [7] to segment cross-section of

spruce1, is based on similarity of image sections and requires

pith estimation. Image is divided into small blocks. Then, we

analyse each block in terms of texture features. All blocks

sharing the same texture features as those close to the pith

1CS in spruce is homogene in term of color.



belong to the cross-section. It provides accurate results and

requires around one second to estimate the cross-section

segmentation. But there are two drawbacks to this method.

On the one hand, it suffers of time computation. The method

is coarsely linear in scale but reducing block size by 2 may

increase up to 4 the time computation. On the other hand, it

also requires the pith position (which is done automatically

in their method). This latter task may be difficult on images

of rough CS. Furthermore, texture analysis is processed in

grayscale (color information is lost).

In the field of computer vision, a lot of methods have been

proposed to segment images. But recently, neural networks

seem to outperform all those methods. We propose in this

paper to evaluate few convolution neural networks for this task.

Indeed, neural networks can compute fastly the segmentation

of the cross-section which is an important criteria in sawmill

environment. Moreover they have shown their performances

in others similar tasks.

The paper is organized as follows. First, Section II describes

each proposed neural networks. Then, Section III details im-

agesets and Section IV shows results. We conclude in Section

V.

II. ARCHITECTURE OF THE PROPOSED CONVOLUTIONAL

NEURAL NETWORKS

There are a lot of convolutional neural network (CNN) for

image segmentation. In this paper, we propose to evaluate few

CNNs which have provided good results for segmentation task.

The proposed CNNs are: a modified version of U-Net [8],

Mask R-CNN [9], RefineNet [10] and SegNet [11].

A. U-Net Architecture

The first CNN we trained was adapted from the U-Net

network proposed by Ronneberger et al. [8]. It has been chosen

since it is known to learn fast and to provide good results.

Moreover, it requires less data for the training. It is composed

of a contracting path and an expanding path. The network

architecture is illustrated on Figure 2. The main changes we

did are on the contracting path: dropout layers were introduced

and convolution filter size are larger than the original version.

These following changes are based on experimental results.

The contracting path consists of one 11 × 11 convolution

(original was 3× 3), a dropout, a second 11× 11 convolution

and a 2 × 2 max pooling with stride 2 for downsampling.

Each convolution is followed by a rectified linear unit (ReLU)

function and each dropout probability is set to 0.2. For the first

block, there are 16 convolution filters. At each downsampling,

we twofold the number of convolutions filters and reduce their

size by 2, down to a size of 3 × 3 (i.e. 11 × 11, then 9 × 9,

7× 7, 5× 5 and 3× 3).

The expanding path consists of an upsampling of feature

map followed by 2×2 convolution which halves the number of

filters, a concatenation with the cropped feature map from the

contracting path and finally one 3× 3 convolution, a dropout

and an other 3× 3 convolution (each convolution is followed

by a ReLU). At the end, a 3 × 3 convolution with 2 filters

is done first and a 1× 1 convolution with 1 filter is secondly

done, which is equivalent to a sigmoid function.

We set ADAM optimizer for the training with a learning

rate set at 0.0001 and the loss is the binary cross entropy.

Fig. 2: Architecture of the applied CNN based on U-Net.

B. Mask R-CNN Architecture

The second CNN is Mask R-CNN [9]. This network is

more complex than the previous one (see Fig.3). It aims at

detecting and classifying different objects in images. It is an

extension to Faster RCNN [12]. Contrary to Faster RCNN

which only classes and creates a bounding-box, Mask R-CNN

provides a segmentation for each detected object. Mask R-

CNN has two main stages. First, the network has to create

regions where there might be an object to detect. This stage is

called Region Proposal Network. Second, it predicts the class

of each detected regions (using a RoIPool) and generates a

binary mask for these regions. Both stages are connected to a

backbone structure. The backbone is also an neural network.

The used backbone is ResNet-101-FPN. It was pre-trained

with MS COCO datasets. No modifications were provided on

this CNN [13].

C. RefineNet Architecture

The third CNN used is RefineNet [10]. The network is

a multi-resolution refinement network, which employs a 4-

cascaded architecture with 4 Refining units, each of which

directly connects to the output of one Residual net [14]

block, as well as to the preceding RefineNet block in the

cascade (see Fig.4). Each Refining unit consists of two residual

convolution units (RCU), which include two alternative ReLU

and 3 × 3 convolutional layers. The output of the RCU

units are processed by 3 × 3 convolution and up-sampling



Fig. 3: Architecture of Mask R-CNN (source from [9]).

layers incorporated in multi-resolution fusion blocks. A chain

of multiple pooling blocks, each consisting a 5 × 5 max-

pooling layer and a 3 × 3 convolution layer, next operate

on the feature maps, so that one pooling block takes the

output of the previous pooling block as input. Therefore,

the current pooling block is able to re-use the result from

the previous pooling operation and thus access the features

from a large region without using a large pooling window.

