
Exploiting Image Sensor Data in Biometric
Systems and Mobile Applications

by
Luca Debiasi

Cumulative dissertation submitted to the
Faculty of Natural Sciences, University of Salzburg

in partial fulfillment of the requirements
for the Doctoral Degree.

Thesis Supervisor
Univ.-Prof. Mag. Dr. Andreas Uhl

Department of Computer Sciences
University of Salzburg
Jakob Haringer Str. 2

5020 Salzburg, AUSTRIA

Salzburg, March 2020



Abstract

In modern society, the exchange of information plays a vital role for many kinds of interactions.
Many of those interactions, being human or with a computer system, require authenticating
ones’ identity: withdrawing money from an ATM, communicating via social media, logging
into a computer system, passing a border to a foreign country, signing documents – to mention
a few examples.

Biometric systems offer an alternative to classical authentication methods such as passwords,
PIN codes or smart-cards in this context. These systems enable authenticating oneself by using
one or multiple biometric traits, i.e. physical, chemical or behavioural characteristics. Biometric
authentication systems have already established themselves in everyday life, in particular since
their implementation in mobile devices such as smartphones. Besides biometric authentication,
mobile devices offer a much wider and ever-increasing range of use cases and applications,
which is mainly driven by the rapid technological advancements in processing power paired
with a decrease in power consumption as well as miniaturisation of diverse types of sensors.

This thesis covers my research with respect to exploiting image sensor data in biometric sys-
tems and mobile applications. Several forensic methods and techniques have been adopted and
adapted to biometric systems. The main focus laid on investigating whether individual biomet-
ric sensors can be differentiated and thus allowing for authentication of the source sensor used
to acquire an image processed in a system. Authenticating the source sensor, i.e. the sensor that
captured an image, is expected to improve the security by preventing specific attacks as well
as yield recognition performance improvements by enabling sensor specific image enhance-
ments in biometric systems. The sensor’s differentiability was investigated with several device
identification and clustering techniques based on the photo response non-uniformity (PRNU) in
conjunction with different enhancements for improving the extracted PRNU’s quality. In order
to evaluate the experimental results, we furthermore identified suitable and reliable metrics us-
ing data with known ground truth. Apart from that, an alternative to the classical PRNU-based
identification of source sensors was proposed.

Further work focused on the detection of face morphing attacks, a recently presented attack
on face recognition systems exploiting their generalisability. We proposed a PRNU-based mor-
phing detection scheme that analyses spectral and spatial characteristics of an image’s PRNU
to detect variations introduced by the morphing process. The system was evaluated using a
variety of morphing algorithms, including landmark and neural network based ones, image
processing to conceal the morphing procedure and images acquired with a large number of dif-
ferent cameras. In addition, the detection performance in a print-scan scenario was analysed.

The mobile applications covered in this thesis consist of an evaluation of face recognition
systems for smartphones, where usability and security against presentation attacks has been
analysed, the design of a near infrared (NIR) illumination prototype for smartphones that en-
ables to capture vascular patterns as well as drug counterfeit detection from its packaging using
images acquired with a smartphone.

ii



Abstract (German)

In unserer modernen Gesellschaft spielt der Informationsaustausch eine essentielle Rolle für
vielerlei Arten von Interaktionen. Viele dieser Interaktionen, ob nun zwischenmenschlich oder
mit einem Computersystem, erfordern eine Authentifizierung der eigenen Identität: Bargeld-
abhebungen an einem Geldautomaten, Kommunikation mittels sozialer Medien, Einloggen in
ein Computersystem, Überschreiten einer Grenze zu einem anderen Land, Unterschreiben von
Dokumenten – um einige Beispiele zu nennen.

Biometrische Systeme bieten sich in diesem Kontext als Alternative zu klassischen Verfahren
wie Passwörtern, PINs und Smart-cards an. Biometrische Systeme ermöglichen die Authen-
tifizierung mittels eines oder auch mehreren biometrischen Merkmalen, also physischer, chemis-
cher oder verhaltensspezifischer Eigenschaften. Der Durchbruch biometrischer Systeme hat,
wenn man unseren Alltag betrachtet, bereits stattgefunden, insbesondere seit deren Einführung
in mobilen Geräten wie Smartphones. Neben biometrischer Authentifizierung bieten Smart-
phones jedoch eine weit größere und stetig wachsende Zahl an Anwendungsszenarien.

Diese Dissertation gibt einen Einblick in meine Forschungsarbeit hinsichtlich des Ausnutzens
von Bildsensor-Daten in biometrischen Systemen und mobilen Anwendungen. Hierfür wurden
verschiedene forensische Methoden und Verfahren an die Verwendung in biometrischen Syste-
men angewendet und angepasst. Dabei wurde ermittelt, ob und inwiefern einzelne biometrische
Sensoren unterschieden werden können. Dadurch wird eine Authentifizierung des Ursprungs-
Sensors eines Bildes, welches in einem System verarbeitet wird, ermöglicht. Durch die Authen-
tifizierung des Ursprungs-Sensors, d.h. des Sensors mit dem ein Bild aufgenommen wurde,
lässt sich eine Verbesserung der Sicherheit sowie eine Steigerung der Erkennungsleistung in
einem biometrischen System erzielen. Die Unterscheidbarkeit der Sensoren wurde mittels un-
terschiedlicher Methoden zur Erkennung sowie zum Clustering von Ursprungs-Sensoren er-
mittelt. Um die experimentellen Ergebnisse auswerten zu können, wurden geeignete und zu-
verlässige Metriken unter Verwendung von Daten mit bekannten Ursprungs-Sensoren eruiert.
Darüber hinaus wurde auch eine alternative Methode zur Erkennung des Ursprungs-Sensor
vorgeschlagen.

Ein weiterer Bereich meiner Forschung befasste sich mit der Erkennung von Gesichtsmorping-
Angriffen, einer erst kürzlich vorgestellten Art von Angriffen auf Gesichtserkennungssyste-
men. Hierzu wurde ein Morphing-Erkennungsverfahren basierend auf der photo response non-
uniformity (PRNU) entwickelt, das durch den Morphing-Prozess verursachte Veränderungen
an der PRNU im Spektral- und Bildbereich analysiert. Das vorgeschlagene Verfahren wurde
unter Einbeziehung mehrerer Morphing-Algorithmen (basierend unter anderem auf markan-
ten Gesichtspunkten sowie neuronalen Netzen), verschiedener Bildverbesserungen (um das
Morphing zu verschleiern) und Bildern einer großen Anzahl an unterschiedlichen Kameras
ausgiebig evaluiert. Zusätzlich wurde die Erkennungsleistung in einem Szenario analysiert,
bei dem die gemorphten Bilder zuerst ausgedruckt und dann wieder eingescannt wurden.

Bei den mobilen Anwendungen, die in dieser Dissertation behandelt werden, haben wir die
Benutzbarkeit und Sicherheit von Gesichtserkennungssystemen für Smartphones ausgewertet,
einen Beleuchtungsaufsatz-Prototypen für Smartphones zur Aufnahme von Venenmustern im
nah-infrarot (NIR) Bereich entwickelt sowie eine Erkennung von gefälschten Medikamenten
entwickelt, die auf Smartphone-Fotos der Medikamentenverpackung basiert.
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1. Introduction

Authenticating oneself has become part of every-day life. Some examples for such authenti-
cation processes include signing documents, logging in into a computer, withdrawing money
from an automated teller machine (ATM) or unlocking a smartphone. Classic authentication
techniques such as signatures or passwords and PIN codes are traditionally used in these kind
of scenarios, in some cases also token based systems like Smart Cards are utilised. However,
these classical authentication methods pose some disadvantages: passwords can get disclosed
or forgotten, tokens can be lost or stolen and signatures can be forged. Genuine users are there-
fore not able to authenticate themselves any longer or even worse, an impostor is able to be
authenticated as a genuine user.

This thesis focuses on exploiting image sensor data in biometric systems and mobile applica-
tions, i.e. analysing the data acquired in biometric systems and mobile applications and using
it for a different purposes. The exploited data might be used to enhance a system’s security or
detect misuse of the system. The use of mobile devices, in particular smartphones, is increasing
and so does their use for various applications such as biometric authentication in mobile envi-
ronments. However, these mobile systems can not only be used for authenticating a user, but
enable ample other applications such as authenticating products with a smartphone as done by
Authentic Vision1 or an augmented reality experience where real world objects are enhanced
by additional computer generated information.

In the following sections, the nomenclature and procedures used in biometric systems, for
attacks on biometric systems and in digital image forensics as well as how they are intertwined
will be explained in more detail.

1.1. Biometrics and Biometric Systems

A biometric recognition system relies on behavioural or biological characteristics of an individ-
ual, e.g. iris, face, fingerprints or the voice, and utilises these biometric traits to enhance the
security and convenience for the user. Because of the individual nature of the biometric traits,
which cannot be lost or be forgotten, the user is no longer required to remember complex pass-
words nor carry around Smart Cards. Such systems are deployed as authentication systems in
industrial settings and high-security areas such as laboratories, banks and border control for
several years, but their use is becoming more and more widespread in everyday life as well,
i.e. fingerprint recognition in the case of smartphones like Apple’s “TouchID”2 or Microsoft’s
“Windows Hello”3 for biometric authentication using fingerprint and face recognition in Win-
dows 10. Another important application is the Indian UIDAI program “Aadhaar”4 issuing a
unique identification number to each Indian resident and using different biometric modalities
to identify and distinguish the enrolled subjects.

A typical biometric system consists of three main components: a biometric sensor to cap-
ture the raw biometric data, a feature extractor that converts the raw data to a feature based
representation and a matcher which compares two sets of features and yields a score value

1https://www.authenticvision.com
2https://support.apple.com/en-us/HT201371
3https://support.microsoft.com/en-us/help/17215/windows-10-what-is-hello
4https://uidai.gov.in

1
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Chapter 1. Introduction

corresponding to the similarity or dissimilarity of the the feature sets. An individual can be
registered in the system once and then be authenticated repeatedly. Biometric sensors deployed
in practical applications often contain a digital image sensor to acquire images of the biometric
traits. They are often adapted for the acquisition of a specific trait to improve the quality of the
acquired images. For example iris sensors are mostly supported by a near infra-red (NIR) light
source to improve the iris recognition results [12].

>Sensor Feature Extraction Matching

Stored Template(s)

Decision

Enrolment
Authentication

Figure 1.1.: Exemplary generic biometric system.

As shown in figure 1.1, first of all the biometric trait (e.g. the finger) is presented to the sensor
(also called biometric scanner). The sensor captures a sample of the biometric trait and creates a
digital representation (usually an image or video). This biometric sample is then pre-processed
in order to enhance its quality. After the pre-processing, features describing the specific kind
of biometric data are extracted. These features are stored in a defined format, called biometric
template. Biometric recognition systems work in two stages. During enrolment, the user’s
biometric trait is captured, a biometric template is generated and stored in a database. During
the authentication phase (either verification or identification), a sample of the user’s biometric
trait is captured and a new template is created. This template (also called probe template) is then
compared against the templates stored in the database (also called gallery templates), resulting
in a comparison score. Based on a threshold, the decision module outputs the final decision if
the user is a genuine one (successfully authenticated) or an impostor one (authentication failed).
For the verification scenario, a user claims an identity and his probe template is compared
against the stored gallery templates of the claimed identity. Identification, as second type of
authentication, compares the probe template of the user against all gallery templates stored in
the database to establish the unknown identity of the user based on the highest comparison
score with one of the stored templates.

1.2. Attacks on Biometric Systems

Despite their advantages over traditional authentication systems, biometric recognition systems
are far from being perfect in terms of accuracy, reliability, security and thus, usability. Ratha et al.
[56] identified eight vectors in a generic biometric system where attacks may occur as illustrated
in Figure 1.2. In this work the focus lies on attacks on the first two attack vectors of a biometric
system, i.e. presentation attacks (1) and insertion attacks (2), as well as the stored templates (6).

A biometric trait can be forged or spoofed, mimicking a genuine user in order to be suc-
cessfully authenticated in a biometric system. These types of attacks, exploiting attack vec-
tor 1, are denoted as “presentation attacks” (PA) and are defined in the ISO/IEC 30107-1:2016

2



1.2. Attacks on Biometric Systems

>Sensor Feature Extraction Matching

Stored Template(s)

Decision

1 2 3 4 5

6

7

8

Figure 1.2.: Attack vectors in a generic biometric system.

standard[32] as “presentation to the biometric data capture subsystem with the goal of inter-
fering with the operation of the biometric system”. The forged representations mimicking a
genuine user are also denoted as spoofing artefacts. Some examples for such spoofing artefacts
are fake fingerprint patterns using silicone [34], 3D face masks [29] and paper prints showing
a face image [55], paper prints showing an image of an iris [65] as well as paper prints of vein
patterns for finger- [69] and hand-vein recognition [68]. With a successful PA an impostor is
able to gain illegitimate access to the system. To secure a biometric system against such threats,
counter-measures to detect PAs can be put into place in the form of additional hard- or software
performing presentation attack detection (PAD).

Digital image sensors are deployed in many biometric systems to acquire the desired biomet-
ric trait. Inserting a forged or even different biometric sample during the transmission between
the biometric sensor and the feature extraction module (attack vector 2) is known as insertion
attack. The inserted data could be acquired from a genuine user with another sensor off-site,
even without his knowledge, or a manipulated image could be used to spoof the biometric sys-
tem. Some biometric traits, such as fingerprints, irises, palm-prints, faces, etc. are inevitably
presented to the open public and can easily be collected by the attacker, e.g. lifting fingerprints
from a glass or taking a picture of the face of the desired subject with a telephoto lens where
eventually also the iris can be extracted [38, 46].

Face recognition systems have experienced a major break-through with the recent devel-
opments in deep learning [63, 72], especially in unconstrained environments, thus leading to
a significant improvement of the recognition performance due to the high generalisability of
deep neural networks. However, this generalisability also made the systems more vulnerable
to various attacks such as morphed face images [30]. Morphing techniques can be applied to
resemble the biometric information of two or more individuals and create artificial biometric
samples. In the case of a face morphing attack, face images from two subjects are combined
using different morphing approaches, e.g. based on facial landmarks [30] or using deep learn-
ing techniques such as generative adversarial networks (GANs) [11]. These artificial samples
are then successfully verified against probe samples of both individuals using state-of-the-art
face recognition systems, if the morphed face image is used as reference image, i.e. as stored
template (attack vector 6). A morphed (face) image might be introduced into the system dur-
ing the enrolment process, for example when an individual applies for an electronic passport.

3



Chapter 1. Introduction

Realistic face morphs can be created by inexperienced users and non-experts with user-friendly
applications [1]. Such realistic morphs are even able to fool human experts [31]. Several ap-
proaches have been proposed in literature to detect face morphing attacks, a recent overview
can be found in [60].

The authenticity and integrity of the images processed within a biometric system plays an
important role for its overall security, which could simply be achieved by encrypting the data.
However, this may cause to replace the existing hardware because of the additional computa-
tional burden necessary for en- and decrypting the data. Biometric matching in the encrypted
domain, might require to develop new algorithms, while other template protection approaches
can lead to a recognition performance degradation as shown in [18], which might also not be
feasible in every scenario. Watermarking of the data could also be employed, however this
might as well introduce additional computational burden and could negatively impact the bio-
metric system’s performance, as shown for iris recognition in [39]. Alternatively, one could
perform an analysis of the existing image data to detect anomalies. This is where Digital Image
Forensics come into play, providing an extensive collection of tools for analysing images.

1.3. Digital Image Forensics

The field of Digital Image Forensics deals with structural analysis of image files and statistical
analysis of the image data in order to investigate various traces in the digital images. Due to
many biometric traits being acquired using digital image sensors and therefore being captured
in digital images, it is intuitive to apply techniques from Digital Image Forensics for analysing
specific properties of the images.

Digital Image Forensics aims at acquiring knowledge on visual contents and acquisition de-
vices by evaluating the traces that are left on the data during the acquisition and in the sub-
sequent processing. These intrinsic signatures are used to investigate different aspects, like
identification of the source sensor of an image or video, or verification of the integrity of the
data (if it has been modified or not) without any prior knowledge on it.

Every electronic device capable of acquiring digital images contains an imaging sensor. This
sensor contains a large number of photo sensitive detectors made of silicon, commonly known
as pixels. They have the ability to convert photons into electrons by exploiting the photoelectric
effect [40, 43]. The charge accumulated in every pixel is first amplified and afterwards converted
into a digital signal, which is further processed and then stored.

An important tool used to perform many forensic tasks is the photo-response non-uniformity
(PRNU) of imaging sensors as described by Fridrich in [33]. It can be used for a variety of
important tasks, such as device identification, device linking, recovery of processing history,
and detection of digital forgeries. The PRNU is an intrinsic property of all digital imaging
sensors, which is characterised by slight variations among individual pixels in their ability to
convert photons to electrons, as illustrated in Figure 1.3. It shows an example of extracting the
PRNU from an evenly illuminated part of an image and the corresponding PRNU, where the
variation among the pixels can be observed.

Consequently, every sensor casts a weak noise-like pattern onto every image it takes. This
pattern, which plays the role of a “sensor fingerprint”, is essentially an unintentional stochastic
spread-spectrum watermark that survives processing, such as lossy compression or filtering.
This fingerprint can be estimated from images taken by the camera and later detected in a given
image to establish the image’s origin and integrity.

Even though the PRNU is stochastic in nature, it is a relatively stable component of the sensor
over its life span and is therefore a very useful forensic quantity, responsible for a unique sensor

4



1.3. Digital Image Forensics

Figure 1.3.: Evenly illuminated image and extracted PRNU noise residual. The contrast of the
noise residual has been enhanced to emphasise the variation among the pixels.

fingerprint with the following important properties [33]: dimensionality, universality, general-
ity, stability and robustness. The PRNU fingerprint can be used for various forensic tasks [33]:

• By testing the presence of a specific fingerprint in the image, one can achieve reliable de-
vice identification (e.g., prove that a certain camera took a given image) or prove that two
images were taken by the same device (device linking). The presence of camera finger-
print in an image is also indicative of the fact that the image under investigation is natural
and not a computer rendering.

• By establishing the absence of the fingerprint in individual image regions, it is possible to
discover replaced parts of the image (integrity verification).

• By detecting the strength or form of the fingerprint, it is possible to reconstruct some of the
processing history. For example, one can use the fingerprint as a template to estimate ge-
ometrical processing, such as scaling, cropping, or rotation. Non-geometrical operations
will also influence the strength of the fingerprint in the image and thus can potentially be
detected.

• The spectral and spatial characteristics of the fingerprint can be used to identify the cam-
era model or distinguish between a scan and a digital camera image (the scan will exhibit
spatial anisotropy).

Several other image characteristics have been investigated for device identification, e.g. auto-
white balance approximation [26], lens radial distortion [10], chromatic aberration, purple fring-
ing, and sensor dust characteristics [27, 28]. Though, these approaches have not been investi-
gated as extensively as the PRNU. An overview of image characteristics used for device iden-
tification is given in [42, 54, 57, 64, 8] and [52] gives an overview of forensic applications using
the PRNU. Additionally, important properties as required for the deployment in a biometric
system have been demonstrated. They comprise the management of large datasets [37, 36] and
the robustness against common signal processing operations like compression and malicious
signal processing [2, 58].

Device clustering can be seen as an extension of device linking, where images acquired with
the same device are grouped into clusters. In this scenario, in contrast to the device identifi-

5



Chapter 1. Introduction

cation one, a large set of images from unknown source cameras is investigated. The number
of different devices as well as the distribution of the images among them is usually unknown.
Furthermore, the acquisition of additional data is not possible because the source camera(s) are
not available. As mentioned by Liu et al. [5] the varying number of images for each source
camera could be challenging to supervised learning based approaches. Unbalanced category
distribution has long been a problem in machine learning, where most classification algorithms
generate classifiers by minimising the overall error rate, leading to either ignoring the minority
class or over-fitting the training sample into many minor classes [44]. Several classical cluster-
ing techniques have been proposed in literature to solve this problem [47, 9, 3, 7, 50, 48, 49, 53]
relying on the PRNU and utilising the same extraction procedures as for the device identifica-
tion case. In order to find the “optimal” clustering solution, a cluster validity assessment [71] of
the clustering outcome has to be conducted. In general, this assessment is based on two criteria:

• Compactness: the members of each cluster should be as close to each other as possible.

• Separation: the clusters themselves should be widely separated.

Therefore, the partition that best fits the underlying data can be considered as the “optimal”
clustering solution. Various internal and external clustering validity indices (CVIs) have been
proposed in literature [67]:

• External CVIs: measure of agreement between two clustering solutions where one is an a
priori known reference.

• Internal CVIs: measure of quality by means of inherent quantities and features contained
in the clustered data without use of external knowledge.

In the context of biometric systems the deduced sensor information can serve as a basis for
various forensic and non-forensic applications, e.g. securing a biometric system against in-
sertion attacks, enabling device selective processing of the image data or detection of image
manipulations. Therefore, securing a system against insertion attacks requires to determine the
origin of processed images and to ensure that only images acquired with the deployed biomet-
ric sensor are further processed. On the other hand, selective processing of the biometric images
helps to improve the interoperability by applying a sensor tailored biometric tool chain [4]. For
this purpose, information about the sensor model is required, which can be deduced from the
images directly utilising image forensic methods [51]. Determining an image’s origin can be
done at different levels: sensor technology, brand, model, unit. While the former task (device
identification) requires the identification to be performed at unit level, the latter one (selective
processing) only requires to determine the device model because of the image processing being
usually the same for all units of a specific device model.
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2. Contribution

The work published in the scope of this thesis can be divided into three major areas: biometric
sensor forensics, PRNU-based face morph detection and mobile applications.

2.1. Biometric Sensor Forensics

The identification of an image’s origin enables different applications in a biometric system, such
as enhancing its security by identifying the acquisition device or improvement of a system’s
performance in cases where sensors from different manufacturers and models are deployed.
Previous work investigated the discrimination of biometric sensors on unit level in [70], [45]
and [6] by making use of the PRNU. The outcome of Höller et al. [70] and Kalka et al. [45],
where the discriminative power of iris sensors has been evaluated, showed strong variations in
the identification performance for the investigated iris sensors. Bartlow et al. [6] investigated
various fingerprint sensors and reported varying identification accuracy for the sensors as well.
The discrimination of biometric sensors can be considered to be more challenging compared
to common camera devices due to the nature of the acquired images. The image content of
biometric data has a much higher correlation, thus making the quality of the extracted PRNU
more vital to avoid false matching due to the correlated image content.

2.1.1. Source Sensor Clustering

Previous work [23] applied different clustering techniques to the CASIA-Iris V4 database in
order to detect the presence of images from multiple sensors, where the results indicated that
multiple sensors might have been used within each subset of the dataset. Following this lead,
different PRNU enhancement and clustering techniques [22, 24, 25] have been evaluated on iris
and fingerprint data. We observed that most PRNU enhancements did indeed improve the clus-
tering results by increasing the differentiability of the various sensors’ PRNU noise residuals,
however the performance of the investigated combinations was highly situational as no single
enhancement or clustering technique or combination of both was able to improve the clustering
performance for all datasets alike.

In contrast to the previous contributions, our investigation in [19] was not conducted on bio-
metric data. Instead it focused on the examination of a real word criminal case dataset contain-
ing still images found on a suspect’s computer during a sexual abuse case investigation. The
data was evaluated using different PRNU-based clustering algorithms and a quantitative anal-
ysis of the clustering results has been performed using various cluster validity indices (CVIs).
Before analysing the criminal case data, a sanity check of all clustering techniques and valid-
ity indices has been conducted using data with known ground truth [35], which revealed the
inability of certain algorithms and CVIs to correctly cluster the data and quantify the cluster-
ing output. The gained insights guided the evaluation of the criminal case data and supported
giving some recommendations on how to apply PRNU-based clustering in such scenarios.

2.1.2. Sensor Identification

In the context of device identification, in [16] and [17] we examined visible spectrum and near-
infrared (NIR) iris/ocular images to demonstrate whether an iris image’s origin can be reliably
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determined among a large number of iris datasets. We discussed the applicability from a foren-
sic and non-forensic perspective. Three different techniques have been applied in the evalua-
tion: a photo response non-uniformity based one (PSI), an image texture feature based one (ITC)
and finally the fusion of both PSI and ITC. The experiments included 19 iris datasets acquired
with different sensors as well as a second dataset containing natural images from six different
camera models with five instances each in order to investigate a discrimination on unit level as
well as model level. The PSI approach was able to differentiate the sensors at unit level, but
requires a certain minimum patch size. The ITC approach worked reliably in determining the
iris image source regardless of the patch size, but only at model (dataset) level. The fusion of
both ITC and PSI finally allowed for a unit level discrimination for a wide range of sensors.

Publications (sorted chronologically)

[22] L. Debiasi and A. Uhl. Blind biometric source sensor recognition using advanced PRNU
fingerprints. In Proceedings of the 2015 European Signal Processing Conference (EUSIPCO’15),
Nice, France, 2015

[24] L. Debiasi and A. Uhl. Comparison of PRNU enhancement techniques to generate PRNU
fingerprints for biometric source sensor attribution. In Proceedings of the 4th International
Workshop on Biometrics and Forensics (IWBF’16), Limassol, Cyprus, 2016

[25] L. Debiasi and A. Uhl. PRNU enhancement effects on biometric source sensor attribution.
IET Biometrics, 4(6):256–265, 2017

[16] L. Debiasi, C. Kauba, and A. Uhl. Identifying iris sensors from iris images. In C. Rathgeb
and C. Busch, editors, Iris and Periocular Biometric Recognition, chapter 16, pages 359–382.
IET, London, UK, 2017

[17] L. Debiasi, C. Kauba, and A. Uhl. Identifying the origin of iris images based on fusion
of local image descriptors and PRNU based techniques. In Proceedings of the IAPR/IEEE
International Joint Conference on Biometrics (IJCB’17), Denver, Colorado, USA, 2017

[19] L. Debiasi, E. Leitet, K. Norell, T. Tachos, and A. Uhl. Blind source camera clustering of
criminal case data. In Proceedings of the 7th International Workshop on Biometrics and Forensics
(IWBF’19), Cancun, Mexico, 2019

2.2. Face Morph Detection

Morphed face images can be considered as a serious threat to face recognition systems by com-
promising the unique link between the biometric reference data and the associated subject. The
ePassport application process in many countries allows for the applicant to provide a face im-
age in digital or analogue form. Thus, in a face morphing attack scenario a criminal might end
up with a valid ePassport retaining all document security features, but containing a morphed
face image allowing successful verification of multiple individuals. A political activist success-
fully demonstrated how such a manipulated ePassport can be obtained in Germany1. Thus it is
crucial to be able to detect morphing attacks in general and morphed face images in particular.
An overview of proposed morph detection approaches is given in [60], where also general chal-
lenges and issues have been outlined consisting of morphed image quality, comparability and

1https://www.vice.com/en_us/article/pa9vyb/peng-collective-artists-hack-german-
passport
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2.2. Face Morph Detection

reporting of results, robustness of morph detectors and the missing investigation of printed and
re-scanned images.

In [21], we proposed a PRNU-based morph detection algorithm that analyses the changes
within the PRNU caused by the morphing process in the spectral domain. The results on a
comprehensive database of 961 bona fide and 2414 morphed face images showed a practical
detection performance and also robustness of the algorithm to various image post-processing
procedures such as sharpening or scaling, which might be applied to conceal the morphing
process.

The PRNU-based morph detection algorithm was extended in [20] with a variance analysis
of PRNU-based features across multiple image cells thus analysing relative changes among
different image regions. This variability analysis helped in further improving the robustness
to a wider range of post-processing procedures such as contrast enhancement via histogram
equalisation.

Our work in [59] represents a significant extension of the two previous studies on PRNU-
based morphing attack detection [21, 20]. The proposed system has been complemented by
further investigations of different features in the spectral and spatial domain. Furthermore, the
robustness of the system has been tested using four different morphing algorithms combined
with a cross-database analysis and benchmarked against other state-of-the-art morph detection
systems. The generalisability of the system across different cameras has also been verified on
a dataset containing images acquired with 63 distinct camera instances (20 different models)
across many camera manufacturers. A preliminary study on a dataset of printed and scanned
images has also been included in the evaluation. Also, a vulnerability analysis of the proposed
system was given with respect to attacks on the proposed morph detection system. In scenar-
ios where the image source and morphing techniques are unknown, the proposed detector is
shown to significantly outperform other previously established morphing attack detectors.

The focus of [13] lied on an experimental evaluation of the capabilities of various state-of-the-
art morph detectors when confronted with classical landmark based morphing attacks (LMA)
as well as a recently presented face morphing approach based on generative adversarial net-
works (MorGAN). The morph detection algorithms have been confronted with different attack
scenarios consisting of known and unknown attacks with different morph types. In addition,
the image quality of the morphed face images has been compared between LMA and MorGAN
morphs. All investigated morph detection systems failed at consistently detecting all attacks,
however the PRNU-based detection system proposed in [20] showed the most robust results
although not being the best performing one.

Publications (sorted chronologically)

[21] L. Debiasi, U. Scherhag, C. Rathgeb, A. Uhl, and C. Busch. PRNU-based detection of mor-
phed face images. In Proceedings of the 6th International Workshop on Biometrics and Forensics
(IWBF’18), Sassari, Italy, 2018

[20] L. Debiasi, C. Rathgeb, U. Scherhag, A. Uhl, and C. Busch. PRNU variance analysis for
morphed face image detection. In Proceedings of the IEEE 9th International Conference on
Biometrics: Theory, Applications, and Systems (BTAS’18), Los Angeles, California, USA, 2018

[13] L. Debiasi, N. Damer, A. M. Saladie, C. Rathgeb, U. Scherhag, C. Busch, F. Kirchbuchner,
and A. Uhl. On the detection of GAN-based face morphs using established morph de-
tectors. In Proceedings of the 20th International Conference on Image Analysis and Processing
(ICIAP’19), Trento, Italy, 2019
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[59] U. Scherhag, L. Debiasi, C. Rathgeb, C. Busch, and A. Uhl. Detection of face morphing
attacks based on PRNU analysis. IEEE Transactions on Biometrics, Behavior, and Identity
Science (TBIOM), 1(4):302–317, 2019

2.3. Mobile Applications

Mobile devices, smartphones in particular, are becoming more powerful with each generation
and integrate a growing number of sensors: from RGB and in some cases NIR cameras, micro-
phones, gyroscopes, accelerometers and GPS modules to dedicated biometric scanning hard-
ware such as fingerprint readers and more. This hardware combined with growing compu-
tational capability in the form of more powerful CPUs and dedicated machine learning chips
enables a wide range of applications using mobile devices like biometric authentication, health
and government services, online banking, mobile ticketing, payment services or augmented re-
ality applications just to name a few. Therefore these devices play an important role in modern
everyday life and are used more and more frequently.

With the widespread use of these kind of devices, security concerns arise especially when
they are used for government services or online banking. Notably, the biometric authentication
use case has seen many (mostly successful) attack attempts like presentation attacks on mobile
fingerprint2, iris recognition3 and face recognition systems4.

To prevent such attacks, presentation attack detection (PAD) systems are employed on the
mobile devices. In [41] we evaluated several mobile face recognition systems focussing on their
usability and security. The usability was determined in form of successful authentication at-
tempts by a genuine user und different environmental conditions, while the security was as-
sessed by investigating the ability to detect presentation attacks of different complexity ranging
from prints of a face on paper, replay attacks on screens to 3D masks. We observed that in
general a higher security was only achieved at the cost of usability, going as far as making the
systems more or less unusable for a genuine user.

As mentioned above, many biometric systems using external biometric traits (such as fin-
gerprints, iris or face) have been already broken and deemed insecure in the context of mobile
authentication. Therefore, alternatives for biometric authentication using traits that are not ex-
posed externally are gaining attention. An example for such traits is vascular pattern recog-
nition, which has been subject to interest in the scientific community and has already found
its way into commercially available products in form of the LG G8 smartphone offering hand-
vein recognition5. In [14], we designed and constructed a NIR illumination prototype add-on
for smartphones to allow for mobile capturing of hand-veins for authentication purposes. In
addition, to prevent fraudulent authentication attempts, a challenge response approach based
on illumination variations was developed to ensure the authenticity of the acquired data. We
acquired a hand-vein dataset containing images of 31 subjects from palmar and dorsal perspec-
tive of the hand and evaluated the recognition capabilities of different well-established vein
recognition schemes on this challenging dataset.

An alternative application of mobile devices has been investigated in [15, 61, 62] by means
of counterfeit drug detection. More specifically, we analysed the material structure of the drug
packaging (paper and blister) in images acquired with a smartphone. The developed authen-
tication system was able to detect intrinsic texture features of the packaging material without

2https://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid
3https://www.ccc.de/en/updates/2017/iriden
4https://www.engadget.com/2019/12/16/facial-recognition-fooled-masks/
5https://www.businessinsider.de/lg-g8-smartphone-unlocks-with-hand-id-vein-palm-
recognition-2019-2
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2.3. Mobile Applications

the use of additional physical markers. We assumed, that an impostor does not have access
to the original drug manufacturer’s packaging production facilities, thus he needs to produce
the packaging using own materials such as cardboard for the outer packaging and plastics and
metal foil for the blisters. The obtained results confirmed that the textural features of the drug
packaging materials are constant and highly discriminative. The experiments furthermore indi-
cated the possibility to train a classifier using a set of known instances that is able to authenticate
unseen instances.

Publications (sorted chronologically)

[15] L. Debiasi, C. Kauba, R. Schraml, and A. Uhl. Towards drug counterfeit detection using
package paperboard classification. In Advances in Multimedia Information Processing – Pro-
ceedings of the 17th Pacific-Rim Conference on Multimedia (PCM’16), Springer LNCS, Xi’an,
CHINA, 2016

[61] R. Schraml, L. Debiasi, C. Kauba, and A. Uhl. On the feasibility of classification-based
product package authentication. In IEEE Workshop on Information Forensics and Security
(WIFS’17), Rennes, France, December 2017

[62] R. Schraml, L. Debiasi, and A. Uhl. Real or fake: Mobile device drug packaging authentica-
tion. In Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security
(IH&MMSec’18), Innsbruck, Austria, 2018

[14] L. Debiasi, C. Kauba, B. Prommegger, and A. Uhl. Near-infrared illumination add-on for
mobile hand-vein acquisition. In 2018 IEEE 9th International Conference on Biometrics The-
ory, Applications and Systems (BTAS’18), Los Angeles, California, USA, 2018

[41] H. Hofbauer, L. Debiasi, and A. Uhl. Mobile face recognition systems: Exploring presen-
tation attack vulnerability and usability. In Proceedings of the 12th IAPR/IEEE International
Conference on Biometrics (ICB’19), Crete, Greece, 2019
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ABSTRACT
Previous device identification studies on the iris sensors of
the CASIA-Iris V4 database using PRNU fingerprints showed
high variations regarding the differentiability of the sensors.
These variations may have been caused by the usage of multi-
ple sensors of the same model for the image acquisition. Since
no specific documentation on this exists we investigate the
presence of multiple image sensors in the data sets. The im-
ages under investigation, furthermore, show a strong correla-
tion regarding their content, therefore we make use of differ-
ent PRNU enhancements approaches based on weighting the
PRNU depending on the image content. The enhanced PRNU
is used in conjunction with different forensic techniques to
detect the presence of multiple sensors in the data sets.

Finally, the results of the enhancement approaches and the
results without any PRNU enhancement are compared and an
assessment on whether multiple sensor instances have been
used in the data sets is given.

Index Terms— Digital image forensics, Biometric sensor
forensics, PRNU, Sensor identification

1. INTRODUCTION

In the field of digital image forensics the photo response non-
uniformity (PRNU) of an imaging sensor emerged as an im-
portant tool for the realization of different forensic tasks like
device identification, device linking, recovery of processing
history and the detection of digital forgeries.

Slight variations of individual pixels during the conver-
sion of photons to electrons in digital image sensors are the
source of the PRNU, thus it is considered an intrinsic prop-
erty which is contained in all digital imaging sensors. Every
digital image sensor adds this weak, noise-like pattern into ev-
ery image that has been acquired with it. This pattern, which
enables the identification of a specific image sensor, is essen-
tially an unintentional stochastic spread-spectrum watermark
that survives processing, such as lossy compression or filter-
ing and it meets essential criteria like dimensionality, univer-
sality, generality, stability and robustness [1] that make it well
suited for forensic tasks.

Beyond that, the PRNU fingerprint of a sensor can also be
used to improve a biometric systems security by ensuring the
authenticity and integrity of images acquired with a biometric
sensor. Previous studies on this application by Höller et al.
[2] have conducted a feasibility study on the CASIA-Iris V4
database. The differentiability of the sensors in the CASIA-
Iris V4 database using PRNU fingerprints has been tested
with the conclusion, that the EERs and respective thresholds
vary highly. Some sensors showed satisfying results while
others did not, some subsets even showed EERs of over 20%.
The question raised, that if PRNU fingerprints are being ap-
plied as an authentication measure for iris databases, it is not
clear where the poor differentiation results for some sensors
come from.

It was assumed that this high variation could be caused
by the correlated data that was used to generate the sensors
PRNU fingerprint. Further investigation from Debiasi et al.
[3] showed that using uncorrelated data to generate the PRNU
fingerprint does not improve the results for this data set and
hence is not causing the high variation. An alternative method
to deal with the uncorrelated data is to further separate the
PRNU from the image content. Since the PRNU covers the
high frequency components of an image, it is contaminated
with other high frequency components from the images, such
as edges. Li [4] proposed an approach for attenuating the
influence of details from scenes on the PRNU so as to im-
prove the device identification rate of the identifier. Caldelli
et al. [5] considered this approach and developed a new kind
of enhancer.

On the other hand, Höller et al. [2] suspected that multiple
sensors may have been used for the acquisition of the CASIA
Iris-V4 subsets. If a PRNU fingerprint is generated using im-
ages of different sensors, it will match with images acquired
with all of these sensors and hence lead to a decreased differ-
entiability. Unfortunately, neither the meta data of the images
in the CASIA-Iris V4 database, nor the database description,
denoting solely the sensor model without any additional in-
formation, can reveal the number of sensors instances used
during the acquisition. Even the researchers involved in the
acquisition cannot determine the number of sensors any more.
Debiasi et al. [6] investigated the case of multiple sensors and

2015 23rd European Signal Processing Conference (EUSIPCO)

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 779

Blind Biometric Source Sensor Recognition Using Advanced PRNU Fingerprints

13



came to the conclusion that one data set might be acquired
with more than one sensor, while the other have been acquired
with a single sensor only. No PRNU enhancement was used
to overcome the problem of the correlated data in the investi-
gation.

In this paper we conduct a forensic analysis on the
CASIA-Iris V4 database to investigate if multiple sensors
have been used during the acquisition of the images in a com-
pletely blind manner with no a priori knowledge of the data
set and make use of two PRNU enhancing techniques to be
able to reduce the influence of the correlated data. The paper
is organized as follows: Section 2 briefly describes the related
work regarding this scenario, section 3 gives a short descrip-
tion of the CASIA-Iris V4 database and section 4 gives an
overview of the PRNU extraction and the PRNU enhance-
ments. Section 5 describes the forensic techniques used for
the investigation and the experiment set-up. In section 6 the
experimental results are presented and section 7 concludes
the paper.

2. RELATED WORK

Blind classification of image source in an open set scenario
has already been investigated by other researchers, who pro-
posed Hierarchical Agglomerative Clustering (HAC) [5, 7]
or Multi-Class Spectral Clustering (MCSC) for this scenario
[8, 9] by formulating the classification task as a graph parti-
tioning problem. These approaches rely on a known training
or test set to determine special criteria, e.g. the stop criterion
for the clustering. Because we do not have a ground truth
for the CASIA-Iris V4 DB, these approaches are not consid-
ered in this work. Other related work [10] relies on an itera-
tive algorithm that consecutively “constructs” a sensor finger-
print from images with similar PRNU using a pre-calculated
threshold function. Some of the forensic techniques proposed
in [6] are used in this work together with the previously men-
tioned approach of Bloy [10].

3. CASIA-IRIS V4 DATA SET

The CASIA-IrisV4 contains a total of 54,601 iris images of
more than 1,800 genuine subjects. All iris images are 8 bit
grey-level JPEG files, collected under near infrared illumina-
tion. The five subsets investigated in this work, with the corre-
sponding sensors (as described in the database specification),
are:

• intv: CASIA close-up iris camera

• lamp: OKI IRISPASS-h1

• twin: OKI IRISPASS-h2

• dist: CASIA long-range iris camera

• thou: Irisking IKEMB-100

For the CASIA Iris V4 data sets it is not clear, whether
the single data sets have been acquired with a specific sensor
or if multiple instances of the same sensor model have been
used. This question is substantiated by the fact that the same
sensor model was used for two different data sets (lamp and
twin).

4. PRNU EXTRACTION AND ENHANCEMENT

For all the forensic investigation techniques used in this work
the PRNU from the images under investigation is extracted.
This process is further described in the following section.

The extraction of the PRNU noise residual is performed
by using the algorithm described by Fridrich [11]. The PRNU
represents the noise intrinsically inserted into an image during
the acquisition process. For each image I the noise residual
WI is estimated as described in equation 1,

WI = I − F (I) (1)

where F is a denoising function filtering out the sensor pattern
noise. We used the wavelet-based denoising filter as described
in Appendix A of [12], because it is producing good results
in filtering out the PRNU. The PRNU noise residual it then
normalized in respect to the L2-norm because its embedding
strength is varying between different sensors as explained by
[2].

In this work two different PRNU enhancement approaches
are used, which both aim to filter out scene details by the fol-
lowing idea: Scene details contribute to the very strong signal
components in the wavelet domain, so the stronger a signal
component in the wavelet domain, the more it should be at-
tenuated. For the enhancement the PRNU is transformed into
the discrete wavelet transform (DWT) domain, where an en-
hancement function is applied to the coefficients. We use two
different enhancement functions: EnhLi3 that corresponds to
the Model 3 from [4] and EnhCald that is proposed in [5].
After the application of the respective function, the resulting
coefficients are transformed back into the spatial domain by
performing an inverse DWT (IDWT).

The PRNU fingerprint K̂ of a sensor is then estimated
using a maximum likelihood estimator for images Ii with i =
1...N .

K̂ =

∑N
i=1 W i

II
i

∑N
i=1(I

i)2
(2)

The normalized cross correlation (NCC) is used to detect
the presence of a PRNU fingerprint K̂ in an Image J with

ρ[J,K̂] = NCC(WJ , JK̂) (3)

where ρ indicates the correlation between the PRNU residual
Wj of the image J and the fingerprint K̂ weighted by the
image content of J .

The correlation ρ is calculated between each image from
a sensor Si and the PRNU fingerprint K̂i of the sensor Si,
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NoEnh intv lamp twin dist thou

images 1307 6858 1095 1566 2000
partitions 143 212 20 1 6
partitions > 100 2 11 1 1 1
partitions < 10 128 157 18 0 4
unassociated images 0 0 0 0 0

EnhLi3 intv lamp twin dist thou

images 1307 6855 1095 1566 2000
partitions 186 266 24 1 14
partitions > 100 1 12 1 1 2
partitions < 10 168 129 19 0 12
unassociated images 0 0 0 0 0

EnhCald intv lamp twin dist thou

images 1307 6855 1095 1566 2000
partitions 6 2867 307 1 193
partitions > 100 1 0 3 1 3
partitions < 10 4 260 254 0 188
unassociated images 928 0 0 0 0

Table 1: BFAIC experiment results on the CASIA-Iris V4 data sets
for NoEnh (top), EnhLi3 (middle) and EnhCald (bottom).

where only images are used that have not been part of the
PRNU fingerprint estimation. Additionally the correlation ρ
between all images from the other sensors Sj , i �= j , and the
PRNU fingerprint K̂i of the sensor Si is also calculated.

5. EXPERIMENTS AND SET-UP

All the subsets from the CASIA-Iris V4 DB are investigated
independently. Since the image size is varying between the
data sets, the PRNU noise residual of an image is extracted
from 4 patches located in the corners with a size of 128x128
pixels each for all of the forensic techniques. Hence we obtain
a total noise residual size of 256x256 pixels.

After the extraction of the PRNU noise residual, either no
enhancement, the enhancement of Li [4] (denoted as EnhLi3)
or the enhancement of Caldelli et al. [5] (denoted as EnhCald)
is applied to the PRNU as described in section 4. A threshold
value of α = 6 was used for the enhancement function in both
enhancement approaches.