Finally, the outputs of all pooling blocks are fused together

with the input feature maps through summation of residual

connections. We used ADAM optimizer with learning rate

of 0.0001, in 40, 000 epoch iteration to train the network.

The implementation of this network was realized in the Keras

library using TensorFlow back-end [15].

Fig. 4: Big picture of the architecture of RefineNet (source

from [10]).

D. SegNet Architecture

The last CNN in this paper is identical to the basic fully

convolutional encoder-decoder network proposed by Kendall

et al. [11] and is termed ”SegNet” subsequently (see Fig.5).

However, we redesigned the softmax layer to segment only

the vein pattern. The whole network architecture is formed by

an encoder network, and the corresponding decoder network.

The network’s encoder architecture is organized in four stocks,

containing a set of blocks. Each block comprises a convolu-

tional layer, a batch normalization layer, a ReLU layer, and

a pooling layer with kernel size of 2 × 2 and stride 2. The

corresponding decoder architecture, likewise, is organized in

four stocks of blocks, whose layers are similar to those of the

encoder blocks, except that here each block includes an up-

sampling layer. In order to provide a wide context for smooth

labeling in this network the convolutional kernel size is set to

7× 7. The decoder network ends up to a softmax layer which

generates the final segmentation map.

We used Stochastic Gradient Distance (SGD) optimizer with

learning rate of 0.003, in 30,000 epoch iteration to train the

network. The implementation of this network was realized in

caffe library [16].

Fig. 5: Architecture of SegNet (source from [11]).

E. Other Methods

We implemented two other methods for image segmenta-

tion. The first one is K-means [17], and the second one is

active contour [18] (also called snake). For both of them, we

first resized images to a size of 512 × 512, then we applied

a gaussian filter with σ = 2.5 and processed in the CIELAB

color space. For the K-means method, we set K = 5. The

cross-section is the largest circular object. The circularity is

computed by the formulae:

Circularity = (4 ∗ A ∗ π)/(Perimeter2)

And for the active contour method, we set µ = 0.5 and ν = 0.

The initial snake is a circle centered in the image with a radius

of 128.

III. EXPERIMENTAL METHOD

A. Imagesets

To the best of our knowledge, there is no dataset available

for our task. We created our own imageset. The full imageset

consists of 2381 images of wood log end cross-sections. The

imageset is composed of two species: Norway spruce and

Douglas fir.

It consists of 6 different subsets: 3 subsets composed

of spruce and 3 composed of Douglas fir. Each subset is

composed with images captured by a same camera. We split

the imageset because images have been captured by 6 different

cameras at different stages during log process (after harvesting,

on the log yard, before sawing). More precisely, there are three

main differences between each subset:

• ambient light between outdoor and in sawmill condi-

tions;

• color between fresh sew wood and wood left on log yard

for few weeks;

• color differences between both species (uniform color

of spruce, red heart of Douglas fir).



Fig.6 shows few samples for each subset. Moreover, the

total number of images per camera are highly different. For

instance, one camera has captured more than 1,000 images

and another one has only captured 11 images. Table I details

each subset camera device model, total number of captured

images, size of images and specie. Including all those images

in a single dataset would have led to an unbalanced dataset.

Fig. 6: Some images from the six subsets. The first row Ane

subset (Douglas fir), 2nd row Huawei subset (Spruce), 3rd row

Lumix subset (Douglas fir), 4th row Sawmill subset (Douglas

fir), 5th row sbgTS3 subset (Spruce) and the last row sbgTS12

subset (Spruce).

B. Data Augmentation

As each subset has its own properties (color, contrast

and so on) and some subsets are really small, we always

proceeded to a data augmentation for the training. This allows

a more robust training for the networks. Random deformations

are proceeded: scaling, rotation, vertical and horizontal shift,

TABLE I: Total number of images and image size for each

camera.

Subset Name sbgTS3 sbgTS12

Camera Canon EOS 70D Canon EOS 5D Mark II

Number of images 1504 768

Image’s size 1368× 912 2048× 1365

Wood specie Spruce Spruce

Subset Name Sawmill Lumix

Camera Sawmill camera Panasonic DMC-FZ45

Number of images 39 37

Image’s size 5472× 3648 4320× 3240

Wood specie Douglas fir Douglas fir

Subset Name Huawei Ane

Camera Huawei PRA-LX1 Huawei ANE-LX1

Number of images 22 11

Image’s size 3968× 976 4608× 3456

Wood specie Spruce Douglas fir

zooming and shearing. Each model has been trained on the 6

subsets. We applied a 2-fold cross-validation on each subset.