After the extraction and optional enhancement, three dif-
ferent forensic techniques are applied to investigate the data
sets:

• Blind Camera Fingerprinting and Image Clustering
(BCFAIC) by Bloy [10]

• Sliding Window Fingerprinting (SWF) by Debiasi et al.
[6]

• Device Identification on Dataset Partitions (DIODP) by
Debiasi et al. [6]

6. RESULTS

In the following section the results of the ivestigation of the
CASIA-Iris V4 DB with the before mentioned forensic tech-
niques and PRNU enhancements are presented.
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Fig. 1: Results of SW experiment thou data set without PRNU en-
hancement (left) and the EnhLi3 enhancement (right).
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Fig. 2: Results of SW experiment for the twin data set with NoEnh
(top), EnhLi3 (left) and EnhCald (right).

6.1. Blind Camera Fingerprinting and Image Clustering

First the Blind Camera Fingerprinting and Image Clustering
(BCFAIC) technique was applied to the different subsets of
the CASIA-Iris V4 database. This technique creates clusters
of associated images (images with a high NCC score) and
partitions the data set. The resulting partitions should reflect
the number of distinct sensors used in the data set. Unasso-
ciated images have a very low NCC score among each other,
so that they are classified as being all from different sensors
because they could not be clustered properly. Table 1 shows
the results without any PRNU enhancement applied (NoEnh)
as well as the results with the EnhLi3 and EnhCald PRNU
enhancement.

The results show a high cluster fragmentation for all
subsets, except for the dist data set, where all images have
been clustered together with all enhancement approaches.
The EnhLi3 enhancement produces slightly more clusters
then NoEnh, but the results are comparable. The EnhCald
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enhancement, on the other hand, produces a much higher
amount of clusters for all data sets (except dist) compared to
the other enhancements and also leads to unassociated images
in the intv data set.

The results of the BCFAIC experiments indicate that the
dist dataset has been acquired with a single sensor, while the
results are unclear for the other data sets. It can also be seen
that the EnhLi3 produces comparable results to the PRNU en-
hancement being omitted.

6.2. Sliding Window Fingerprinting

The Sliding Window Fingerprinting (SWP) moves a window
with a defined size over the data image after image and a
PRNU fingerprint from the data within this window is cal-
culated in each step. The presence of images from multiple
sensors in the data set should express in a sudden increase
or decrease of the correlation score. If only images from one
sensor are present in the data set, the correlation scores among
all images should be quite stable around a certain level. The
high spikes with a peak value of 1 occur when fingerprints
that have one or more common images in their generation are
compared.

As this experiment shows in figure 1, the EnhLi3 enhance-
ment produces comparable results as if no enhancement is ap-
plied for all data sets. There is only a very small offset in the
correlation scores between the two configurations, where the
EnhLi3 scores are slightly lower, but the transitions are equal
for both configurations. An example is given in figure 1 for
the thou data set. Hence only the EnhLi3 and EnhCald con-
figurations are compared in the following figures.

In the results of the dist, twin and thou data sets no tran-
sitions in the correlation scores can be identified. They are
comparable for EnhLi3, EnhLi3 and EnhCald, therefore these
data sets have probably been acquired with a single sensor
according to this experiment. The only difference is an off-
set in the correlation scores for the individual enhancement
configurations, as it can be seen in figure 2.
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Fig. 3: Results of SW experiment for the lamp data set with EnhLi3
(left) and EnhCald (right).

The figures 3 and 4 show the results for the lamp and intv
data sets. In the lamp and intv data sets the previously de-
scribed correlation score transitions can be observed at ap-
proximately iteration 700 and 1050 (lamp) and iteration 250
and 800 (intv).

Summing up, this technique suggests that all data sets,
with the exception of lamp and intv, have been acquired with
a single sensor. Regarding the PRNU enhancements it can
be observed that the two PRNU enhancements EnhLi3 and
EnhCald exhibit decreased mean correlation scores.
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Fig. 4: Results of SW experiment for the intv data set with EnhLi3
(left) and EnhCald (right).

6.3. Device Identification on Dataset Partitions
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Fig. 5: Results of DIODP experiment on all CASIA-Iris V4 data sets
with a partition size of 50.

The Device Identification on Dataset Partitions (DIODP)
experiment divides the data sets into n partitions with the
same size and treat the disjoint partitions as n different sen-
sors. After calculating the pairwise EER scores for all par-
tition combinations Pi and Pj, where i �= j, the EER score
distribution is evaluated. If the distribution contains mostly
high EER scores, the data set probably contains images from
a single sensor. On the other hand, if the distribution con-
tains very low EER scores, the data set is suspicious of con-
taining images from multiple sensors. To be able to clearly
represent the resulting EER scores we performed a binning
of the scores into six bins with the following limits: scores
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below 10%, between 10% and 20%, between 20% and 30%,
between 30% and 40%, between 40% and 50%, and scores
above 50%, where the lower bounds are inclusive and the up-
per bounds are exclusive.

Similar to the previous forensic techniques, the results for
the two PRNU enhancement approaches are quite similar to
the unenhanced ones, as represented in figure 5. This figure
also indicates that the score distribution for the intv data set
shows some low EER scores. For all other data sets it can
be observed that the EER scores are mostly larger than 30%,
which indicates that these data sets might be acquired with
a single sensor. Having a closer look at the intv data set with
different partition sizes in figure 6 indicates that this set might
have been acquired with multiple sensors, because the distri-
bution of the EER scores contains most of the scores in the
range between 10% and 40% for almost all partition sizes un-
der investigation.
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Fig. 6: Results of DIODP experiment with different partition sizes
for the intv data set with the EnhLi3.

7. CONCLUSION

In this work we tried to establish a ground truth of the sen-
sors used to acquire the various CASIA-Iris V4 data sets by
using different PRNU enhancement techniques. This remains
a challenging task for the CASIA-Iris V4 DB since this is a
completely blind approach without any a priori knowledge of
the sensors.

The PRNU enhancements did not clarify the previously
obtained results from Debiasi et al. [6], where the results in-
dicate that the intv data set might be acquired with more than
sensor, while the other subsets have been acquired with one
sensor. Actually, in this scenario, the impact of the evalu-
ated PRNU enhancement approaches on the outcome of the
applied forensic techniques is very low.

Unknown factors could have an impact on the quality of
the PRNU noise residuals and hence tamper the results, there-
fore further studies have to be conducted to be able to use
sensor fingerprints as an authentication measure for biomet-
ric systems.
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ABSTRACT

Identifying the source camera which acquired a given im-
age using the cameras PRNU is a well established task in im-
age forensics, known as camera or device identification. Since
digital image sensors are widely used to acquire biometric
data, it is eligible that this task can also be performed with
biometric sensors and the respective data. This has already
been studied in literature.

In this paper we focus on a slightly different task, which
consists in clustering images acquired with the same sensor
in a data set possibly containing images from an unknown
number of biometric sensors. Previous work showed unclear
results that have been difficult to interpret because of the low
quality of the extracted PRNU. In this paper we compare the
use of a PRNU enhancement technique to the use of special
uncorrelated images acquired with known biometric sensors
in this clustering context. We additionally propose exten-
sions of existing source sensor attribution techniques using
data from known sensors. Finally, the results of the enhance-
ment approaches and the results using the uncorrelated data
acquired with the known sensors are compared and an assess-
ment on whether multiple sensor instances have been used in
the different investigated data sets is given.

Index Terms— Biometric sensor forensics, PRNU,
Source sensor classification

1. INTRODUCTION

In the field of digital image forensics the photo response non-
uniformity (PRNU) of an imaging sensor emerged as an im-
portant tool for the realization of different forensic tasks like
device identification, device linking, recovery of processing
history and the detection of digital forgeries.

Slight variations of individual pixels during the conver-
sion of photons to electrons in digital image sensors are the
source of the PRNU, thus it is considered an intrinsic prop-
erty which is present in all digital imaging sensors. Every
digital image sensor adds this weak, noise-like pattern into
every image acquired with it. This pattern, which enables the
identification of this specific image sensor, is essentially an

unintentional stochastic spread-spectrum watermark that sur-
vives processing, such as lossy compression or filtering and it
meets essential criteria like dimensionality, universality, gen-
erality, stability and robustness [1] that make it well suited for
forensic tasks. The sensor identification can be performed at
different levels, as described by Bartlow et al. [2]: Technol-
ogy, brand, model, unit. In this work we focus on the unit
level, which corresponds to a differentiation of instances of
sensors of the same model and brand.

The PRNU fingerprint of a sensor can also be used to
improve a biometric systems security by ensuring the au-
thenticity and integrity of images acquired with a biometric
sensor. Previous work on this application by Höller et al. [3]
performed a feasibility study on the CASIA-Iris V4 database.
The differentiability of the sensors in the CASIA-Iris V4
database using PRNU fingerprints has been tested with the
conclusion, that the EERs and respective thresholds vary
highly. Other work by Kalka et al. [4] regarding the differen-
tiability of iris sensor showed varying results, while studies
conducted on fingerprint sensors by Bartlow et al. [2] showed
more satisfactory results. The question raised, that if PRNU
fingerprints are being applied as an authentication measure
for biometric databases, it is not clear where the poor differ-
entiation results for some sensors come from. On one hand it
was assumed that this high variation could be caused by the
correlated data that was used to generate the sensors PRNU
fingerprint, since all images investigated in [3] have a very
similar image content. On the other hand Kalka et al. [4]
concluded that the variations are caused by the absence of the
PRNU in saturated pixels (pixel intensity = 255) or under
saturated pixels (pixel intensity = 0) for different images in
the data sets. Furthermore Höller et al. [3] suspected that
multiple sensors may have been used for the acquisition of
the CASIA-Iris V4 subsets. If a PRNU fingerprint is gen-
erated using images of different sensors, it will match with
images acquired with all of these sensors and hence lead to
a decreased differentiability. An alternative method to deal
with the correlated data is to further separate the PRNU from
the image content. Since the PRNU covers the high frequency
components of an image, it is contaminated with other high
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frequency components from the images, such as edges. Li
[5] proposed an approach for attenuating the influence of
details from scenes on the PRNU so as to improve the device
identification rate of the identifier.

In the previously described sensor identification task the
PRNU fingerprints are usually pre-calculated using images
from sensors available to the investigators. However this is
not always the case in a realistic scenario, because the im-
ages under investigation could be part of an image set con-
taining images from an unknown number of different cam-
eras. Hence, before a source identification can be performed,
images acquired with the same camera need to be identified
and grouped together first. This task is known as source cam-
era attribution in an open set scenario [6]. This has already
been investigated by other researchers, who proposed Hierar-
chical Agglomerative Clustering (HAC) [7, 8] or Multi-Class
Spectral Clustering (MCSC) for this scenario [6] by formu-
lating the classification task as a graph partitioning problem.
These approaches rely on a known training or test set to de-
termine special criteria, e.g. the stop criterion for the clus-
tering. Because the ground truth for the data sets is usually
not available in this scenario, these approaches are not con-
sidered in this work. Other related work by Bloy [9] relies on
an iterative algorithm that consecutively “constructs” a sen-
sor fingerprint from images with similar PRNU using a pre-
calculated threshold function. Some of the source sensor attri-
bution techniques used in [10] are used in this work together
with the previously mentioned approach of Bloy [9].

In this paper we perform a source sensor attribution on
different biometric data sets to investigate if multiple sensors
have been used during the acquisition of the images in a com-
pletely blind manner without a priori knowledge of the data
sets described in Section 4. To enhance the quality of the ex-
tracted PRNU, we make use of a PRNU enhancing technique
to be able to reduce the influence of the image content on the
results as described in Section 2. Furthermore special uncor-
related data has been acquired with available sensors to gen-
erate PRNU fingerprints and the performance of using these
fingerprints is compared to the use of the PRNU enhancement
technique. To be able to use the uncorrelated data specifically
acquired with the available sensors, alterations of the previ-
ously mentioned techniques used in [10] are proposed in Sec-
tion 3. Section 5 explains the experimental set-up and in Sec-
tion 6 the experimental results are presented. Finally Section
7 concludes the paper.

2. PRNU EXTRACTION AND ENHANCEMENT

The extraction of the PRNU noise residuals is performed by
using the algorithm described by Fridrich [13]. For each im-
age I the noise residual WI is estimated as described in equa-
tion 1,

WI = I − F (I) (1)

whereF is a denoising function filtering out the sensor pattern
noise. We used the wavelet-based denoising filter as described
in Appendix A of [14], because it is producing good results
in filtering out the PRNU. The PRNU noise residual is then
normalized in respect to the L2-norm because its embedding
strength is varying between different sensors as explained by
[3]. As additional post processing steps a zero mean operation
has been applied to each extracted PRNU noise residual to
suppress artifacts with regular grid structure and a Wiener fil-
tering is performed in the Discrete Fourier Transform (DFT)
domain to suppress periodic artifacts in the calculated PRNU
fingerprints.

In this work we apply a PRNU enhancement approach
which aims at filtering out scene details using the follow-
ing idea: Scene details contribute to the very strong signal
components in the wavelet domain, so the stronger a signal
component in the wavelet domain, the more it should be at-
tenuated. For the enhancement the PRNU is transformed into
the discrete wavelet transform (DWT) domain, where an en-
hancement function is applied to the coefficients. The en-
hancement function ELi used corresponds to the Model 3 pro-
posed in [5]. After the application of the respective function,
the resulting coefficients are transformed back into the spatial
domain by performing an inverse DWT (IDWT).

The PRNU fingerprint K̂ of a sensor is then estimated
using a maximum likelihood estimator for images Ii with i =
1...N .

K̂ =

∑N
i=1W

i
II

i

∑N
i=1(I

i)2
(2)

To enhance the PRNU fingerprints a Wiener filter is applied
in the DFT domain, to suppress periodic artifacts as described
in [1].

The peak correlation energy (PCE), as proposed in [1], is
used to detect the presence of a PRNU fingerprint K̂ in an
Image I with

ρ[I,K̂] = PCE(Wi, IK̂) (3)

where ρ indicates the PCE score between the PRNU resid-
ual Wi of the image I and the fingerprint K̂ weighted by the
content of I .

3. SOURCE SENSOR ATTRIBUTION TECHNIQUES

For the source sensor attribution we use two different tech-
niques: the Blind Camera Fingerprinting and Image Cluster-
ing (BCFAIC) proposed in [9] and the Sliding Window Fin-
gerprinting (SWFP) proposed in [10]. Additionally we pro-
pose extensions of these methods for the case that the sensor is
available to the investigators and uncorrelated data is used to
generate the PRNU fingerprint (KSBCFAIC and KSSWFP),
which are described in the following section. These is done
by acquiring images with high saturation (but not over sat-
urated) and smooth content, according to Fridrich [1]. The
novel extensions of the existing methods are presented below.

Comparison of PRNU Enhancement Techniques to generate PRNU Fingerprints for Biometric
Source Sensor Attribution
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3.1. KSBCFAIC

In [9] Bloy proposed the Blind Fingerprinting and Image
Clustering (BFAIC) technique, which performs an agglomer-
ative clustering to construct PRNU fingerprints from a mixed
set of images, enabling identification of each images source
camera without any prior knowledge of source. This tech-
nique solely depends on a pre-calculated threshold function.
Using this threshold function t an automatic clustering algo-
rithm performs the following steps:

1. Randomly select pairs of images until a pair is found
whose noise correlation exceeds t(1); average the
PRNU of this pair to form a fingerprint.

2. Perform the first pass: for each remaining image, corre-
late the PRNU with the fingerprint. When the correla-
tion value exceeds t(# of images in fingerprint cluster),
average (cluster) it into the fingerprint. When n = 50
images have been averaged into the fingerprint or all
images have been tried, stop and go to Step 3.

3. Perform the second pass: loop over all the unclustered
images a second time, correlating with the current fin-
gerprint and adding those that exceed the threshold.
(Do not average more than 50 images into the finger-
print but allow more than 50 to be associated with the
fingerprint.)

4. Repeat Step 1. Give up when Step 1 has tried 1000
pairs without success.

To be able to use the uncorrelated data, the first step (Step 1)
is modified so that in the first iteration a PRNU Fingerprint is
calculated from the uncorrelated data and the selection of two
random images is skipped. After that each remaining image
is correlated to this fingerprint as described in Step 2 and 3.
After correlating all images, Step 1 is repeated as in the orig-
inal algorithm by selecting two random images. We call this
extension Known Sensor Blind Camera Fingerprinting and
Image Clustering (KSBCFAIC).

3.2. KSSWFP

The Sliding Window Fingerprinting (SWFP) technique pro-
posed in [11] consists of a so called “sliding window” with
an arbitrary but fixed size n that moves over a data set im-
age by image. This novel forensic technique uses an iterative
algorithm which performs the following steps:

1. Start at image with index i = 0.
2. Gather images inside the sliding window with size n,

hence the images with index i . . . i+ n.
3. Extract the PRNU noise residual for each image.
4. Compute a PRNU fingerprint using the images inside

the window.
5. Increment the index i by 1.
6. Repeat step 2 until all the images have been used to

calculate a PRNU fingerprint.
Moving the window over the whole data set yields a list of
PRNU fingerprints, which have been computed using sequen-

tial overlapping windows. For a data set containing m im-
ages, m − n PRNU fingerprints are generated. After gen-
erating the fingerprints, the similarity of a PRNU fingerprint
FPi from the iteration iwith all other fingerprints FPj where
i 6= j is computed by calculating the PCE score of each
fingerprint pair. This leads to a similarity matrix with size
(m− n)× (m− n) containing all the pairwise PCE scores.

For the Known Sensor Sliding Window Fingerprinting
(KSSWFP) a PRNU fingerprint is calculated with the un-
correlated data and then its PCE score to all sequentially
overlapping PRNU fingerprints generated from the data set
under investigation is calculated, which leads to a (m − n)
sized vector. High PCE scores in this vector indicate that the
current PRNU fingerprint matches to the known sensor used
to generate the uncorrelated data.

Data set name Sensor Modality

casiaLamp OKI Irispass-h Iris
stsmH100 2009 Irisguard H100 IRT Iris
stsmH100 2013 Irisguard H100 IRT Iris
stsmIPH 2009 OKI Irispass-h Iris
stsmIPH 2013 OKI Irispass-h Iris
casiaFP Digital Persona UrU4000 Fingerprint
stsmURU 1 Digital Persona UrU4000 #1 Fingerprint
stsmURU 2 Digital Persona UrU4000 #2 Fingerprint

Table 1: Data set name, sensor model and according biomet-
ric modality.

4. BIOMETRIC DATA SETS

The data sets used in this paper consist of images for two
different biometric modalities, iris and fingerprints, and are
illustrated in table 1. The casiaLamp data set corresponds
to the CASIA-Iris-Lamp data set present in the CASIA-Iris
V4 database 1. The casiaFP data set corresponds to the CA-
SIA Fingerprint V5 database 1. The remaining data sets have
not been published, however the iris and fingerprint data sets
starting with “stsm” and ending with “2013” have been ac-
quired during a COST STSM as described in [12], while data
sets ending with “2009” have been provided by the host insti-
tution during the STSM. The ground truth on the number of
sensor instances used for the acquisition is only known for the
stsmH100 2013, stsmIPH 2013, stsmURU 1 and stsmURU 2
data sets, which consists of 1 sensor instance. For all other
data sets only the sensor model is known, but not how many
instances of this model have been used.

All images are 8 bit grey-level JPEG files. The iris data
has been collected under near infrared illumination, while the
fingerprint sensors used red LEDs. The uncorrelated data
used in this work to acquire the PRNU fingerprints for the
known sensors has been acquired according to [12] for the
sensors: OKI Irispass-h, Irisguard H100 IRT, Digital Persona

1CASIA Iris Image Database and CASIA Fingerprint V5 Database,
http://biometrics.idealtest.org/
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BCFAIC ELi casiaLamp stsmH100 2009 stsmH100 2013 stsmIPH 2009 stsmIPH 2013 casiaFP stsmURU 1 stsmURU 2

Images 16213 908 1451 1620 970 19958 1000 1000

Total partitions 7 2 1 3 3 3 2 2
Partitions > 500 2 1 1 1 1 1 1 1
Partitions < 10 3 1 0 1 1 1 1 0

KSBCFAIC casiaLamp stsmH100 2009 stsmH100 2013 stsmIPH 2009 stsmIPH 2013 casiaFP stsmURU 1 stsmURU 2

Total partitions 8 2 1 3 3 3 / 3 2 2
Partitions > 500 3 1 1 1 1 2 / 2 1 1
Partitions < 10 4 0 0 1 1 0 / 0 0 0

KSBCFAIC ELi casiaLamp stsmH100 2009 stsmH100 2013 stsmIPH 2009 stsmIPH 2013 casiaFP stsmURU 1 stsmURU 2

Total partitions 7 3 1 3 3 3 / 3 2 2
Partitions > 500 2 1 1 1 1 2 / 2 1 1
Partitions < 10 2 2 0 2 2 0 / 0 0 0

Table 2: Clustering Results of the BCFAIC technique with applied ELi PRNU enhancement (top) compared to the KSBCFAIC
technique using uncorrelated data (middle) and a combination of the ELi PRNU enhancement and the use of uncorrelated data
for KSBCFAIC (bottom).

UrU4000 #1 and Digital Persona UrU4000 #2. To obtain
high-quality PRNU fingerprints according to Fridrich [1], im-
ages with uncorrelated content and high saturation have been
acquired. Irisguard H100 IRT sensor had no built-in quality
assessment for the acquired images, hence the uncorrelated
could be acquired as desired. For all other sensors the quality
assessment partially prevented to acquire such images.

5. EXPERIMENTS AND SET-UP

All the data sets described in section 4 are investigated inde-
pendently. Since the image size is varying between the data
sets, the PRNU noise residual of each image is extracted from
a single patch with a size of 256 × 256 pixels from the im-
age centre. First we compare the use of PRNU enhancements
for the ordinary source attribution techniques, BCFAIC and
SWFP, to the extended techniques KSBCFAIC and KSSWFP
without any further enhancements, to evaluate if the use of
uncorrelated data helps to clarify the results for known sen-
sors. Second, the use of PRNU enhancements and uncorre-
lated data are combined.

After the extraction of the PRNU noise residuals the en-
hancement of Li [5] (denoted as ELi) is applied to the PRNU
as described in section 2. A threshold value of α = 6 was
used for the enhancement function for both enhancement ap-
proaches. The Wiener filtering in DFT is applied after each
PRNU fingerprint calculation, while the zero mean operation
is applied after the PRNU extraction for each image.

6. RESULTS

In the following section we first compare the use of PRNU
enhancements for the ordinary source attribution techniques,
BCFAIC and SWFP, to the extended techniques KSBCFAIC
and KSSWFP without any further enhancements and after-
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Fig. 1: Comparison of SWFP and KSSWFP for the various
data sets: FP #x denotes the similarity of the PRNU finger-
print with iteration x to all other fingerprints for the SWFP
technique, FP KS denotes the similarity of the PRNU finger-
print generated from uncorrelated data in the KSSWFP tech-
nique.
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wards, we compare the results of using PRNU enhancements
and uncorrelated data in combination to the previous re-
sults. For the casiaFP data set it was not clear which of the
two sensors, Digital Persona UrU4000 #1 or Digital Persona
UrU4000 #2, has been used for the data acquisition, hence the
uncorrelated data from both sensors was used independently
for the experiments.

6.1. Uncorrelated data versus PRNU enhancements

First the Blind Camera Fingerprinting and Image Clustering
(BCFAIC) using the ELi technique was applied to the differ-
ent data sets and compared to the KSBCFAIC technique using
data from the sensors assumed to have been used to acquire
the data as shown in table 2. These techniques create clusters
of associated images (images with a high PCE score) and par-
tition the data sets. The resulting partitions are reflecting the
number of distinct sensors used in the data set. The results do
not show any clear improvement of using uncorrelated data
for the sensors in respect to the PRNU enhancement, almost
all data sets show one cluster containing almost all of the im-
ages and a small number of small clusters containing only a
few images. Only the casiaLamp and casiaFP data sets show
each two partitions both containing a large amount of images.
This could be an indicator that the dataset is containing im-
ages from multiple sensors.

The (Known Sensor) Sliding Window Fingerprinting
(KS)SWFP moves a window with a defined size over the
data image after image and a PRNU fingerprint from the data
within this window is calculated in each step. The presence
of images from multiple sensors in the data set should express
in a sudden increase or decrease of the correlation scores. If
only images from one sensor are present in the data set, the
correlation scores among all images should be quite stable
around a certain level or have at least a PCE score of 50 or
above. The results for the casiaLamp and casiaFP data set
show many jumps in the PCE scores, which could indicate
the presence of multiple sensors. It is to note that the PRNU
fingerprint generated produces very low PCE scores (around
0), meaning that the uncorrelated data has not been acquired
with the same sensor. The use of uncorrelated data does not
lead to any improvement for the score interpretation here.
Contrary to the previous results, for both stsmH100 and both
stsmIPH data sets, the results using the uncorrelated data
show a high improvement in the PCE scores, which leads to
the assumption that this sensor was exclusively used for their
acquisition. For the remaining stsmURU data sets the scores
have a high variation and the use of uncorrelated data does
not help to clarify the scores either because the results are
very similar to the PRNU enhancement results.

6.2. Combination of Uncorrelated data and PRNU en-
hancement

As it can be seen in table 2, the results of combining the ELi
PRNU enhancement and uncorrelated data acquired also used
to acquire the images in the respective data sets almost does
not change the results for the KSBCFAIC technique. The only
change that can be seen is that it shifts some images from
the clusters containing between 500 and 10 images towards
the larger clusters, which leads to a higher amount of small
clusters with less than 10 images in some cases.
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Fig. 2: Comparison of KSSWFP with and without the use of
the ELi enhancement: FP KS denotes the use of uncorrelated
data only, while FP KS+Enh denotes the additional use of the
ELi enhancement. The two numerations for casiaFP denote
the sensors for the uncorrelated data: 1 - UrU4000 #1, 2 -
UrU4000 #2.

The results of the combination for the KSSWFP technique
show highly variable very low PCE scores for the casiaLamp
and casiaFP data sets, from which no conclusion on the num-
ber of sensors can be made. The only assessment that can
be done is that the uncorrelated data must have been acquired
with a different sensor than the images in the data sets, since
the PCE scores are all very low. For the stsmH100 2009 the
PCE scores drop quite drastically after the combination, but
they remain at a level where one could state that the images
in the data set have been acquired using the sensor to acquire
the uncorrelated data. Both stsmIPH data sets and also the
stsmH100 2013 also show a decrease in the PCE scores, but
not as radical as in the stsmH100 2009 data set. The stsmURU
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data sets also show variable PCE scores ranging from very
low to very high values, which implies the presence of mul-
tiple sensors. Since both data sets have been acquired using
a single sensor instance only, as noted in section 4, the ex-
tracted PRNU must have a low quality and hence distort the
results. The combination of PRNU enhancement and uncor-
related data also lowers the PCE scores for these two data
sets.

7. CONCLUSION

In this paper we compared the use of PRNU enhancement
techniques to the use of uncorrelated data for PRNU finger-
print generation in the context of sensor attribution. We in-
vestigated data from biometric sensors of two different bio-
metric modalities, iris and fingerprint, where some of the data
sets have been known to be acquired with a single sensor in-
stance, while this was not known for others. We additionally
proposed novel extension, KSBCFAIC and KSSWFP, for two
existing source attribution techniques and compared them to
the original techniques. Summing up the results of the com-
parison between PRNU enhancement and uncorrelated data,
it can be stated that for some sensors, like the OKI Irispass-h
and Irisguard H100 IRT iris sensors, the use of uncorrelated
data improved the similarity between images of the data set
and the PRNU fingerprint of the sensor, which shows up in
the results of the KSSWFP technique. For the other data sets
either the sensor was different than the one used to acquire
the images in the data set (casiaLamp), or, especially for the
fingerprint sensors, the extracted PRNU did not have a suffi-
cient quality to ensure reliable results. Further studies have to
be performed in this regard, since previous results from liter-
ature showed that the PRNU extracted for fingerprint sensors
has a comparable quality to the one extracted from sensors of
other biometric modalities.
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Abstract: Identifying the source camera of a digital image using the photo response non-uniformity (PRNU) is known as camera
identification. Since digital image sensors are widely used in biometrics, it is natural to perform this investigation with biometric
sensors. In this study, the authors focus on a slightly different task, which consists in clustering images with the same source
sensor in a data set possibly containing images from multiple unknown distinct biometric sensors. Previous work showed
unclear results because of the low quality of the extracted PRNU. They adopt different PRNU enhancement techniques together
with the generation of PRNU fingerprints from uncorrelated data in order to clarify the results. Thus they propose extensions of
existing source sensor attribution techniques which make use of uncorrelated data from known sensors and apply them in
conjunction with existing clustering techniques. All techniques are evaluated on simulated data sets containing images from
multiple sensors. The effects of the different PRNU enhancement approaches on the clustering outcome are measured by
considering the relation between cohesion and separation of the clusters. Finally, an assessment on whether the PRNU
enhancement techniques have been able to improve the results is given.

1 Introduction
Investigations in the field of digital image forensics usually
comprise forensic tasks, such as device identification, device
linking, recovery of processing history and the detection of digital
forgeries. The photo response non-uniformity (PRNU) of an
imaging sensor has emerged as an important forensic tool for the
realisation of these tasks. Slight variations among individual pixels
during the conversion of photons to electrons in digital image
sensors are considered as the source of the PRNU; thus, it is an
intrinsic property which forms an inherent part of all digital
imaging sensors and their output, respectively. All digital image
sensors cast this weak, noise-like pattern into each and every image
they capture.

This systemic and individual pattern, which enables the
identification of the image sensor itself, is essentially an
unintentional stochastic spread-spectrum watermark that survives
processing, such as lossy compression or filtering. Essential criteria
like dimensionality, universality, generality, stability and
robustness [1] make it well suited for forensic tasks, as the ones
mentioned before. The identification of a digital image sensor can
be performed at different levels as described by Bartlow et al. [2]:
technology, brand, model, unit. In this work, we focus on the unit
level, which corresponds to a distinction of sensor instances of the
same model and brand. For the purpose of sensor identification, a
so called PRNU fingerprint can be calculated from multiple images
of the same sensor, which is considered to be more robust for this
task than a single image.

Besides the application of the PRNU for forensic tasks in
general, it can also be useful in a biometric context. A biometric
sensor's PRNU can also be used to improve a biometric system's
security by ensuring the authenticity and integrity of images
acquired with the biometric sensor deployed in the system.
Previous work by Uhl and Höller [3] performed a feasibility study
on the CASIA-Iris V4 database. They investigated the
differentiability of the sensors in the CASIA-Iris V4 database by
exploiting their PRNU and concluded that the equal error rates
(EERs) and respective thresholds fluctuate considerably, depending
on the sensor. Other work by Kalka et al. [4] regarding the
differentiability of iris sensor showed varying results as well, while

studies conducted on fingerprint (FP) sensors by Bartlow et al. [2]
showed more satisfactory results.

The question raised, that if PRNU FPs are being applied as an
authentication measure for biometric databases, the reason for the
poor differentiation results for some sensors has to be investigated.
On the one hand, it was assumed that this high variation could be
caused by the correlated data that was used to generate the sensor's
PRNU FP, since all images investigated in [3] have a very similar
image content. On the other hand, Kalka et al. [4] concluded that
the variations are caused by the absence of the PRNU in saturated
pixels (pixel intensity = 255) or under saturated pixels (pixel
intensity = 0) for different images in the data sets. Furthermore, Uhl
and Höller [3] suspected that multiple sensors may have been used
for the acquisition of the CASIA-Iris V4 subsets. If a PRNU FP is
generated using images of different sensors, it will match images
acquired with all of these sensors and hence lead to a decreased
differentiability. Other factors that negatively have negative effects
on the differentiability are non-unique artefacts (NUAs) [5] and
other high frequency components of the images, such as textured
image content or edges. Several techniques to attenuate PRNU
contaminations have been proposed in the literature [6–12].

For the previously mentioned sensor identification task the
PRNU FPs are usually pre-calculated using images from sensors
available to the investigators. However, when we think about a
realistic scenario, this availability is not always given. The images
under investigation could be part of an image set containing images
from an unknown number of different cameras. Before an image
source identification can be performed in this scenario, images
acquired with the same camera need to be identified and grouped
together first. This task is known as source camera attribution in an
open set scenario [13] or source camera clustering. Several
clustering techniques have already been suggested by other
researchers, who performed hierarchical agglomerative clustering
[14, 15] or multi-class spectral clustering (MCSC) [13] for this
scenario by formulating the classification task as a graph
partitioning problem. Other related work by Bloy [16] relies on an
iterative algorithm that progressively agglomerates images with
similar PRNU using a pre-calculated threshold function to generate
a PRNU FP for the sensor. Some of the source sensor attribution
techniques used in [17] are used in this work together with the
previously mentioned approach of Bloy [16] and the source camera
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attribution techniques proposed in [14, 15, 18]. The size of the
extracted PRNU for consumer cameras used for source sensor
attribution found in the literature ranges from a very small size of
128 × 128 [15], 256 × 512 [14], 640 × 480, [19] to full size images
of several megapixels, where the most common size appears to be
1024 × 1024 [16, 20]. The results reported for consumer cameras
show that the size of the extracted PRNU plays a major role for the
performance of the various techniques, where plausible results can
be obtained with PRNU patches larger than 1024 × 1024 pixels in
general and 256 × 512 pixels using additional PRNU
enhancements.

In this work, we conduct a source sensor attribution on different
biometric data sets from different biometrics modalities, which
aims at determining whether the images in the data sets described
in Section 4 have been acquired using multiple instances of the
same sensor model. The investigation is conducted without taking
any a priori knowledge about the sensors into consideration. To
improve the quality of the extracted PRNU, we make use of
various PRNU enhancement techniques which aim at attenuating
undesired artefacts in the extracted PRNU as described in Section
2. Furthermore, additional uncorrelated data acquired with the
same sensors as utilised to acquire the data sets is used for the
generation of high-quality PRNU FPs. The performance of using
the high-quality PRNU FPs is compared to the application of the
various PRNU enhancement techniques. We propose novel
extensions of the previously mentioned source sensor attribution
techniques in Section 3 to be able to make use of the uncorrelated
data. Section 5 explains the experimental set-up and describes the
measure used for the evaluation of the clustering outcome and also
contains the discussion of the experimental results. Finally, Section
6 concludes the paper.

This work is an extended version of a paper previously
published in [21]. We extend our previous work by proposing
additional source sensor attribution techniques that make use of
uncorrelated data from known sensors and measure their
performance on simulated data sets containing images from
multiple sensors and different PRNU sizes as well as on existing
biometric data sets mostly containing an unknown number of
source sensors. Furthermore a quantitative assessment on the
effects of using data from known sensors compared to various
PRNU enhancement approaches and the combination of both of
them is given based on a metric measuring the cohesion and
separation of the clustering result for each technique.

2 PRNU extraction and enhancement
The extraction of the PRNU noise residuals is performed by
applying Fridrich's approach [22]. For each image I the noise
residual WI is estimated as described in the following equation:

WI = I − F(I) (1)

where F is a denoising function filtering out the sensor pattern
noise. In this work, we made use of four different denoising
algorithms: The two wavelet-based denoising filters proposed by
Lukas et al. in Appendix A of [23] (FLuk) and Mihcak et al. in [24]
(FMih), the BM3D denoising filter proposed by Dabov et al. [6]
(FBM3D) and the FSTV algorithm proposed by Gisolf et al. [9]
(FFSTV).

After the PRNU extraction the noise residual WI may be
contaminated with undesired artefacts. To attenuate their effects
different PRNU enhancement techniques have been proposed in the
literature. Zero-meaning of the noise residuals's pixel rows and
columns (ZM) removes NUAs with regular grid structures as
described in [22]. Li [7] developed a technique for attenuating the
influence of scene details or textured image content on the PRNU
so as to improve the device identification rate of the identifier. This
approach is referred to as Li. According to Lin and Li [12] some
components of the extracted PRNU noise residual are severely
contaminated by the errors introduced by denoising filters. They
proposed a filtering distortion removal (FDR) algorithm that
improves the quality of WI by abandoning those components. The
extracted and enhanced PRNU noise residual for a sample image
using the various denoising filters and PRNU enhancements can be
seen in Fig. 1. 

Finally, the PRNU noise residual WI is normalised with respect
to the L2-norm because its embedding strength is varying between
different sensors as explained by Uhl and Höller [3].

The PRNU FP K^  of a sensor is then estimated using a
maximum-likelihood estimator for images Ii with i = 1, …, N.

K^ =
∑i = 1

N WI
i Ii

∑i = 1
N (Ii)

2 (2)

PRNU FPs can be contaminated with NUAs as well. To further
enhance the quality of PRNU FPs a Wiener filtering (WF) applied
in the discrete Fourier transform domain is proposed in [1] to
suppress periodic artefacts. Lin and Li [11] proposed a novel
scheme named spectrum equalisation algorithm (SEA), where the
magnitude spectrum of the PRNU FP K^  is equalised through
detecting and suppressing the peaks according to the local
characteristics, aiming at removing the interfering periodic
artefacts.

A method to detect the presence of a specific PRNU FP in an
image which has not been geometrically transformed is the
normalised cross correlation (NCC), which is defined as

NCC(A, B)

=
∑w = 1

W ∑h = 1
H (A(w, h) − Ā)(B(w, h) − B̄))

∑w = 1
W ∑h = 1

H (A(w, h) − Ā)2 ∑w = 1
W ∑h = 1

H (B(w, h) − B̄)2

(3)

A and B are two matrices of the same size w × h and Ā and B̄ are
their respective mean. The mean of a matrix X with size w × h is
defined as

X̄ = 1
WH ∑

w = 1

W

∑
h = 1

H
X(w, h) (4)

The NCC is used to detect the presence of a PRNU FP K^  in an
image I with

ρ
[I, K̂]

= NCC(WI, IK^ ) (5)

Fig. 1  Comparison of different denoising filters and PRNU enhancements applied to a cropped iris image from the H100_2013 data set (a) Original image,
(b) FLuk + ZM, (c)FLuk + Li, (d) FBM3D, (e) FFSTV, (f)FMih + FDR
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where ρ indicates the correlation between the noise residual WI of
the image I and the PRNU FP K^  weighted by the image content of
I.

On the other hand, the NCC can also be used to measure the
similarity of two PRNU noise residuals W^

I and W^
J from two

sensors Si and S j, as shown in the following equation:

ρ
[ŴI, ŴJ]

= NCC(W^
I, W^

J) (6)

Fridrich [1] proposed an alternative technique for measuring the
similarity of two PRNU noise residuals or a PRNU noise residual
and a PRNU FP, the peak correlation energy (PCE), which has
proven to be yield more stable results in a scenario where the
images have been subject to geometrical transformations, such as
rotations or scaling. Since all images used in this work have not
undergone any of these transformations and Kang et al. showed
that PCE by definition may increase the false positive rate in [25],
we decided to use the NCC over the PCE.

3 Source sensor attribution techniques
In this work, we consider various techniques for the source sensor
attribution task, where we apply various existing source attribution
techniques and propose a novel one. We furthermore propose novel
extensions for these existing methods for the case that the sensor is
available to the investigators and uncorrelated data is used to
generate the PRNU FP. The uncorrelated data is generated by
acquiring images with high saturation (but not over saturated) and
smooth content, according to Fridrich [1]. All the mentioned
clustering techniques generate a list of clusters, where the
association of each image in the investigated data set to a cluster
and thus a cluster label is obtained. The novel extensions of the
existing methods together with a brief explanation of the original
techniques are given in the following section.

3.1 Known sensor blind camera fingerprinting and image
clustering ((KS)BCF)

In [16] Bloy proposed the blind camera fingerprinting and image
clustering (BCF) technique, which performs an agglomerative
clustering to construct PRNU FPs from a mixed set of images,
enabling identification of each image's source camera without any
prior knowledge of source. This technique solely depends on a pre-
calculated threshold function. Using this threshold function t an
automatic clustering algorithm performs the following steps:

1. Randomly select pairs of images until a pair is found whose
noise correlation exceeds t(1); average the PRNU of this pair
to form a FP.

2. Perform the first pass: for each remaining image, correlate the
PRNU with the FP. When the correlation value exceeds t(# of
images in FP cluster), average (cluster) it into the FP. When n 
= 50 images have been averaged into the FP or all images have
been tried, stop and go to Step 3.

3. Perform the second pass: loop over all the unclustered images
a second time, correlating with the current FP and adding those
that exceed the threshold. (Do not average more than 50
images into the FP but allow more than 50 to be associated
with the FP.)

4. Repeat Step 1. Stop when Step 1 has tried 1000 pairs without
success.

To be able to use the uncorrelated data, the first step (Step 1) is
modified so that during the first iteration a PRNU FP is calculated
from the uncorrelated data and the selection of two random images
is skipped. After this modified step each remaining image is
compared to this FP as described in Steps 2 and 3. After comparing
all images, Step 1 is repeated as in the original algorithm by
selecting two random images. We call this extension Known Sensor
Blind Camera Fingerprinting and Image Clustering (KSBCF), as
noted in the original paper [21].

3.2 Known sensor sliding window fingerprinting ((KS)SWx)

The Sliding Window Fingerprinting (SW) technique proposed in
[26] consists of a so called ‘sliding window’ with an arbitrary but
fixed size n that moves over a data set image by image. This
forensic technique uses an iterative algorithm which performs the
following steps:

1. Start at image with index i = 0.
2. Gather images inside the sliding window with size n, hence the

images with index i, …, i + n.
3. Extract the PRNU noise residual for each image.
4. Compute a PRNU FP using the images inside the window.
5. Increment the index i by 1.
6. Repeat step 2 until all the images have been used to calculate a

PRNU FP.

Moving the window over the whole data set yields a list of PRNU
FPs, which have been computed using sequential overlapping
windows. For a data set containing m images, m − n PRNU FPs are
generated. After generating the FPs, the similarity of a PRNU FP
FPi from the iteration i with all other FPs FP j where i ≠ j is
computed by calculating the NCC score of each FP pair. This leads
to a similarity matrix with size (m − n) × (m − n) containing all the
pairwise NCC scores. The NCC scores of the PRNU FP
comparisons where the FPs contain at least one common image are
set to 0 because their correlation score would be much higher than
average and introduce a bias to the clustering.

In [26], the number of clusters is determined in an explorative
way by observing changes of the correlation scores. This leads to a
rather vague estimation of the cluster structure in the data set.
Hence, to assess the underlying cluster structure in a quantitative
manner, we propose to apply different existing clustering
techniques to cluster the obtained similarity matrix of pairwise
PRNU FP comparisons. In this work, we applied the unsupervised
clustering of digital images (UCDIs) [14], the fast image clustering
(FIC) [15] and finally the MCSC algorithm [18]. The lower case
‘x’ in the technique name indicates the applied clustering
technique: U for UCDI, F for FIC and M for the MCSC technique.

These techniques yield a list of clusters and the PRNU FPs
associated to each cluster. To obtain a cluster association for each
image in the data set instead of each generated PRNU FP, we
perform a majority voting based on the images used to generate
each PRNU FP and the cluster association: Each image is used for
the generation of multiple PRNU FPs because of the sliding
window property, hence we count the cluster association frequency
of the PRNU FPs, which contain the specific image, and select the
highest cluster label occurrence as the final decision for the image.
This gives a cluster label for each image in the data set.

For the Known Sensor Sliding Window Fingerprinting
(KSSWx) a PRNU FP is calculated with the uncorrelated data and
is added to the list of PRNU FPs generated from the data set. This
leads to a similarity matrix with size (m − n + 1) × (m − n + 1).
This similarity matrix is again clustered using the previously
mentioned UCDI, FIC and MCSC clustering techniques.

3.3 Known sensor K-means clustering ((KS)KM)

For this source sensor clustering technique Lloyd's K-means
clustering algorithm [27] (KM) has been adopted, as previously
proposed in [17]. K-means is a vector quantisation method for
cluster analysis used in data mining that partitions n objects into k
clusters. The centroid for each cluster is the point to which the sum
of distances from all objects in that cluster is minimised which
leads to a set of clusters that are as compact and well-separated as
possible. We define the PRNU noise residuals of the images in the
investigated data set as the n objects to cluster, while k is the
number of different sensors (clusters). Due to the number of
sensors for some data sets is unknown, we repeated the clustering
for k = 1, …, 5 with the assumption that not more than five sensors
have been used. This limitation is not mandatory and can be
extended if necessary, but increases the computational effort
significantly.