C. Evaluation Method

Ground truths have been manually assessed by different

operators. Ground truth is the CS without the bark. To compare

the neural networks we use 8 metrics. Let TP be true positives,

TN be true negatives, FP be false positives and FN be

false negatives, we compute these metrics according to the

followings equations:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Dice =
2 ∗ TP

2 ∗ TP + FP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

IoU =
TP

TP + FP + FN

Nice2 =
1

2
(

FN

FN + TP
+

FP

FP + TN
)

MCC =
TP × TN − FP × FN

√
P

where

P = (TP + FP )(TP + FN)(TN + FP )(TN + FN)

As, for some subsets, classes are unbalance, accuracy is not

enough to compare networks. Indeed, in images from Sawmill

subset the cross-section is small compared to background (see

Figure 6). This is the reason why we compute precision,

recall, dice, accuracy, Intersection over Union (IoU), Nice2

and Matthews Correlation Coefficient (MCC) in order analyse

neural network results.

MCC is the least biased score to evaluate networks. It is

interpreted as the correlation between the predictions and the

ground truths [19]. Contrary to MCC, Nice2 indicates whether



there are a lot of wrong estimation and IoU allows to observe

if the segmentation overlaps the ground truths. Accuracy and

Dice also indicate whether the segmentation is accurate but

only in case where foreground and background are balanced.

IV. RESULTS

A. Global overview

Table II shows performance for the different neural networks

and for each subset. The differences between models are

highlighted by those results.

First, MCC indicates that RefineNet performs well for Ane,

Sawmill, sbgTS12 and sbgTS13 subsets, U-Net performs better

on Lumix subset and Mask R-CNN is the more suitable on

Huawei subset. It can be observed that SegNet is outperformed

by others networks for each subset. However, its MCC is close

to the others. The non-deep learning methods performs well

on Ane, Huawei and Lumix. However, they are worst for the

Sawmill imageset. Indeed, the cross-section is small in those

images and images are low in constrast, which leads these

methods to overestimate the cross section. This is indicated

by their high value of recall and accuracy.

Another interesting observation is that Mask R-CNN often

has the highest precision but it has a lower value for the other

scores. It indicates that its pixel prediction is very accurate but

it struggles to detect all the pixels belonging to the CS.

Contrary to Mask R-CNN, U-net has a higher recall than

precision. It seems that U-Net detects better CS in space but it

underestimates the CS segmentation itself. This is confirmed

by the low Nice2 and low IoU. However, U-Net has very low

scores on Sawmill subset. For this subset, CS are very small

leading to an unbalance in classes. U-Net struggles to detect

and to segment cross-section on such images. It performs

better when CS are bigger in images as in Lumix subset.

RefineNet gives in general best results. It outperforms others

for both sbgTS3 and sbgTS12 subsets. Nonetheless, when the

dataset is smaller RefineNet struggles to provide an accurate

segmentation.

SegNet is never the best networks, but it is also never the

worst. For Sawmill subset, SegNet is able to segment cross-

section. But for Lumix subset is not the case.

Table III shows time computation for all methods. For

the benchmarking, we use 16GB RAM with 2133 MHz

(LPDDR3), a processos Intel Core i7 and Intel Iris Plus

Graphics 640 1536 Mo as graphic card. Neither GPU were

used for deep-learning method nor for non deep-learning

methods. K-means is the fastest method and the snake is the

slowest method.

B. Detailled Analysis

To understand precisely each models strengths and weak-

nesses, a detailed analysis was conducted. An important aspect

in CS segmentation is to retrieve the shape.

Fig.7 shows model predictions in a non-trivial image. The

log end is clearly not circular. U-Net underestimates log-end

but retrieves precisely the shape of the cross-section. Mask R-

CNN is less precise. It overestimates the shape in some areas

TABLE II: Performance overview for the models for each

subset.

Ane Pre Rec Dice Acc IoU Nice2 MCC

U-Net 0.879 0.962 0.916 0.924 0.851 0.063 0.864
MRCNN 0.980 0.888 0.947 0.931 0.875 0.061 0.892
RefineNet 0.974 0.977 0.975 0.979 0.952 0.020 0.958

SegNet 0.928 0.951 0.936 0.949 0.886 0.047 0.897
K-means 1.000 0.754 0.844 0.894 0.753 0.124 0.801

Snake 0.974 0.765 0.855 0.893 0.749 0.125 0.788

Huawei Pre Rec Dice Acc IoU Nice2 MCC

U-Net 0.935 0.957 0.945 0.954 0.904 0.039 0.917
MRCNN 0.982 0.931 0.966 0.956 0.915 0.040 0.930
RefineNet 0.892 0.983 0.935 0.947 0.879 0.045 0.894