258 IET Biom., 2017, Vol. 6 Iss. 4, pp. 256-265
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

Chapter 3. Publications

26



We propose an extension of this technique, the Known Sensor
K-Means Clustering (KSKM), to be able to make use of the
uncorrelated data. We first generate a PRNU FP from the
uncorrelated data, which is then added to the set of PRNU noise
residuals n which is clustered. In addition, we select this generated
PRNU FP as starting point for the algorithm together with k − 1
random other samples from the data set. We repeat the K-means
algorithm five times with the computed PRNU FP and k − 1
randomly chosen samples as starting points to avoid the possibility
to get stuck in local minima and the clustering of the best run out
of these five is selected as the final result.

4 (Biometric) data sets
First of all, we generated simulated data sets to examine the
performance of the source sensor attribution techniques presented
in Section 3. These data sets all consist of images from three
distinct sensors from a popular Sensor Forensics benchmark
database, the Dresden Image Database [28]: Agfa DC-830i,
Panasonic DMC-FZ50 and Nikon D200. The data sets all contain
randomly selected images from each sensor, where we shuffled
chunks of 50 images to obtain a random order. We then generated
three different data set types based on the frequency of images
from each of the three sensors:

• SIMeven: 150 images from each sensor.
• SIMuneven: 200 images from the first, 150 from the second and

100 from the third sensor.
• SIMdominant: 350 images from one sensor and 50 from the two

others each.

We repeated the data set generation ten times for each of the three
simulated data set types, where the sensors’ order for the image
distribution is determined randomly each time, e.g. the sensors
providing the most images in the SIMdominant data set was chosen
randomly each time.

The existing biometric data sets under investigation in this work
consist of images for two different biometric modalities, iris and
FPs, which are illustrated in Table 1 together with the simulated
ones. These biometric data sets have not been published; however,
the iris data sets ending with ‘2013’ and FP ones ‘URU_1’ and
‘URU_2’ have been acquired during a COST Short-Term Scientific
Mission (STSM) as described in [29], while data sets ending with

‘2009’ have been provided by the host institution during the
mentioned COST STSM. The ground truth on the number of sensor
instances used for the acquisition is only known for the
H100_2013, IPH_2013, URU_1 and URU_2 data sets, which
consists of one sensor instance. For all other data sets only the
sensor model is known, but not how many instances of this model
have been used. 

All images in this work are 8 bit grey-level JPEG files. The iris
data has been collected under near infrared illumination, while the
FP sensors used red LEDs. The uncorrelated data used in this work
to acquire the PRNU FPs for the known sensors has been acquired
according to [29] for the following sensors: OKI Irispass-h,
Irisguard H100 IRT, Digital Persona UrU4000 #1 and Digital
Persona UrU4000 #2.

To obtain high-quality PRNU FPs as described by Fridrich [1],
images with uncorrelated content and high saturation have been
acquired. In some cases the sensor's quality assessment prevented
the acquisition of such images, therefore the acquisition was
performed in a best effort approach by varying the image content
as much as possible to gain a ‘cleaner’ PRNU FP when averaging
the images. Fig. 2 shows exemplary iris and FP images from the
existing data sets described above and uncorrelated data acquired
with the same sensor. It points out a successful acquisition for the
Irisguard H100 IRT sensor, and a less successful one for the
Digital Persona UrU4000 #2 sensor. 

5 Experimental set-up and results
In the following section, we discuss the results of applying the
various source sensor attribution techniques illustrated in Section 3
to the data sets in Section 4. First, we explain the general
experimental set-up, which contains a description of the
methodology and parameters valid for all experiments. After that
we characterise the different experiments conducted in this work,
which are divided into two different Sections 5.1 and 5.2.

All the data sets described in Section 4 are investigated
independently. The PRNU noise residuals are extracted from a
square patch located in the centre of each image. After the
extraction the PRNU noise residuals are enhanced using one or
more of the techniques mentioned in Section 2. For all clustering
techniques where a PRNU FP is generated, in addition PRNU FP
enhancements are also applied. The configuration of both

Table 1 List of simulated and existing biometric data sets used in this work with additional information. ‘SI’ denotes the number
of distinct sensor units used for acquiring the images in each data set
Type Data set name Number of images Sensor model Image size SI Sensor type
simulated SIMeven 450 Various Consumer Cameras ≥ 3264 × 2448 3 digital camera

SIMuneven 450 Various Consumer Cameras ≥ 3264 × 2448 3 digital camera
SIMdominant 450 Various Consumer Cameras ≥ 3264 × 2448 3 digital camera

existing H100_2009 908 Irisguard H100 IRT 640 × 480 ? iris sensor
H100_2013 1451 Irisguard H100 IRT 640 × 480 1 iris sensor
IPH_2009 1620 OKI Irispass-h 640 × 480 ? iris sensor
IPH_2013 970 OKI Irispass-h 640 × 480 1 iris sensor

URU_1 1000 Digital Persona UrU4000 #1 328 × 356 1 FP sensor
URU_2 1000 Digital Persona UrU4000 #2 328 × 356 1 FP sensor

 

Fig. 2  Sample images from data sets with additionally acquired uncorrelated data for the corresponding sensor. The ‘Digital Persona UrU4000’ sensor
prevented the acquisition of images without containing at least a partial imprint (a) Image from H100_2009, (b) Uncorrelated data acquired with Irisguard
H100 IRT iris sensor, (c) Image from URU_2, (d) Uncorrelated data acquired with Digital Persona UrU4000 #2 FP sensor
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enhancement types is described at the beginning of each
experiment later on.

For the (KS)BCF and (KS)SWx only clusters containing ten or
more images are considered for the final number of clusters results.
These techniques are prone to generate a few very small clusters
for small PRNU sizes which would have a strong impact on the
results because of the overall rather small number of clusters and
furthermore, in the investigated biometric scenario, the case that
such a small number of images in the data sets is acquired with a
different sensor is highly unlikely.

In order to be able to quantitatively assess the clustering of the
data sets and reveal differences caused by the various PRNU
enhancement techniques the mean silhouette value (MSV) by
Rousseeuw [30] has been calculated for each source sensor
attribution techniques clustering outcome.

The silhouette value for each point is a measure of how similar
that point is to points in its own cluster, when compared to points
in other clusters, hence it is a measure between intra- and inter-
cluster distances. This technique does not rely on any ground truth
information about the clustering of the investigated data set and is
therefore well suited for our investigation because the ground truth
is not known for all data sets used in this work, which can be seen
in Table 1. The result for a single cluster, or k = 1, has been
determined by calculating the pairwise NCC between all point
combinations i and j, where i ≠ j, and then calculating the mean
correlation over all points. For all k ≥ 2 the MSV for the ith point,
Si, is defined as

MSV = 1
N ∑

n = 1

N bi − ai
max (ai, bi)

(7)

where N is the number of noise residuals, ai is the average distance
from the ith point to the other points in the same cluster as i
(cohesion), and bi is the minimum average distance from the ith
point to points in a different cluster (separation), minimised over
all clusters. The silhouette value ranges from −1 to +1. A high
silhouette value indicates that a point i is well-matched to its own
cluster, and poorly-matched to neighbouring clusters. If most
points have a high silhouette value, then the clustering solution is
considered to be an appropriate solution. On the other hand, if
many points have a low or negative silhouette value, then the
clustering solution may have either too many or too few clusters.

This concludes the general experimental set-up and we will now
continue with the discussion of the experimental results for the
Simulated Data Sets.

5.1 Simulated data sets

The performance evaluation of the source sensor attribution
techniques is an important part of this work, since the effects of the
advanced PRNU enhancement techniques evaluated later are
assessed using the clustering outcome of the different techniques.
Hence we applied the various clustering techniques on the
simulated data sets SIMeven, SIMuneven and SIMdominant. The
PRNU is extracted with the basic ZM + WF configuration, which
uses the FLuk denoising filter, enhances the noise residuals with
(ZM) and the PRNU FPs with ZM + WF according to [22].

We measure the performance of the proposed source sensor
attribution techniques on the simulated data sets for varying PRNU
patches (square size): 64, 128, 256, 512, 768, 1024, 1536 and 2048
pixels. In this case, the resulting scores and the number of clusters
are averaged over the ten different randomly generated data sets of
each data set type (SIMeven, SIMuneven and SIMdominant)
separately.

For the simulated data sets, where the ground truth on the
source sensor for each image is known, we compute the V-measure
(VM) [31] score for the clustering outcome, which is defined as
harmonic mean of homogeneity (h) and completeness (c) as shown
in the following equation:

VM = 2 ∗ h ∗ c
h + c , h = 1 − H(C |K)

H(C) , c = 1 − H(K |C)
H(K) (8)

The homogeneity h measures whether each cluster exclusively
contains images from the same sensor, while the completeness c
measures if all images belonging a sensor have been assigned to
the same cluster. H(C |K) refers to the conditional entropy of the
different classes for the given cluster associations and H(C)
denotes the entropy of the classes. Further details can be found in
the corresponding paper [31].

First of all we have a look at how the size of the extracted
PRNU affects the performance. Since the simulated data sets
contain higher resolution images than the biometric data we are
able to test various extracted PRNU sizes from 64 × 64 to
2048 × 2048 pixels. The results show that the VM scores increase
proportionally with the PRNU size for some techniques, where
BCF shows a steady increase in clustering performance with
increasing PRNU size, while for KM the performance increases
until a certain point and then stagnates. The stagnation of the VM
scores after a certain PRNU size occurs due to the technique's
inability to further exploit the additional data for the differentiation
of the sensors in the data. Thus it reaches a point where additional
data does not change the cluster association of the images.

The MSV scores in general increase with larger PRNU size,
except for the KM technique. The decreasing MSV scores for the
KM technique with larger PRNU sizes can be explained by how
the MSV scores are calculated. For the MSV scores we consider
pairwise Euclidean distances between the PRNU noise residuals,
which become more and more inaccurate with increasing
dimensionality (i.e. PRNU size), as shown in [32]. Due to the
cluster association staying the same for larger PRNU sizes, the
MSV scores decrease because of this effect in higher dimensions.
For the SWx techniques the MSV score increases with higher
dimension because of their inability to cluster the data properly.

For the SWx techniques, the VM performance is consistently
bad across all tested PRNU sizes. The reason for this are the very
low homogeneity scores for the SWU, the very low completeness
scores for SWF and while SWM shows the best VM score of the
three, but suffers from both mediocre homogeneity and
completeness scores. The VM and MSV results for BCF, KM and
SWF are illustrated in Fig. 3. 

Due to the limit of the biometric data to extract the PRNU from
a 256 × 256 patch we compared the performance of all techniques
with this configuration, which can be seen in Fig. 4. It shows that
the highest VM score is obtained by the KM technique, which
shows a high score for the SIMeven and SIMuneven data sets, while
it seems to struggle with the SIMdominant data set. In general, all
techniques obtain much lower scores for the SIMdominant data set
with BCF being the only exception. Although the SWU and SWM
generate a number of clusters close to the expected result of 3, the
quality of the clusters in respect to the homogeneity and
completeness is quite low. BCF on the other hand generates a few
more clusters, but their quality is higher, which is indicated by the
higher VM score. 

Summarising the KM and BCF techniques are the most
qualified techniques to cluster the data for the tested PRNU size.
The KM technique obtains the highest scores for all three
simulated data sets, but the performance varies highly depending
on the distribution of the images from different sensors within the
data sets. The BCF technique on the other hand performs worse
than the KM one due to being prone to produce more clusters,
which is penalised by the VM measure. However, the produced
clusters all have a high homogeneity and by having the most
consistent results across all the simulated data sets still consider
this method as well suited for the clustering. Due to the poor results
for the SWx techniques they cannot be recommended for this kind
of scenario, thus for the remaining evaluation only the BCF and
KM techniques are taken into consideration.

5.2 Iris and FP data sets

In this section, Iris and FP Data Sets, we discuss the effects of
applying different PRNU enhancement techniques on the existing
biometric data sets. For these iris and FP data sets we are only able
to extract 256 × 256 pixel patches because of the varying image
size to ensure the comparability of the results among all data sets.
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The different configurations for the PRNU extraction process
used for the experiments can be seen in Table 2. The parameters of
all PRNU enhancement techniques have been chosen as
recommended by the authors of the respective papers. 

This section is further divided into the following three
subsections:

• In Section 5.2.1, we briefly evaluate the results obtained with
the basic ZM + WF configuration applied for the PRNU
extraction for all clustering techniques.

• Section 5.2.2 discusses the effects of the different PRNU
extraction configurations applied for all clustering techniques.

• In Section 5.2.3, we recapitulate the effects of the various PRNU
extraction configurations and compare their performance across
all data sets.

Before discussing the Baseline results, an overview overall results
for the biometric data sets is given in Table 3, where we will depict
some interesting observations in the following. 

5.2.1 Baseline: The resulting MSV values relevant for the
Baseline evaluation correspond to the ZM + WF rows of Table 3.
The resulting clusters for all source sensor attribution techniques
can be seen in Fig. 5. 

First of all we have a look at the iris and FP data set results
separately. The first thing we notice when looking at the iris data
sets is that the BCF and KSBCF techniques produce a large
number of clusters for the IPH_2009 and IPH_2013, where both
are not able to cluster the data properly. This is also confirmed by
the negative MSV scores. However, the use of uncorrelated data
helps to improve the MSV scores slightly for KSBCF compared to
BCF. KM and KSKM yield one cluster for all iris data sets, even
for those with known ground truth that have been acquired with a
single sensor. The use of uncorrelated data does not affect the MSV
scores at all for the KSKM technique compared to KM.

For the FP data sets URU_1 and URU_2 all clustering
techniques fail at clustering the data correctly and yield two
clusters, even though the correct number would be 1. Yet all MSV
scores are positive which indicates that the separation of the data
into two clusters could be reasonable. The effects of the
uncorrelated data are the same as for the iris data sets, where the
MSV scores of KSBCF are slightly better than those for BCF and
the MSV scores for KSKM do not show any change in comparison
with KM.

5.2.2 PRNU enhancements side by side: In this subsection, we
will have a look at the Li, BM3D, FSTV and FDR + SEA rows of
Table 3, which contain the results of applying the PRNU extraction
configurations described in Table 2. The evaluation of the results
focuses on the BCF and KSBCF techniques first, followed by the
KM and KSKM techniques.

The results for the BCF and KSBCF techniques are graphically
depicted in Fig. 6. As we can see the BCF results for H100_2009

Fig. 3  Averaged MSV and computed ground truth (GT) metrics (V – measure, homogeneity, completeness) examples for three different source sensor
attribution techniques applied to the simulated data sets SIMeven, SIMuneven and SIMdominant using different sizes for the extracted PRNU and the basic
ZM + WF PRNU enhancement configuration. The scores have been averaged over the three data sets (a) BCF, (b) KM, (c) SWF

 

Fig. 4  Resulting number of clusters (right) and V-measure scores (left) for each of the source sensor attribution techniques applied on the simulated data sets
using a 256 × 256 pixel PRNU patch size and the basic ZM + WF PRNU enhancement configuration. The expected number of sensors used to create the data
sets (3) is shown as the dashed line (ground truth)

 
Table 2 Enhancement configurations applied for the
different steps of the PRNU extraction process. The
abbreviations are explained in Section 2
Name Denoising filter Noise residuals FPs
ZM + WF [22] FLuk ZM WF

Li [7] FLuk Li —

BM3D [6] FBM3D — —

FSTV [9] FFSTV — —

FDR + SEA [12] FMih FDR + Li SEA
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 and H100_2013 are quite similar, where BM3D obtains the highest
MSV scores. However, all the other configurations are quite close
with exception of FSTV, which yields an increased number of
clusters 2 accompanied by negative MSV scores. The use of
uncorrelated data in KSBCF has no effect on the MSV scores nor
on the number of clusters for all configurations except FSTV,
where it reduces the number of clusters to 1 in both data sets. The
MSV scores for KSBCF and the FSTV configuration; however, are
even further reduced for the H100_2009, while it shows a dramatic
increase for the H100_2013 data set where it even surpasses the
previously best score of BM3D by a clear margin. The IPH_2009
and IPH_2013 have been very challenging for the basic ZM + WF
and showed poor results due to the high number of clusters. All
applied PRNU enhancement configurations show a MSV score
improvement with all configurations for the BCF technique by
decreasing the number of clusters even down to 2 in most cases.
These results can be explained by the improved separability of the
data due to the PRNU enhancements. The best MSV score for
IPH_2009 is obtained by Li, while for IPH_2013 FSTV shows the
highest MSV with the Li configuration being close. With the
addition of uncorrelated data in KSBCF the number of clusters is
decreased to 1 for some configurations in both data sets, which in
the case of IPH_2013 corresponds to the ground truth. Li takes the
most advantage of these data and yields the by far highest MSV
scores for both the IPH_2009 and IPH_2013 data sets. For the last

two data sets, URU_1 and URU_2, BCF is able to improve the
MSV scores for almost all PRNU enhancement configurations. The
number of clusters is decreased to 1 for URU_1; however, for
URU_2 the number stays at 2, which is incorrect according to the
ground truth. The highest MSV scores for both scores are obtained
with the BM3D configuration. Interestingly, the addition of
uncorrelated data in KSBCF lowers the scores for all PRNU
enhancement configurations compared to ZM + WF. Due to the
number of clusters remains constant, the differentiability of the
data could be negatively affected by the suboptimal capturing of
the uncorrelated data for the FP sensors, as shown in Fig. 2. ZM + 
WF yields the highest MSV score for URU_1 and BM3D for
URU_2. 

The second part of the evaluation looks at the results of the KM
and KSKM clustering techniques, which are illustrated in Fig. 7.
The first thing that we notice here is that the use of uncorrelated
data in the KSKM technique has absolutely no effect on the scores
and the number of clusters. Therefore, all of the following
statements relate to both KM and KSKM. In most cases, the PRNU
enhancement configurations show an improvement of the MSV
scores, while not changing the resulting number of clusters. The
only exception is FSTV, which increases the number of clusters to
2 for the H100_2009 data set. The highest MSV scores for the iris
data sets (H100_2009, H100_2013, IPH_2009 and IPH_2013) are

Table 3 MSVs for the various combinations of PRNU enhancement configurations and source sensor attribution techniques.
The numbers in parentheses show the ground truth number of clusters in the table header and the number of clusters generated
for the different combinations of source sensor attribution techniques and data sets in the table body

H100_2009 (?) H100_2013 (1) IPH_2009 (?) IPH_2013 (1) URU_1 (1) URU_2 (1)
BCF ZM + WF 0.0161 (1) 0.0122 (1) −0.0020 (6) −0.0025 (6) 0.0035 (2) 0.0077 (2)

Li 0.0171 (1) 0.0121 (1) 0.0024 (2) 0.0026 (2) 0.0065 (1) 0.0057 (2)
BM3D 0.0197 (1) 0.0160 (1) −0.0012 (2) 0.0011 (2) 0.0149 (1) 0.0115 (2)
FSTV −0.0401 (2) −0.0004 (2) −0.0002 (2) 0.0030 (2) 0.0095 (1) 0.0086 (2)

FDR + SEA 0.0169 (1) 0.0120 (1) −0.0009 (5) 0.0001 (4) 0.0139 (1) 0.0076 (2)
KSBCF ZM + WF 0.0161 (1) 0.0122 (1) −0.0015 (6) −0.0019 (4) 0.0090 (2) 0.0088 (2)

Li 0.0171 (1) 0.0121 (1) 0.0042 (1) 0.0095 (1) 0.0045 (2) 0.0051 (2)
BM3D 0.0197 (1) 0.0160 (1) 0.0016 (2) 0.0023 (1) 0.0068 (2) 0.0101 (2)
FSTV −0.0660 (1) 0.0377 (1) 0.0019 (1) 0.0015 (1) 0.0044 (2) 0.0077 (2)

FDR + SEA 0.0169 (1) 0.0120 (1) 0.0019 (5) 0.0008 (3) 0.0060 (2) 0.0066 (2)
KM ZM 0.0161 (1) 0.0122 (1) 0.0036 (1) 0.0035 (1) 0.0291 (2) 0.0213 (2)

Li 0.0171 (1) 0.0121 (1) 0.0207 (1) 0.0215 (1) 0.0242 (2) 0.0177 (2)
BM3D 0.0197 (1) 0.0160 (1) 0.0214 (1) 0.0228 (1) 0.0414 (2) 0.0275 (2)
FSTV 0.0344 (2) 0.0187 (1) 0.0230 (1) 0.0245 (1) 0.0347 (2) 0.0255 (2)
FDR 0.0169 (1) 0.0120 (1) 0.0222 (1) 0.0233 (1) 0.0355 (2) 0.0259 (2)

KSKM ZM + WF 0.0161 (1) 0.0122 (1) 0.0036 (1) 0.0035 (1) 0.0291 (2) 0.0213 (2)
Li 0.0171 (1) 0.0121 (1) 0.0207 (1) 0.0215 (1) 0.0242 (2) 0.0177 (2)

BM3D 0.0197 (1) 0.0160 (1) 0.0214 (1) 0.0228 (1) 0.0414 (2) 0.0275 (2)
FSTV 0.0344 (2) 0.0187 (1) 0.0230 (1) 0.0245 (1) 0.0347 (2) 0.0255 (2)

FDR + SEA 0.0169 (1) 0.0120 (1) 0.0222 (1) 0.0233 (1) 0.0355 (2) 0.0259 (2)
 

Fig. 5  Clustering result with number of clusters for the Baseline evaluation (ZM + WF)
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obtained by BM3D and by FSTV for the FP data sets (URU_1 and
URU_2). 

5.2.3 Summary biometric data: The preceding results for the
biometric show that the adoption of the different PRNU
enhancement configurations did indeed help to improve the
clustering outcome of the clustering techniques. Fig. 8 shows the
PRNU enhancement configurations resulting in the highest MSV
scores for each technique and data set. We can see that for the KM
and KSKM technique FSTV is the best choice for the iris and
BM3D for the FP data sets. Regarding the BCF and KSBCF the
choice of PRNU enhancement configuration is dependent on the
data set or rather on the sensor model: For the data sets using the
Irisguard H100 IRT sensor BM3D is the configuration of choice,
while for the OKI Irispass-h sensor it is the Li configuration. 

The additional use of uncorrelated data had a very large impact
on the clustering outcome of the KSBCF techniques applied on the
IPH_2009 and IPH_2013 data sets compared to BCF. However, for
the other data sets the impact was quite small and for KSKM the
uncorrelated data had no impact at all. This can be explained by
how the KSKM technique makes use of the uncorrelated data, in

fact, it is only used to create a starting point for the K-means
algorithm which then nevertheless converges to the same cluster
centroids as without using this additional data.

Concerning the data sets for which the ground truth is known,
the correct number of clusters for all iris data sets could be
determined at least by applying a combination of uncorrelated data
and PRNU enhancements. In contrast, for the FP data set the
correct number could only be established in one case. In all the
others the clustering techniques failed to do so even with any
combination of uncorrelated data and PRNU enhancement.

Recapitulating we can say that there is no single best PRNU
enhancement configuration for this scenario, yet it is highly
situational which one should be chosen.

6 Conclusion
In this work, we proposed novel source sensor attribution
techniques based on the sensors PRNU and applied existing ones.
We generated multiple simulated data sets containing images from
multiple sensors taken from the Dresden Image Database and
computed different clustering quality metrics to evaluate the

Fig. 6  Comparison of number of clusters (at the centre of each bar chart) and MSV values for the Li, BM3D, FSTV and FDR + SEA PNRU enhancement
configurations compared to ZM + WF when applied in the BCF and KSBCF techniques (a) BCF, (b) KSBCF

 

Fig. 7  Comparison of number of clusters (at the centre of each bar chart) and MSV values for the Li, BM3D, FSTV and FDR + SEA PNRU enhancement
configurations compared to ZM + WF when applied in the KM and KSKM techniques (a) KM, (b) KSKM
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proposed techniques. The results showed that the size of the
extracted PRNU has a significant impact on the clustering result.
Two of the techniques BCF and KM have been able to cluster the
data properly and showed consistent and promising results in the
case of 256 × 256 PRNU patch sizes and have been considered
appropriate for the source sensor attribution of biometric sensors.

In the following, all techniques have been applied to biometric
data sets with low resolution images of two different biometric
modalities, iris and FPs, to cluster the images according to their
source sensor. Different PRNU enhancement techniques have been
adopted in response to the special characteristics of biometric data,
such as highly correlated data and contamination of the PRNU by
the image content, in order to improve the clustering performance.
In addition, we used uncorrelated data acquired with the sensors
and proposed several extensions for already existing sensor
attribution techniques to be able to use this uncorrelated data in
conjunction with the source attribution techniques.

The evaluation of the various PRNU enhancement and
uncorrelated data effects was conducted by means of a quantitative
measure for the clustering outcome that considers the cohesion and
separation of the clusters without the need of any knowledge about
the underlying cluster ground truth. Summarising the results it can
be stated that most PRNU enhancements did indeed help to
improve the clustering results compared to the original work in
[21] by increasing the differentiability of the PRNU noise
residuals. However, we could not identify any single enhancement
technique or combination that was able to improve the clustering
outcome for all data sets alike, but the choice of the best
performing technique is highly situational. Furthermore, the
clustering techniques in most cases did not succeed in determining
the correct number of clusters for the FP data sets, even with the
support of the different PRNU enhancements techniques.

For the FP data sets the absent PRNU enhancement effect and
poor results clearly needs some further and deeper investigation.
The insufficient quality of the extracted PRNU might be an issue in
this case, either caused by the image content or by other
contaminations or factors, e.g. the amount of denoising applied
during the biometric sensor's processing of the acquired image.
Since biometric sensors are often closed systems tailored to acquire
a specific type of images, the identification of these issues is
challenging. In conclusion certainly further studies have to be
conducted in this manner in regard to the special requirements
posed by biometric sensors and the data they produce. A fusion of

the source sensor attribution techniques’ clustering outcome will
also be investigated in future work.
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Chapter 21

Identifying Iris Sensors from Iris Images

Luca Debiasi, Christof Kauba and Andreas Uhl

The base component of iris sensors deployed in practical applications is a digital
image sensor, mostly supported by a near infra-red (NIR) light source to improve
the iris recognition results [1]. These sensors acquire digital images, which are then
further processed and inserted into a biometric system’s processing chain.

The authenticity and integrity of the acquired iris images plays an important role
for the overall security of a biometric system. Ratha et al. [2] identified eight stages
in a generic biometric system where attacks may occur. Figure 21.1 shows an inser-
tion and presentation attack on an exemplary biometric system. An insertion attack
bypasses the biometric sensor by inserting data (biometric sample) into the transmis-
sion from the sensor to the feature extractor. This transmission is the most relevant
point for an attack on the integrity and authenticity of the acquired iris images, where
the iris image inserted during the attack could be acquired with another sensor off-
site, even without the knowledge of a genuine user, or a manipulated image to spoof
the biometric recognition system. In contrast to the insertion attack, in case of the
presentation attack a forged or fake biometric trait, i.e. an artificially manufactured
fake fingerprint or a print of an iris image, is presented to the genuine sensor installed
in the biometric system. The presentation of a forged biometric trait can usually be
detected by deploying different liveness detection systems.

Encryption and other classical authentication techniques like digital signatures
or data-hiding have been suggested to secure the previously mentioned transmis-

Sensor Feature
Extraction

Comparison

Stored
Templates

Insertion Attack

Final
Decision

Biometric Trait

Presentation Attack

Figure 21.1: Exemplary biometric system and point of insertion and presentation
attacks.
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sion channel by verifying the senders (i.e. sensor and feature extractor) authenticity,
as well as the integrity of the entire authentication mechanism. The proposed ap-
proaches can be divided into active and passive-blind approaches.

Active methods consist of data hiding approaches [3, 4] and the digital signature
approaches [5, 6, 7, 8]. Höller et al. [9] describe the pros and cons of these active
methods as follows:

• Classical digital signatures work by adding additional data to verify the orig-
inal data, whereas watermarks become an integral part of the sample data, and
moreover, spatial locations of eventual tampering can be identified [10].

• Fragile watermarks (as proposed for these tasks in e.g. [11, 12, 13]) cannot
provide any form of robustness against channel errors and unintentional signal
processing “attacks” like compression, which is the same as with classical
digital signatures.

• Semi-fragile watermarks have been designed to differentiate between al-
lowed signal processing operations and malicious attacks and have also been
suggested for employment in biometric systems [14, 15, 16, 17].

Höller et al. [9] also mention that a general drawback of watermarks is the repre-
sentation of additional data which is inserted into the sample data, where an impact
on recognition accuracy may be expected. In fact, literature reports on correspond-
ing effects in case of iris recognition [18], speech recognition [19], and fingerprint
recognition [20].

Passive-blind approaches, in contrast to active methods, do not need any prior
information about the image. As stated in [21], passive-blind approaches are mostly
based on the fact that forgeries can bring specific detectable changes into the image
(e.g., statistical changes). In high quality forgeries, these changes cannot be found
by visual inspection.

The field of digital image forensics deals with still images and analyzing traces
in still image data. Two major tasks in this field are establishing an image’s origin
and its integrity. In contrast to digital watermarking as authenticity technique, as
mentioned in [22], digital image forensics do not require any active embedding step
at the time of creation or publication. Evidence is extracted merely from structural
analysis of image files and statistical analysis of the image data (i. e. the two-
dimensional array of pixel intensities).

To determine an image’s origin several approaches have been proposed exploit-
ing hardware and software related artifacts. Investigated hardware related artifacts
cover optical defects, like chromatic aberrations [23] or lens distortions [24], or sen-
sor artifacts, like sensor defects [25] and noise. Software artifacts are introduced
during the processing of the images in the cameras and can be unveiled using sta-
tistical features [26] or by analysing the common image processing pipeline of the
images [27].

The photo-response non-uniformity (PRNU) of imaging sensors, as described in
[28, 29], is an intrinsic property of all digital imaging sensors due to slight varia-
tions among individual pixels in their ability to convert photons to electrons. Con-
sequently, every sensor casts a weak noise-like pattern onto every image it takes.
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This pattern, which plays the role of a “sensor fingerprint”, is essentially an uninten-
tional stochastic spread-spectrum watermark that survives processing, such as lossy
compression or filtering. This fingerprint can be estimated from images taken by the
camera and later detected in a given image to establish image origin and integrity.

Even though the PRNU is stochastic in nature, it is a relatively stable compo-
nent of the sensor over its life span, providing a unique sensor fingerprint with the
following important properties [29]:

1. Dimensionality: The fingerprint is stochastic in nature and has a large
information content, which makes it unique to each sensor.

2. Universality: All imaging sensors exhibit PRNU.

3. Generality: The fingerprint is present in every picture independently of
the camera optics, camera settings, or scene content, with the exception
of completely dark images.

4. Stability: It is stable in time (except for ageing related sensor defects)
and under a wide range of environmental conditions (temperature, hu-
midity, etc.).

5. Robustness: It survives lossy compression, filtering, gamma correction,
and many other typical processing procedures.

Slight variations of individual pixels during the conversion of photons to elec-
trons in digital image sensors are the source of the PRNU, thus it is considered an
intrinsic property which is present in all digital imaging sensors. Every digital image
sensor adds this weak, noise-like pattern into every image acquired with it. The sen-
sor identification can be performed at different levels, as described by Bartlow et al.
[30]: Technology, brand, model, unit. Due to the datasets evaluated in this work we
focus on the model level, which corresponds to a differentiation according to model
and brand.

The PRNU can also be used for the verification of an image’s integrity. The in-
tegrity is compromised if an image has been geometrically transformed (e.g. cropped,
rotated, turned, flipped etc.) or if parts of the image have been tampered (e.g. deleted,
copied, replaced, altered). These manipulations lead to changes in the PRNU which
can be detected as shown in [31, 32].

In the context of biometric systems security the PRNU fingerprint of a sensor can
be used to ensure the integrity and authenticity of images acquired with a biometric
sensor. Höller et al. [9] propose a suitable passive approach to secure the trans-
mission channel between the sensor and the feature extractor, making use of sensor
fingerprints based on a sensor’s PRNU [31]. Besides image integrity, this technique
can also provide authenticity by identifying the source sensor uniquely and impor-
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tant properties as required in a biometric scenario have been demonstrated: suitabil-
ity to manage large datasets [33, 34], robustness against common signal processing
operations like compression and malicious signal processing [35, 36], and finally
methodology to reveal forged PRNU fingerprints has been established [37].

To ensure the authenticity of the biometric sensor, first the discriminative power
of the biometric sensors has to be evaluated, as it has been done in [9] and [30] using
the PRNU. The results from Höller et al. [9], where the discriminative power of five
iris sensors from the CASIA-Iris V4 database has been evaluated show high varia-
tions. Other work by Kalka et al. [38] regarding the differentiability of iris sensor
showed varying results, while studies conducted on fingerprint sensors by Bartlow
et al. [30] showed more satisfactory results. In order for PRNU fingerprints beeing
useful as an authentication measure for biometric systems, the sources of the poor
differentiation results have to be determined. Some possible explanations are given
in [38] and [9] and consist of the highly correlated data of biometric datasets, satu-
rated pixels and the use of multiple sensors of the same model. An additional caveat
for the PRNU extraction is the image content. Since the PRNU covers the high
frequency components of an image, it is contaminated with other high frequency
components within the images, such as edges. Li [39] proposed an approach for
attenuating the influence of details from scenes on the PRNU so as to improve the
device identification rate of the identifier. Moreover the PRNU fingerprint can be
extracted from images of a biometric sensor and injected into forged images, as de-
scribed by Goljan et al. [40]. Using several images captured by the sensor deployed
in the biometric system a suitable PRNU fingerprint can be generated by the attacker.
This attack can only be detected with a triangle test [9], which requires additional
genuine images acquired under controlled conditions.

To overcome the reported problems with the PRNU extraction for some sensors
and the injection attack, there exist other approaches like the one by El-Naggar and
Ross [41], who proposed a passive approach tailored to iris recognition. At first the
ocular image is segmented to get the iris region, then the iris texture is unwrapped,
followed by a normalisation step to get a normalised iris image. Only the inner
half of this normalised iris image is used and further split into a set of overlapping
blocks. For each block 50 Gabor and 68 statistical features are extracted to form a
118 dimensional feature vector representing the iris image. These feature vectors are
then classified using a 3-layer artificial neural network. They were able to achieve
accuracies of 80− 85%. We propose a similar approach which follows their evalu-
ation methodology but uses different features and a SVM classifier. In this chapter
we evaluate this approach and a PRNU based one, trying to identify the iris data
set which an iris image belongs to. If the correct data set can be determined for a
given iris image, these approaches could be used to secure an iris recognition system
against insertion attacks.

The chapter is organised as follows: In Section 21.1 we describe the two dif-
ferent approaches and the examined iris data sets are listed in Section 21.2. The
experimental setup and the results are illustrated in Section 21.3 and 21.4, respec-
tively. In Section 21.5 we discuss how the previously examined techniques can be
used in a practical application. Finally Section 21.6 concludes the chapter.
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21.1 Techniques for Sensor Identification/Dataset Classification

In this section we present two different techniques that allow to infer which dataset
an iris image originates from. The first technique, PRNU based Sensor Identification
(PSI), does this by identifying the sensor used to acquire the image. The second
technique, Iris Texture Classification (ITC), makes use of the iris texture and its
inherent features to classify the iris images according to the source sensor. Both
techniques are presented in detail in the following section.

21.1.1 PRNU based Sensor Identification (PSI)

A digital image sensor consists of lots of small photosensitive, usually rectangu-
lar detectors that capture the incident light and generate an electric signal. These
detectors are commonly known as pixels. The image acquired with the sensor is
constructed by the aggregate of all pixels. Due to imperfections in the manufactur-
ing and the inhomogeneity of the manufacturing material, silicon, the efficiency of
each pixel of converting photons to electrons varies slightly. According to Fridrich
[29], the raw output of a sensor with w×h pixels can be modeled as:

Y = I + I ◦K + τD+C+Θ

with Y, I,K,D,C,Θ ∈ Rw×h;τ ∈ R
(21.1)

where Y is the sensor output (image). I represents the incoming light, I ◦K the
photo-response non-uniformity PRNU, τD the dark current (with τ being a multi-
plicative factor representing exposure settings, sensor temperature, etc.). The matrix
C is a light-independent offset and Θ some modeling noise, which is a collection
of all other noise sources mostly random in nature (e.g. readout noise, shot noise
or photonic noise, quantization noise, etc.). Since all pixels are independent and
all operations element-wise, the matrix-elements yx,y ∈ Y are denoted as y ∈ Y for
simplicity reasons. The same applies to i ∈ I, k ∈ K, d ∈ D, c ∈C and θ ∈Θ.

The extraction of the PRNU noise residuals is performed as indicated by Fridrich
in [42]. For each image I the noise residual WI is estimated:

WI = I−F(I) (21.2)

where F is a denoising function filtering out the sensor pattern noise. We used two
different denoising techniques to extract the PRNU from the images: The wavelet-
based denoising filter as described in Appendix A of [43] and the BM3D filter pro-
posed in [44], which is reported to produce better and more consistent results in fil-
tering out the PRNU in [45]. The extracted PRNU noise residual is then normalised
in respect to the L2-norm because its embedding strength is varying between differ-
ent sensors as explained by [9]. As additional post processing steps a zero mean
operation is applied to each extracted PRNU noise residual to suppress artifacts with
regular grid structure.

To reduce the PRNU contamination effect from scene details, we apply an image
content attenuating PRNU enhancement technique (Model 3 in [39]), subsequently
denoted as ELi.
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Figure 21.2: PRNU noise residual extraction and fingerprint generation with multi-
ple iris images of the same sensor.

Estimating a sensor’s PRNU from a single image is usually not sufficient, be-
cause that specific image may contain various kinds of disturbances as modeled by
Θ in Equation (21.1). Thus multiple images from the same sensor are averaged to
isolate the systematic components of all images and suppress these random noise
components, as shown in Figure 21.2. This averaged noise is denoted as PRNU fin-
gerprint or reference pattern noise (RPN) in literature. The PRNU fingerprint K̂ of
a sensor is then estimated using a maximum likelihood estimator for images Ii with
i = 1...N.

K̂ =
∑N

i=1 W i
I Ii

∑N
i=1(Ii)2

(21.3)

The PRNU fingerprint is enhanced using a Wiener filter applied in the DFT domain
to suppress periodic artifacts as described in [46].

ID 2
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Image PRNU Extraction

and Enhancement

PRNU
Detection and
Comparison Sensor

Association

ID 1

ID 2

ID 3

Figure 21.3: PRNU noise residual extraction and identification of corresponding
sensor.

To determine if an image has been acquired with a specific sensor, the presence
of a sensor’s PRNU fingerprint in the questioned image has to be detected. Since
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images acquired with iris sensors are usually not geometrically transformed, this can
be done by means of calculating the normalised Cross Correlation (NCC):

ρ[J,K̂] = NCC(WJ ,JK̂) (21.4)

where ρ indicates the correlation between the PRNU residual Wj of the image J and
the fingerprint K̂ weighted by the image content of J.

An alternative correlation measure to detect the presence of a PRNU fingerprint
K̂ in an Image I is the Peak Correlation Energy (PCE), proposed by Fridrich in [46].
Fridrich notes that with the PCE the detection threshold will not vary as much as for
NCC detector with varying signal length, different cameras and their on-board image
processing. It is applied like the NCC detector:

ρ[J,K̂] = PCE(WJ ,JK̂) (21.5)

A schematic illustration for the detection of the correct PRNU fingerprint in a ques-
tioned image is given in Figure 21.3.

21.1.2 Iris Texture Classification (ITC)

The input for the Iris Texture Classification (ITC) approach are the preprocessed,
segmented, unrolled and normalised iris images originating from various different
iris datasets and the output of the classifier is a prediction of the iris sensor used to
capture the image or the dataset where the input iris image belongs to, respectively.
As the ITC is SVM based, a training phase is needed prior to the use of the classifier,
similar to generating a PRNU fingerprint for the PSI approach. In the following
the three chosen feature extraction methods, namely DenseSIFT, DMD and LBP
are briefly explained. Then the classification approach using a GMM, Fisher Vector
encoding and a SVM classifier is described.

21.1.2.1 Feature Extraction

ClassBID
corresponding
toBirisBdataset

OcularBImage

IrisBSegmentation,B
unrollingBand
normalization

NormalizedBIris

ExtractBDMDB/B
DenseSIFTB/LBP

featureBvector

EncodingBusing
GMM,BPCABand

ImprovedBFV

ClassifyBIFVB
using

LinearBSVM

Figure 21.4: Flowchart of the Iris Texture Classification (ITC) approach.

DenseSIFT: Is a variant of SIFT. SIFT, the scale invariant feature transform, is a
general purpose feature extraction technique used in object recognition proposed
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by Lowe [47]. It is invariant to image scale and rotation and robust against var-
ious affine distortions, addition of noise, illumination changes and changes of the
viewpoint. SIFT locates extrema in the scale-space, localises keypoints, determines
their dominant orientation and finally constructs a local descriptor for the keypoint
based on a region around it. Fei-Fei et al. [48] proposed to use the local SIFT de-
scriptors on a predefined grid defined across the whole image instead of localising
their positions according to scale space extrema. This approach is known as dense
SIFT. A 128-dimensional SIFT feature vector is extracted each 3 pixels in 5 different
scales (20, 2−1/2, 2−1, 2−3/2, 2−2). The spatial bins of the SIFT feature descrip-
tor histogram consist of 4 bins in x, 4 bins in y and 8 orientation bins. vl feat’s
(http://www.vlfeat.org) implementation of DenseSIFT is utilised.
DMD: Dense Micro-block difference is a local feature extraction and texture clas-
sification technique proposed by Mehta and Egiazarian [49]. It captures the local
structure from image patches (9×9 to 15×15 pixels) at high scales. Instead of the
pixels, small blocks of the image which capture the micro-structure are processed.
Therefore the pairwise intensity differences of smaller blocks (e.g. 2× 2 or 3× 3
pixel blocks) calculated in several different directions (not only radial like in LBP)
in combination with the average intensity of the whole patch are used to encode the
local structure of the patch. Difference values of block pairs located near the cen-
tre of the patch are given higher weights than blocks towards the patch boundaries.
This should be able to capture the repetitively characteristic local structure providing
discriminative information.
LBP: The local binary patterns proposed by Ojala [50] observe the variations of
pixels in a local neighborhood. These variations are thresholded by the central pixel
value to obtain a binary decision, which is then encoded as a scalar value. The occur-
rences of each scalar value for all pixels in the image are represented in a histogram,
which forms the extracted feature vector.

21.1.2.2 Feature Encoding

We utilize the Improved Fisher Vector Encoding (IFV) scheme [51] in the same
way as it is done in [52, 49]. IFV is usually used in object recognition. Fisher
vector encoding starts by extracting local SIFT descriptors densly (DenseSIFT) and
at multiple scales to get a feature vector f . We not only use DenseSIFT features
but also DMD and LBP ones as input for the next steps. The feature vector f is
then soft-quantised using a Gaussian Mixture Model (GMM) with K modes where
the Gaussian covariance matrices are assumed to be diagonal. The local descriptors
present in f are first decorrelated and then dimensionality reduced (optional) by
PCA. So far this describes the standard Fisher Vector encoding [53]. The IFV now
adds signed square rooting and l2 normalization as described in [51].

21.1.2.3 Classification

A linear SVM is then used to classify the IFV encoded features. We experimented
with different types of kernels K(x′,x′′) (linear, Hellinger, exponential) and the linear
kernel lead to the most promising results. The input data to the SVM (IFV encoded
feature vectors) is normalised such that K(x′,x′′) = 1 which usually improves the
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performance. The SVM is trained using a standard non-linear SVM solver on a
subset of the unrolled, normalised iris images which is subsequently not used for the
testing (evaluation) step.