SegNet 0.952 0.883 0.906 0.935 0.845 0.072 0.869
K-means 0.934 0.839 0.878 0.921 0.809 0.097 0.827

Snake 0.941 0.840 0.884 0.917 0.799 0.098 0.826

Lumix Pre Rec Dice Acc IoU Nice2 MCC

U-Net 0.931 0.956 0.941 0.952 0.894 0.042 0.911
MRCNN 0.979 0.909 0.957 0.942 0.893 0.051 0.910
RefineNet 0.831 0.914 0.864 0.882 0.767 0.110 0.773

SegNet 0.808 0.825 0.787 0.845 0.680 0.147 0.689
K-means 0.932 0.951 0.939 0.952 0.889 0.049 0.902

Snake 0.965 0.885 0.922 0.942 0.857 0.068 0.879

Sawmill Pre Rec Dice Acc IoU Nice2 MCC

U-Net 0.709 0.975 0.816 0.977 0.714 0.016 0.832
MRCNN 0.994 0.907 0.995 0.948 0.901 0.047 0.946
RefineNet 0.984 0.951 0.959 0.996 0.936 0.024 0.961

SegNet 0.928 0.969 0.946 0.994 0.900 0.174 0.944
K-means 0.185 0.934 0.306 0.771 0.183 0.153 0.352

Snake 0.132 0.825 0.225 0.700 0.128 0.242 0.246

sbgTS3 Pre Rec Dice Acc IoU Nice2 MCC

U-Net 0.909 0.961 0.930 0.954 0.889 0.033 0.916
MRCNN 0.857 0.836 0.913 0.843 0.782 0.110 0.784
RefineNet 0.988 0.967 0.976 0.987 0.957 0.018 0.968

SegNet 0.948 0.923 0.931 0.963 0.878 0.046 0.909
K-means 0.756 0.783 0.753 0.861 0.658 0.167 0.668

Snake 0.776 0.808 0.776 0.872 0.654 0.146 0.698

sbgTS12 Pre Rec Dice Acc IoU Nice2 MCC

U-Net 0.900 0.922 0.902 0.937 0.840 0.058 0.873
MRCNN 0.981 0.915 0.962 0.937 0.888 0.052 0.912
RefineNet 0.958 0.983 0.967 0.984 0.947 0.016 0.960

SegNet 0.959 0.954 0.952 0.974 0.918 0.030 0.938
K-means 0.788 0.885 0.824 0.891 0.733 0.114 0.753

Snake 0.837 0.854 0.839 0.913 0.759 0.106 0.781

TABLE III: Time computation in ms for the models.

U-Net MRCNN RefineNet SegNet K-means Snake

466 1245 1143 911 341 2052



(bottom) and underestimates in other areas (top). RefineNet

retrieves the CS shape but suffers from defects at image

borders. Such defects are not highlighted in results shown

in Table II. And SegNet estimates the cross-section with few

gaps in the segmentation (bottom left). It can be observed that

both U-Net and Mask R-CNN provide a smooth segmentation,

which is not the case for RefineNet and SegNet. Both K-means

and the snake method underestimate the cross-section and have

holes within their segmentation.

Another image from sbgTS3 subset is used to underline

networks differences. In Fig.8, the cross-section is next to

other ones which must not be segmented. Like the previous

images, both U-Net and Mask R-CNN provide a smooth

segmentation. Contrary to the previous images, U-Net some-

times overestimates the cross-section, but globally segments

well. Mask R-CNN struggles with the snow (top left) as well

as RefineNet. But Mask R-CNN includes the snow unlike

RefineNet. The segmentation provided by SegNet far from

the ground truth (too many FP). K-means let holes within its

segmentation and underestimates the cross-section. Due to the

snow, the snake method includes part of the adjacent cross-

sections.

V. CONCLUSION

Despite the small size of some datasets, U-Net, Mask R-

CNN, RefineNet and SegNet produce quite good segmentation

of cross-section. RefineNet is better in general but it sometimes

makes errors which could lead to huge errors. Contrary to

RefineNet, U-Net provides a smooth segmentation and man-

ages to provide fine segmentation with small datasets. But it is

less accurate in general. Mask R-CNN struggles with complex

shape and SegNet suffers from defects (like gaps in the shape).

K-means should be considered is the time computation is

the key point as K-means can provide a coarse cross-section.

However active contour seems to be less accurate and is slower

than others methods. Future works should focus on increasing

the number of dataset to understand precisely each network

strengths and weaknesses.
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