21.2 Datasets

To enable a meaningful comparision with the previous work of El-Naggar and Ross
[41] we attempted to use the same iris datasets they originally used and extend the
number of datasets. Unfortunately we were not able to acquire the MGBC and the
WVU iris dataset. Thus we use the remaining 6 datasets they used plus 3 additional
iris dataset which are described in the following. All of them are publicly available,
common datasets which have been utilised in many different iris recognition related
works. Figure 21.5 shows some example images for each of the datasets. Table 21.1
summarizes the most important attributes of the datasets. In the following a short
description of each single dataset is given:

CASIA V2: We use the first subset of the CASIA V2 iris database [54] (device 1). This subset
consists of 1200 images and was captured using an OKI Irispass-h sensor by the Chinese
Academy of Sciences Institue of Automation (CASIA).
CASIA V3: was again captured by the Chinese Academy of Sciences Institue of Automation
(CASIA) [54] and consists of several different subsets. We used the CASIA V3 Interval subset
in accordance with the work of El-Naggar and Ross. This subset consists of 2639 images
captured with a self-developed close-up iris camera.
CASIA V4: This is the V4 version of the iris dataset provided by CASIA [54]. Again it
consists of several subsets, where we used the Thousands subset. It consists of 20000 images
which were collected using an IrisKing IKEMB-100 camera.
ICE2005: NIST, the National Institute of Standards and Technology in the US conducted a
series of biometric recognition contests, one of them was the Iris Challenge Evaluation (ICE)
in 2005. The ICE2005 [55] images where captured at the University of Notre Dame with a
LG EOU 2200 iris camera and consists of 2953 images.
IITD: The IIT Delhi Iris Database [56] consists of 1120 images and was acquired by the
Biometrics Research Laboratory in the Indian Institute of Technology Delhi (IITD) in 2007.
The images were captures with an JIRIS JPC1000 digital CMOS iris camera.
MMU2: The MMU V2 iris database [57] consists of 995 iris images. These images are
collected using a Panasonic BM-ET100US Authenticam.
UBIRIS: The Noisy Visible Wavelength Iris Image Database UBIRIS V1 [58] consists of
1877 images collected in 2004. The images were captured with a Nikon E5700 digital camera
in two sessions.
UPOL: The Univerzita Palackho v Olomouci iris dataset [59] consists of 384 images. The
irises were scanned by TOPCON TRC50IA optical device connected with SONY DXC-950P
3CCD camera.
UTIRIS: University of Tehran IRIS (UTIRIS) image dataset [60] consists of two different
sessions, one captured using visible wavelength illumination and the other one using near-
infrared illumination. We only used the near infrared subset, which consists of 793 images.
The infrared images were captured with an ISG Lightwise LW iris camera.
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Figure 21.5: Ocular image and normalised iris image samples from different
datasets, from top to bottom: CASIA V2, CASIA V3, CASIA V4, ICE2005, IITD,
MMU2, UBIRIS, UPOL, UTIRIS
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Dataset # IMG Sensor Illumination Resolution Class ID

CASIA V2 1200 OKI IRISPASS-h near infrared 480×640 1
CASIA V3 2639 CASIA Iris camera near infrared 320×280 2
CASIA V4 20000 IrisKing IKEMB-100 near infrared 640×480 3
ICE2005 2953 LG EOU 2200 iris camera near infrared 480×640 4

IITD 1120 JIRIS, JPC1000 camera near infrared 240×320 5
MMU2 995 Panasonic BM-ET100US Authenticam near infrared 320×238 6
UBIRIS 1877 Nikon E5700 natural lighting 200×150 7
UPOL 384 SONY DXC-950P 3CCD camera camera flash 768×576 8

UTIRIS 793 ISG Lightwise LW near infrared 1000×776 9

Table 21.1: Attributes of iris datasets.

21.3 Experimental Setup

We follow the same test methodology as El-Naggar and Ross [41]. For the Iris
Texture Classification (ITC) approach as described in Section 21.2 each dataset is
randomly split into two distinct subsets, a training and a testing one. UPOL is the
iris dataset containing the least images, 384 images only, thus it is split 50:50 into
192 training and 192 testing images. Consequently, for all other images also 192
training and 192 testing images are chosen for the corresponding subsets. The first
step in the processing chain is the preprocessing of the ocular images, including
iris segmentation and iris unrolling. The unrolled iris patches are then normalised
and all having a size 512× 64 pixels. This is done utilizing the USIT (University
of Salzburg Iris Toolkit, Version 2.0 available at http://www.wavelab.at/
sources/USIT/) software toolkit in version 1.0.3. For the segmentation step the
WAHET (Weighted Adaptive Hough and Ellipsopolar Transform) method is used.
Figure 21.5 shows one example of an unrolled and normalised iris image for each
dataset. For further details on the exact implementation of WAHET and the iris un-
rolling the interested reader is referred to [61]. The next step is the feature extraction
using DenseSIFT, DMD and LBP. Afterwards, the features are dimensionality re-
duced using a GMM and then Fisher Vector encoding is applied before they are put
into a linear SVM for classification. A 5-fold cross validation is performed and the
mean results of all 5 runs are used as final results shown below.

For the PRNU based Sensor Identification (PSI) approach we decided to ex-
tract the PRNU from a central patch with varying sizes ranging from 64× 64 up to
576×576 pixels because of the varying image size of the data sets. We furthermore
evaluate the effect of applying the content attenuation PRNU enhancement ELi, de-
scribed in section 21.1.1, in contrast to not applying it. The configurations for the ex-
traction and post-processing of the PRNU are: Extracted PRNU sizes (from 64×64
up to 576× 576 pixels), denoising filters (Wavelet and BM3D), PRNU enhance-
ments (ELi and NoEnh) and PRNU detectors (NCC and PCE). Due to the different
image sizes of the datasets the number of sensors to discriminate decreases for an
increasing PRNU size as shown by the value in parentheses next to the PNRU size
in Table 21.8. For each run we selected 192 random images for each data set for the
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Method DenseSIFT DMD LBP

mAcc 0.9838 0.9688 0.8715
mAP 0.9968 0.9878 0.9172

Table 21.2: Mean accuracies (mACC) and mean average precisions (mAP) for Dens-
eSIFT, DMD and LBP
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Figure 21.6: Confusion matrix for DenseSIFT, DMD and LBP

generation of the PRNU fingerprint (“training” set) and another 192 random images
as the test set, without overlapping images between both sets. We compute the NCC
and PCE correlation scores for all test images with all generated PRNU fingerprints,
where the predicted sensor (or class) is determined by means of the highest (rank
one) correlation score. The larger the size of the extracted PRNU, the less sensors
could be used for evaluating the identification performance for the sensors. The ex-
periment was repeated 5 times (5-fold cross validation), where the final result is the
average of all 5 runs. The described parameters have been chosen to make the results
of both identification/classification approaches as comparable as possible.

21.4 Experimental Results

Table 21.2 summarises the results of the ICT approach. It lists the mean accuracy
(mAcc) as well as the mean average precision (mAP) over all 5 runs. The accuracy
describes the number of correctly classified items (true positives + true negatives)
over the number of total items per class calculated per class. The mAcc is just the
mean over all single accuracies. The average precision (AP) describes the area under
the precision/recall curve calculated per query/class. The mAP is the mean over all
AP values. It can be clearly seen that the ICT approach works best using DenseSIFT
features. Using DMD and LBP the recognition performance both in terms of the
mACC and the mAP is still clearly over 90%. The results show that the ICT approach
is able to determine the source of an unrolled iris texture image with a very high
accuracy considering the nine iris datasets.

Figure 21.6 shows the confusion matrices for ICT. The numbers on the axes are
corresponding to the class IDs in table 21.1. Considering DenseSIFT it can be seen
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Figure 21.7: Average precision for DenseSIFT, DMD and LBP
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Figure 21.8: Mean accuracy (mAcc) and mean average precision (mAP) for selected
PRNU patch sizes and PRNU extraction configurations.

that for CASIA V2, ICE2005, MMU2, UBIRIS, UPOL and UTIRIS all images are
correctly classified as belonging to the actual dataset. Only some of the CASIA V3,
CASIA V4 and IITD images are misclassified.

Figure 21.7 shows the average precision plots for ICT. Again it can be seen that
classification works perfectly for CASIA V2, MMU2, UBIRIS, UPOL, ICE2005
and UTIRIS considering DenseSIFT. Considering DMD it still works perfectly for
CASIA V2, ICE2005, UPOL and UTIRIS but no longer for MMU2 and UBIRIS
though still quite acceptably. LBP’s performance is a bit worse.

Table 21.3 lists the PSI results which show that the PRNU size affects the iden-
tification performance most across all configurations. Reasonable mAcc and mAP
rates can already be achieved with 192×192 pixel patches, while a patch size larger
than 320× 320 yields very good results for the identification of the different iris
sensors through their PRNU fingerprint. Neither the choice of PRNU detector nor
PRNU enhancement makes a big difference in this case, but better results can be
achieved by choosing the BM3D denoising filter over the Wavelet filter for smaller
PRNU sizes, as shown in Figure 21.8.

Next we are having a closer look at the results for the single classes or sensors.
Figure 21.9 shows the confusion matrix for both denoising filters using a small patch
size of 64×64 pixels, no content attenuation PRNU enhancement (NoEnh) and the
NCC detector. It can be seen that the identification performance varies highly among
the different classes, where class 9 shows very good results and the classes 1, 2 and
7 show very low identification performance independent of the denoising filter. All
other classes show higher accuracies when the BM3D filter is used.
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Wavelet BM3D
PRNU NoEnh ELi NoEnh ELi
Size NCC PCE NCC PCE NCC PCE NCC PCE

mAcc

64 (9) 0.4633 0.4587 0.4545 0.4456 0.5451 0.5397 0.5068 0.4845
128 (9) 0.7326 0.7300 0.7437 0.7380 0.7752 0.7696 0.7620 0.7554
192 (8) 0.9007 0.8932 0.9112 0.9008 0.9210 0.9279 0.9237 0.9197
256 (6) 0.9300 0.9358 0.9347 0.9326 0.9545 0.9507 0.9505 0.9446
320 (5) 0.9946 0.9963 0.9973 0.9988 0.9981 0.9994 0.9981 0.9983
384 (5) 0.9988 0.9987 0.9990 0.9990 0.9983 0.9981 0.9992 0.9992
448 (5) 0.9973 0.9988 0.9983 0.9992 0.9990 0.9998 0.9983 0.9971
512 (2) 0.9990 0.9974 0.9984 0.9932 0.9984 0.9990 0.9958 0.9943
576 (2) 0.9984 0.9979 0.9974 0.9995 0.9964 0.9974 0.9984 0.9964

mAP

64 (9) 0.4184 0.4033 0.4325 0.4135 0.5227 0.5146 0.4925 0.4691
128 (9) 0.7209 0.7114 0.7438 0.7352 0.7674 0.7619 0.7675 0.7572
192 (8) 0.8832 0.8844 0.9166 0.9092 0.9271 0.9300 0.9287 0.9236
256 (6) 0.9264 0.9268 0.9389 0.9384 0.9576 0.9530 0.9549 0.9506
320 (5) 0.9934 0.9949 0.9977 0.9986 0.9985 0.9992 0.9989 0.9986
384 (5) 0.9989 0.9989 0.9992 0.9990 0.9988 0.9987 0.9994 0.9994
448 (5) 0.9976 0.9988 0.9985 0.9988 0.9991 0.9994 0.9986 0.9977
512 (2) 0.9991 0.9984 0.9987 0.9966 0.9990 0.9997 0.9977 0.9973
576 (2) 0.9995 0.9989 0.9990 0.9998 0.9982 0.9991 0.9994 0.9982

Table 21.3: Mean accuracy (mAcc) and mean average precision (mAP) for all tested
PRNU patch sizes and PRNU extraction configurations. The number in parentheses
next to the PRNU size indicates the number of different sensors.
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Figure 21.9: Confusion matrices using the Wavelet (left) and BM3D (right) denois-
ing filters for 64× 64 pixels PRNU patch size, no content attenuation PRNU en-
hancement (NoEnh) and NCC detector.
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Figure 21.10: Confusion matrices using the NCC (left) and PCE (right) detectors
for 192×192 pixels PRNU patch size, ELi content attenuation PRNU enhancement
and BM3D denoising filter.

TS size DenseSIFT DMD LBP PRNU128 PRNU256 PRNU512

192 0.9937 0.9810 0.9116 0.8227 0.9540 0.9999
96 0.9919 0.9547 0.8143 0.7870 0.9348 0.9979
48 0.9833 0.9564 0.5038 0.7426 0.9069 0.9978
24 0.9668 0.9277 - 0.7073 0.8594 0.9937
12 0.9367 0.8805 - 0.6363 0.8003 0.9796
6 0.8766 0.8062 - 0.5244 0.7476 0.9565
3 0.7897 0.6921 - 0.4817 0.6905 0.9348
1 0.6320 0.5749 - 0.3297 0.5734 0.8623

Table 21.4: Mean average precisions (mAP) for DenseSIFT, DMD, LBP, and PRNU
with sizes 128× 128, 256× 256 and 512× 512 for different training set sizes (TS
size).

Having a look at a larger PNRU size of 192×192 pixels, BM3D denoising filter
and ELi PRNU enhancement, as shown in Figure 21.10, reveals that the identification
performance for both detectors, NCC and PCE, is practically identical with only
slight differences for all classes. This indicates that the choice of detector is not
critical for the overall performance.

The ITC approach in general and the PSI approach with PRNU sizes at least
512×512 pixels outperform the approach by El-Naggar and Ross [41].

21.5 Practical Discussion

In order to secure a biometric system against insertion attacks (described in the in-
troduction) the authenticity of the biometric samples, i.e. images, has to be verified.
We examined two approaches tailored to identify the sensor an iris image was cap-
tured with. Both approaches can be used for existing biometric systems and while
setting-up new ones because they rely solely on intrinsic image properties. The first
one is based on the PRNU of the iris sensors and the second one on texture features.
We examined different training set sizes. The results shown in Table 21.4, indicate
that both achieve good classification results if some conditions are met. The ITC ap-

Chapter 3. Publications

48



“Chapter21”
2016/10/25
page 16

16 Luca Debiasi, Christof Kauba and Andreas Uhl

192 24 3 1

Training set size

0

0.2

0.4

0.6

0.8

1
m

A
P

DenseSIFT DMD PRNU128 PRNU256 PRNU512

Figure 21.11: Exemplary mean average precision (mAP) scores for selected training
set sizes.

proach works well for a broad range of image resolutions as long as there are enough
training images available, i.e. at least 10 training images should be available. Using
the LBP feature extractor for the ITC approach causes the training to fail for smaller
training set sizes, as shown by missing values in Table 21.4. In these cases the LBP
feature vectors are not distinctive enough and cannot be soft-quantized by the GMM.
The different image resolutions and iris sizes in the images among the datasets re-
quire varying unrolling parameters. Therefore, unrolling and normalisation cause
a separate level of interpolation for each dataset. Due to the texture classification
nature of the ITC approach the results could be biased by the interpolation artifacts
that may improve the discriminative power of the datasets but not the sensors them-
selves. This effect could eventually be mitigated by using the ocular images as input
in combination with different features like BSIF [62], which is designed to capture
image characteristics similar to the PRNU.

The PSI approach works well for bigger PRNU sizes and also works for very few
training images, c.f. it even works with one single training image for the PRNU512
case. The PRNU is extracted directly from the ocular images as opposed to the
unrolled iris texture in the ITC approach. Thus no additional bias is introduced and
the discrimination relies solely on the sensors’ characteristics.

In this work we only investigated different types of sensors, but not multiple
sensors of the same model and manufacturer. As mentioned in the introduction the
PRNU is able to distinguish between specific sensor instances of the same model,
which is an advantage over the ITC approach in practical deployments since the
attacker may have access to the same sensor model. It needs to be clarified whether
the ITC approach is able to handle this kind of set-up as well.

Both approaches are suitable if it comes to securing a biometric system depend-
ing on the system’s configuration. For biometric systems dealing with smaller im-
ages but with many training images available the ITC approach is favourable, for
systems dealing with larger images but only very few training images available the
PSI approach should be used. This is further illustrated in Figure 21.11. If only few
training images are available and the images are small then a fusion of the two ap-
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proaches could improve the results. The image size cannot be changed easily but it is
easy to provide some more training images (just capture additional data with the sen-
sor) and thus the ITC approach can be used again. For securing a biometric system at
first the respective approach has to be trained (PRNU fingerprint generation for the
PSI approach) using images of the biometric sensor(s). Every time a new biometric
sample is captured the image is analysed using the pretrained classifier which then
tells if the image was captured by one of the biometric sensors it was trained with
or not. In the latter case it is very likely that an insertion attack happened and the
authentication process is aborted.

21.6 Conclusion

In this chapter we examined two passive approaches to secure an iris recognition
system against insertion attacks by verifying the authenticity of the iris images. The
first one, named PSI, is based on the photo response non-uniformity (PRNU) of
image sensors and the second one, named ITC, exploits the texture information of
unrolled iris images. The examination was performed using images from 9 distinct
iris databases or sensors, respectively.

The results show that both approaches perform well in identifying the correct
sensor an iris image was captured with, though the performance of the PSI approach
is dependent on the size of the extracted PRNU. The ITC approach worked well for
all datasets. We furthermore examined the impact of the number of images available
for the training of both approaches.

Each approach has its advantages and drawbacks depending on the configuration
of the biometric system: The PSI approach gives better results if only a small num-
ber of high-resolution images is available, while the ITC approach needs a higher
number of images to achieve an acceptable performance, but the advantage is they
do not need to be of high resolution. In addition the PSI approach is also suited to
distinguish different sensors of the same model. This helps in detecting an injection
of images from the same sensor model as deployed in the biometric system. If only
a small number of low resolution images is available, a fusion of both approaches is
likely to improve the overall performance.
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Abstract

Being aware of the origin (source sensor) of an iris im-
ages offers several advantages. Identifying the specific sen-
sor unit supports ensuring the integrity and authenticity of
iris images and thus detecting insertion attacks at a biomet-
ric system. Moreover, by knowing the sensor model selec-
tive processing, such as image enhancements, becomes fea-
sible. In order to determine the origin (i.e. dataset) of near-
infrared (NIR) and visible spectrum iris/ocular images, we
evaluate the performance of three different approaches, a
photo response non-uniformity (PRNU) based and an image
texture feature based one, and the fusion of both. Our first
set of experiments includes 19 different datasets comprising
different sensors and image resolutions. The second set in-
cludes 6 different camera models with 5 instances each. We
evaluate the applicability of the three approaches in these
test scenarios from a forensic and non-forensic perspective.

1. Introduction

A typical biometric system consists of three main com-
ponents: a biometric sensor to capture the raw biometric
data, a feature extractor that converts the raw data to a fea-
ture based representation and a matcher which compares 2
sets of features and outputs a score value corresponding to
the similarity or dissimilarity of the the feature sets. We
focus on the first component, the biometric sensor itself,
specifically in iris recognition. The base component of iris
sensors deployed in practical applications is a digital image
sensor to acquire the iris images, commonly supported by a
near infra-red (NIR) light source to improve the iris recog-
nition results [8].

Digital image forensics deals with still images and
analysing traces in still image data. These traces are ex-
tracted merely from structural analysis of image files and
statistical analysis of the image data (i. e. pixel values).

Deducing sensor information from the iris images serves as
a basis for different forensic and non-forensic tasks. One
of the major tasks in digital image forensics is establishing
an image’s origin with the help of the deduced sensor infor-
mation. This can be performed at different levels: Sensor
technology, brand, model, unit. In the context of biomet-
ric systems the extracted sensor information can be used for
various applications. In this work we focus on two specific
ones: Securing an iris recognition system against insertion
attacks and enabling device selective processing of the im-
age data.

The authenticity and integrity of the acquired iris images
plays an important role for the overall security of a bio-
metric system. Ratha et al. [31] identified eight stages in
a generic biometric system where attacks may occur. An
insertion attack bypasses the biometric sensor by inserting
data (biometric sample) into the transmission from the sen-
sor to the feature extractor. This transmission is the most
relevant point for an attack on the integrity and authenticity
of the acquired iris images, where the iris image inserted
during the attack could be acquired with another sensor off-
site, even without the knowledge of a genuine user, or be a
manipulated image to spoof the biometric recognition sys-
tem.

In large-scale biometric system various sensors from dif-
ferent manufacturers and models are deployed and the inter-
operability is often affected by specifics of each sensor, such
as the acquisition technique or in-sensor image processing.
Selective processing of the iris images helps to improve the
interoperability by applying a sensor tailored biometric tool
chain. Therefore information about the sensor model is re-
quired, which can be deduced from the iris images directly
utilising image forensic methods.

This work evaluates the feasibility of deducing sensor in-
formation at model and unit level, i.e. the sensor an image is
captured with, from the iris/ocular image using PRNU and
image texture based methods. Our approach differs from
existing literature in the following ways: (a) we consider
both, a PRNU and an image texture based (IT) approach
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and analyse their strengths and weaknesses; (b) we include
a larger number of iris datasets/sensors (19 datasets) and
additional image forensic benchmark dataset; (c) we eval-
uate a fusion of the PRNU and the IT based approach to
overcome the weaknesses of each single approach; (d) we
consider different training set sizes down to 1 training im-
age and different patch sizes for extracting the PRNU and
the image texture features are compared; (e) we discuss the
applicability of each approach as a mean of insertion attack
prevention and in the context of selective processing.

The rest of the paper is organised as follows: Related
work is summarised in Section 2. Section 3 describes the
two different classification approaches. The experimental
setup including the examined iris data sets is listed in Sec-
tion 4. The results are illustrated and an application specific
discussion is given in Section 5. Finally Section 6 concludes
this paper.

2. Related Work
To determine an image’s origin on unit level several ap-

proaches have been proposed exploiting hardware and soft-
ware related artifacts. The PRNU is an intrinsic property of
all digital imaging sensors due to slight variations among in-
dividual pixels in their sensitivity to incoming illumination.
Consequently, every sensor casts a unique, weak, noise-like
pattern onto every image it takes. This pattern, which can be
regarded as a “sensor fingerprint”, is essentially an uninten-
tional stochastic spread-spectrum watermark that survives
processing, such as lossy compression, filtering or white-
balancing. A sensor’s fingerprint can be estimated from
several images taken by the sensor and later detected in a
given image to establish image origin and integrity.

Novel sensor identification approaches are based on
Deep Convolutional Neural Networks (CNN). Tuama et al.
[33] proposed to extract the noise residuals with a high-
pass filter and classify the images using a CNN. However,
this approach relies on a large number of images for the
CNN training step, which limits the application scenarios
for these approaches.

In the context of biometric systems security, the PRNU
fingerprint of a sensor can be utilised to ensure the integrity
and authenticity of images acquired with a biometric sensor.
Höller et al. [34] propose a suitable passive approach to se-
cure the transmission channel between the sensor and the
feature extractor, making use of sensor fingerprints based
on a sensor’s PRNU [4].

To ensure the authenticity of the biometric sensor, first
the discriminative power of the biometric sensors has to be
evaluated, as it has been done in [3] and [34] using the
PRNU. The results from Höller et al. [34], where the dis-
criminative power of five iris sensors from the CASIA-Iris
V4 database [25] has been evaluated, show high variations.
Other work by Kalka et al. [16] regarding the differentia-

bility of iris sensor showed varying results. Some possible
explanations are given in [16] and [34] and include highly
correlated data of biometric datasets, saturated pixels and
the use of multiple sensors of the same model. An addi-
tional caveat for the PRNU extraction is the image content.
Since the PRNU covers the high frequency components of
an image, it is contaminated with other high frequency com-
ponents within the images, such as edges.

Banerjee and Ross [2] evaluated multiple PRNU estima-
tion schemes for identifying sensors from iris images. They
used 12 different datasets, 4 PRNU extraction methods and
investigated dataset specific artefacts as well as the effect of
a photometric transformation. They were able to identify
the sensor for a majority of the datasets.

In the context of selective image processing, where it is
sufficient to determine the sensor model (i.e. iris dataset),
El-Naggar and Ross [11] proposed a passive approach tai-
lored to iris recognition. At first the ocular image is seg-
mented to get the iris region, then the iris texture is un-
wrapped, followed by a normalisation step to get a nor-
malised iris image. Out of the inner half of this normalised
iris image a feature vector containing statistical and Gabor
features is extracted and then classified using a 3-layer arti-
ficial neural network. They were able to achieve accuracies
of 80− 85%.

Marra et al. [22] propose a CNN-based technique includ-
ing transfer learning to identify the iris sensor model from
iris images. They map the features extracted from images
captured by one sensor to images captured by a different
one. They investigated 9 different sensor models. They
achieve promising results, enabling a model-adaptive pre-
processing of the iris images to obtain seamless sensor in-
teroperability.

To overcome problems in cross-sensor matching in
large-scale iris recognition systems Arora et al. [1] de-
veloped an iris camera classification-based preprocessing
framework. Using the output of their statistical image-
feature based camera classification they apply a device-
specific iris image enhancement leading to a significant im-
provement in recognition accuracy.

3. Classification Techniques

In this section we present two different techniques each
allowing to infer which dataset an iris image originates
from. The first technique, called PRNU based Sensor Iden-
tification (PSI), achieves this by utilising non unique arte-
facts embedded in the images. The second technique, Im-
age Texture Classification (ITC), makes use of image tex-
ture information and its inherent features. Both techniques
are presented in detail in the following.

295

Chapter 3. Publications

58



3.1. PRNU based Sensor Identification (PSI)

A digital image sensor consists of lots of small photo-
sensitive detectors, commonly known as pixels. Due to
imperfections in the manufacturing and the inhomogene-
ity of the manufacturing material, silicon, the efficiency of
each pixel in converting photons to electrons varies slightly.
This slight variation is commonly known as photo-response
non-uniformity (PRNU). The extraction of the PRNU noise
residuals is performed as indicated by Fridrich in [13]. For
each image I the noise residual WI is estimated:

WI = I − F (I) (1)

where F is a denoising function filtering out the sensor pat-
tern noise. Different denoising filters have been used for the
extraction of the PRNU noise residual [7, 13, 24].

The extracted PRNU noise residual is then normalised
in respect to the L2-norm because its embedding strength is
varying between different sensors as explained by [34].

The PRNU fingerprint K̂ of a sensor, which isolates
the systematic components and suppresses random noise,
is then estimated using a maximum likelihood estimator for
images Ii with i = 1...N .

K̂ =

∑N
i=1 WIiIi∑N
i=1(Ii)

2
(2)

To determine if an image has been acquired with a spe-
cific sensor, the presence of a sensor’s PRNU fingerprint
in the questioned image has to be detected. Since im-
ages acquired with iris sensors are usually not geometri-
cally transformed, this can be done by means of calculating
the normalised Cross Correlation (NCC) between between
a PRNU noise residual of an Image J and a PRNU finger-
print weighted by the image content of J .

Furthermore, different PRNU enhancement techniques
have been applied to the noise residuals and PRNU finger-
prints in order to suppress undesired artifacts [19, 20].

ID 2

Input
Image

PRNU Extraction
and Enhancement

Comparison against Sensor Fingerprints

Sensor
Identification

ID 1 ID 2 ID 3

... {... Sensor Fingerprint
Generation

PRNU Extraction and Enhancement
Training
Images

Figure 1. PRNU noise residual extraction and identification of cor-
responding sensor.

3.2. Image Texture Classification (ITC)

The ITC approach is SVM based, thus a training phase
is needed, similar to generating a PRNU fingerprint for the
PSI approach. The input are the iris/ocular images and the

output is a prediction of the iris sensor used to capture the
image or the dataset where the input iris image belongs to,
respectively. In the following the three feature extraction
methods, namely DenseSIFT, DMD and LBP are briefly ex-
plained. Then the classification approach using a GMM,
Fisher Vector encoding and an SVM classifier is described.

3.2.1 Feature Extraction

Class ID correspon-
ding to iris dataset

Ocular Image

Extract DMD / 
DenseSIFT / LBP

feature vector

Encoding using
GMM, PCA and

Improved FV

Classify IFV using
Linear SVM

Figure 2. Flowchart of the Image Texture Classification (ITC) ap-
proach.

DSIFT: Fei-Fei et al. [12] proposed to use the local SIFT
descriptors, a general purpose feature extraction technique
used in object recognition [21], at multiple scales on a pre-
defined grid defined across the whole image instead of lo-
calising their positions according to scale space extrema.
DMD: Dense Micro-block Difference is a local feature ex-
traction and texture classification technique proposed by
Mehta and Egiazarian [23] to capture the repetitively char-
acteristic local structure providing discriminative informa-
tion.
LBP: The local binary patterns proposed by Ojala [27]
observe the variations of pixels in a local neighbourhood.
These variations are thresholded against the central pixel
value to obtain a binary decision, which is then encoded as
a scalar value. The occurrences of each scalar value for all
pixels in the image are represented in a histogram, which
forms the extracted feature vector.

3.2.2 Feature Encoding

We utilise the Improved Fisher Vector Encoding (IFV)
scheme in the same way as in [5]. At first the respec-
tive features (DSIFT, DMD, LBP) are extracted to obtain
a feature vector f . For standard Fisher Vector (FV) encod-
ing the feature vector f is soft-quantised using a Gaussian
Mixture Model (GMM) with K modes where the Gaussian
covariance matrices are assumed to be diagonal. The lo-
cal descriptors present in f are first decorrelated and then
dimensionality reduced (optional) by PCA. The IFV now
adds signed square rooting and l2 normalisation. For more
details the interested reader is referred to [5].
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Figure 3. Sample images from different datasets.

Dataset Name #IMG Sensor ILM Resolution CID

CASIA V2 [25] 1200 OKI IRISPASS-h NIR 480x640 1
CASIA V3 [25] 2639 CASIA Iris camera NIR 320x280 2
CASIA V4 [25] 20000 IrisKing IKEMB-100 NIR 640x480 3

CSIR 1 [26] 4000 EyeGuard AD100 NIR 640x480 4
CSIR 2 [26] 4000 IKEMB220 NIR 640x480 5

ICE [28] 2953 LG EOU 2200 NIR 480x640 6
IITD [18] 1120 JIRIS, JPC1000 NIR 240x320 7

MICHE S1 [9] 626 Samsung Galaxy S4 F VL various 8
MICHE S2 [9] 628 Samsung Galaxy S4 R VL various 9
MICHE S3 [9] 632 Samsung Galaxy Tab2 VL various 10
MICHE I1 [9] 619 Apple iPhone 5 F VL various 11
MICHE I2 [9] 628 Apple iPhone 5 R VL various 12

MIR [35] 4500 Unknown Sensor NIR 1968x1024 13
MMU2 [6] 995 Panas. BM-ET100US NIR 320x238 14

MobBIO [32] 1640 Asus Eee Pad TE300T VL 250x200 15
UBIRISv1 [29] 1876 Nikon E5700 VL 800x600 16
UBIRISv2 [30] 11102 Canon EOS 5D VL 400x300 17

UPOL [10] 384 SONY DXC-950P CF 768x576 18
UTIRIS [15] 793 ISG Lightwise LW NIR 1000x776 19

Table 1. Attributes of iris datasets with number of images (#IMG),
class ID (CID) and illumination (ILM). The illumination is either
of the type near infrared (NIR), visible light (VL) or camera flash
(CF).

3.2.3 Classification

A support vector machine (SVM) is used to classify the IFV
encoded features. A linear kernel lead to the most promis-
ing results. The input data to the SVM (IFV encoded feature
vectors) is normalised such that K(x′, x′′) = 1 which usu-
ally improves the performance. The SVM is trained using a
standard non-linear SVM solver.

4. Experimental Setup
This section describes the examined datasets as well as

the experimental setup.

4.1. Datasets

Table 1 summarises the most important attributes of the
19 publicly available datasets used in this work and Figure
3 shows one example image for each of the datasets. Each
dataset was acquired with a distinct sensor model.

4.2. Experimental Methodology

Each dataset is randomly split into two distinct subsets, a
training and a testing one. Since UPOL contains 384 images

only, a 50:50 split of training and testing data results in a
maximum of 192 training and 192 testing images. Datasets
containing colour images are converted to greyscale. We
tested different training set sizes (1, 3, 6, 12, 24, 48, 96 and
192) with a fixed test set size of 192 images for all datasets.
A 5-fold cross validation is performed and the mean results
of all 5 runs are the final results shown below.

All experiments are performed using different patch
sizes ranging from 64×64 up to 512×512 pixels, which are
cropped from the image centre. Due to the correlation based
similarity measure all extracted patches must have the same
size, thus the number of admissible sensors to discriminate
for the PSI approach decreases with increasing patch size
because of the varying image sizes among the data sets. The
investigation of all 19 sensors for the PSI approach is only
possible with patch sizes of 64 × 64 and 128 × 128. The
ITC approach is able to handle different image sizes, hence
all 19 sensors can be investigated with all patch sizes.

For the Image Texture Classification (ITC) approach the
first step consists in extracting the features from the image
patches using DenseSIFT, DMD and LBP. Afterwards, the
features are reduced in dimensionality using a GMM and
then Fisher Vector encoding is applied before they are put
into a linear SVM for classification.

For the PRNU based Sensor Identification (PSI) ap-
proach the PRNU is extracted from the mentioned image
patches. The extraction is performed using a variety of de-
noising filter and PRNU enhancement combinations, which
are listed in Table 2. The interested reader is referred to the
respective papers for further details on the PRNU extraction
and enhancement techniques.

Name Denoising filter Noise residuals Fingerprints

Li [19] WaveletLukas Li Model 3 -
BM3D [7] BM3D - -
FS [20] WaveletMihcak FDR+Li SEA

Table 2. Enhancement configurations applied to the different steps
of the PRNU extraction process.

The generation of the PRNU fingerprints for the various
sensors is done using the images from the “training” set.
Then the NCC scores are computed for all “test” images
with all generated PRNU fingerprints, where the predicted
sensor (or class) is determined by means of the highest (rank
one) correlation score.

Considering the score level fusion used in this work, we
examined different normalisation (Minimum-Maximum,
Tangens Hyperbolicus and Z-Score) and fusion schemes
(Maximum, Average, Sum and Product). We tested dif-
ferent score combinations, from pairs of 2 scores to tuples
of all 4 available scores (PSI, and the 3 ITC configura-
tions). The Minimum-Maximum normalisation in combi-
nation with the Sum or Product fusion rule performed best
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across all combinations.
The following three experiments have been conducted

to quantify the performance of the different techniques in
discriminating between the various sensor.

Experiment 1 (EX1): Sensor Identification
The discriminability of the sensors of all iris data sets

described in Table 1 using the 3 ITC (DenseSIFT, DMD,
LBP) and 3 PSI (Li, BM3D, FS) configurations with 192
training and 192 test images is assessed. A patch size of 128
is used to be able to evaluate the performance for all sensors.
Eventually, a score level fusion has been investigated.

Experiment 2 (EX2): Varying Patch/Training Set Sizes
Here the impact of the number of training images on the

sensor identification performance of the ITC and PSI tech-
niques is investigated. In contrast to the first experiment
different training set sizes from 192 down to 1 and different
patch sizes from 512 to 64 are examined. Again, a score
level fusion has been investigated.

Experiment 3 (EX3): Intra-Model Sensor Identification
This experiment differs from the first two. The goal is

to investigate whether the PSI and ITC techniques are able
to distinguish different instances of the same sensor model.
Since this is not possible with the biometric data described
in Table 1, images from 6 different camera models (Ca-
sio EX-Z150, Kodak M1063, Nikon S710, Olympus MJU,
Praktica DCZ 5.9 and Ricoh GX100) with 5 camera in-
stances each have been selected from the Dresden database
[14] to at least clarify this issue in general. The patch size
for this experiment is 512. The training set size and test set
size are set to 100 and 50, respectively, because of the low
number of images available for some cameras. The discrim-
inability of the instances has been evaluated separately for
each camera model.

5. Experimental Results
In the following the results are presented and discussed.

Based on the outcome of EX1 only the best performing ITC
and PSI approaches have been considered for EX2 and EX3,
which are: DSIFT, DMD, LBP and BM3D. The mean ac-
curacy (mAcc) corresponds to the mean of the values of the
confusion matrix diagonal. The average precision (AP) de-
scribes the area under the precision/recall curve calculated
per class. The mAP is the mean over all AP values.

Experiment 1 The first results listed in Table 3 are de-
voted to EX1. It can be seen that DSIFT performs remark-
ably well in distinguishing the origin of images between the
various iris datasets. Figure 4 (top) confirms that DSIFT is
able to determine the origin of an iris image with a very high

DSIFT DMD LBP BM3D Li FS BDDF

mACC 98.78 88.51 91.96 67.82 65.92 60.20 99.48
mAP 99.51 91.23 95.05 67.93 65.26 40.72 99.86

Table 3. Mean accuracy (mACC) and mean average precision
(mAP) for patch size 128 and training set size 192 for all iris
datasets.
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Figure 4. Confusion matrix and average precision plot for patch
size 128 and training set size 192. Top: DSIFT, Bottom: BM3D.

accuracy for all of the datasets. The different PSI configu-
rations are inferior compared to the ITC approaches. On
one hand, the patch size of 128 is relatively small for a
PRNU approach. On the other hand, Figure 4 (bottom) re-
veals that especially the classes 2, 4, 5, 15, 16 and 17 cause
problems. The numbers on the axes correspond to the class
IDs in Table 1. The CASIA V3 (class ID 2) dataset is sus-
pect to contain images from multiple sensors of the same
model, as already reported in literature [34, 11]. The im-
ages from the MobBIO, UBIRISv1 and UBIRISv2 datasets
(classes 15, 16 and 17) have been acquired with a high res-
olution camera. After thorough investigation we found out
that the images contained in the datasets have been cropped
from different parts of the original image which causes low
correlation scores for images within the same dataset. To
overcome this problem these images have to be pre-aligned
e.g. by using a PRNU based approach [17] or by using the
peak correlation energy (PCE) measure [13]. The best score
level fusion combination BDDF, which denotes the fusion
of BM3D-DSIFT-DMD, improves the identification perfor-
mance to a small degree.

Experiment 2 Table 4 and Figure 5 give an overview of
the results for varying patch sizes and training set sizes for
ITC, PSI and the fusion combination BDDF. To keep the re-
sults concise we only list some of the tested configurations.
It is interesting to see that the performance of the ITC ap-
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mACC mAP
PS TSS DSIFT DMD LBP BM3D BDDF DSIFT DMD LBP BM3D BDDF

512 192 99.92 86.09 97.96 90.27 99.96 99.98 87.17 99.12 90.23 99.99
512 24 98.90 83.07 87.50 88.89 99.18 99.49 84.61 90.16 89.14 99.59
512 3 93.16 73.59 0.00 79.63 92.69 95.19 75.56 0.00 81.08 94.86

256 192 99.64 90.70 96.67 75.03 99.87 99.92 91.80 98.22 75.52 99.97
256 24 97.96 87.90 80.04 70.70 98.30 98.93 88.10 81.97 70.75 99.16
256 3 89.29 74.58 0.00 55.38 88.31 91.85 75.62 0.00 55.30 91.29

128 192 98.78 88.51 91.96 67.82 99.48 99.52 91.23 95.05 67.93 99.68
128 24 94.78 83.76 67.75 57.48 95.49 96.48 84.36 68.31 57.00 97.13
128 3 80.26 67.09 0.00 34.23 78.79 84.13 68.03 0.00 32.37 83.67

64 192 94.95 86.86 84.07 50.93 97.69 97.13 87.59 87.77 48.21 99.01
64 24 85.57 76.28 55.05 35.28 88.32 89.13 77.27 53.31 30.34 92.03
64 3 62.91 53.17 0.00 18.68 65.75 67.78 54.36 0.00 14.83 71.18

Table 4. Results for different patch (PS) and training set sizes (TSS).
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Figure 5. Results for selected patch sizes and different training set
sizes.
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Figure 6. Confusion matrix and average precision plot for patch
size 64 and training set size 1. Top: BDDF, Bottom: DSIFT.

proaches is insensitive to the training set size down to 24
images, whereas BM3D in combination with smaller patch
sizes exhibits a constant performance drop towards smaller
training set sizes. For larger patch sizes BM3D’s perfor-
mance interestingly remains almost stable down to 12 train-
ing images and its performance degrades less than the other
approaches. Again fusion does not improve the overall per-
formance, except in the case of a single training image.
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Figure 7. Results for the different camera models from the Dresden
dataset with patch size 512 and training set size 100.

In Figure 6 we look at the most challenging case, patch
size 64 and training set size 1, in more detail. As it can be
seen in the confusion matrix and average precision plot for
BDDF fusion the identification performance varies highly
among the different classes resulting in an mAP of 49.45%
and mACC of 46.28%. DSIFT achieves an mAP of 45.61%
and mACC of 43.83% respectively. While the fusion gains
accuracy for some classes (e.g. 1, 2, 15, 18), it decreases the
accuracy for other classes, leading to a slightly improved
overall accuracy.

Experiment 3 This experiment reveals some interesting
results regarding intra-model discrimination, which are pre-
sented in Figure 7. The BM3D approach reliably discrimi-
nates multiple instances of the same sensor model and ex-
hibits mACC and mAP scores in the range of 82% to 100%,
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respectively. Despite the large patch and training set size,
the ITC approaches face severe problems, with mACC and
mAP scores between 0% and 60%. The ITC results strongly
suggest that this approach is not useful to distinguish multi-
ple instances of the same sensor model for arbitrary images.

5.1. Application Specific Discussion

As motivated in the introduction, identification of the im-
age origin plays a major role for the security and perfor-
mance of an iris recognition system. While it is sufficient
to distinguish the origin at model level for performance en-
hancements, it is necessary to distinguish the origin at unit
level to strengthen the security of the system.

It can be clearly seen that both, the ITC and PSI ap-
proach, are able to identify the source sensor model (i.e.
iris dataset) of iris images in general. Eventually, our ITC
approach outperformed the previous approach by El Naggar
et al. [11]. However, our approach differs from the one by
El Naggar et al., which uses unrolled iris textures for the
identification of the datasets.

The PSI approach is mostly limited by the patch size and
therefore faces limited application with sensors that output
low-resolution images. Pre-alignment of the images or PCE
as similarity measure is necessary for the PSI approach to
work properly if arbitrary cropped and resized images are
present. ITC works well in distinguishing the sensor model,
provided that there are sufficient training images available
(more than 12). It still works for small patch sizes and es-
pecially for the classes where the PSI approach is no longer
able to provide a reasonable accuracy. Consequently, the
ITC approach is well suited to provide the sensor model in
the context of the selective processing scenario.

The results of EX3 exposed a weakness of the ITC ap-
proach, in distinguishing arbitrary natural scene images ac-
quired with multiple instances of the same sensor model.
Hence, the ITC approach might not be the preferred solu-
tion for the insertion attack detection scenario. Following
Kerckhoff’s principle, i.e. assuming that an attacker knows
how the whole biometric system is designed, he could sim-
ply use the same sensor model as deployed in the system to
acquire a malicious image, which could then successfully
bypass an ITC based attack detection system. However, as
pointed out by the EX3 results, the PSI approach is able
to successfully discriminate different instances of the same
sensor model. Therefore, the PSI approach is able to de-
tect such a maliciously acquired and inserted image, but its
performance depends on the patch size.

Obviously, a combination of both, the ITC and PSI ap-
proach, is beneficial to overcome the individual weaknesses
and improve the detection of insertion attacks. We realised
this combination in form of a score level fusion. The exper-
imental results confirmed a performance improvement.

6. Conclusion

In this paper we investigated a passive approach to de-
duce sensor information solely from iris images. This in-
formation is useful in forensic scenarios, e.g. for for secur-
ing an iris recognition system against insertion attacks, as
well as in non-forensic ones, e.g. to enable sensor model
specific selective processing of the images. Our approach
is based on two different techniques, a PRNU (PSI) and a
texture classification one (ITC). In addition a score level fu-
sion of the two different techniques is investigated to further
improve the performance. Our experiments include tests us-
ing different numbers of training images as well as different
image patch sizes.

The results confirm that our approach is well suited to
identify the source sensor model of a given iris images in
all test cases. It achieves almost 100% accuracy given that
the training set size and patch size are sufficiently large. It
still works reasonably well even for low resolution input
images. The PSI approach is able to distinguish different
sensors at unit level, but requires a certain patch size. By
combining ITC and PSI through score level fusion a unit-
level discrimination becomes possible for a broad range of
sensor configurations.

Since no biometric dataset covering several units of the
same sensor model is publicly available, we aim at estab-
lishing such a dataset. Our future work will then include
extended tests to shed more light at the unit-level discrimi-
nation performance of our approach as well as investigation
of an open set scenario.

Overall, by identifying the image origin at model and
unit level, our approach forms the basis for the application
of sensor specific processing of the iris images and can be
of particular interest for securing iris recognition systems.
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Abstract—This work focuses on the examination of a real
word criminal case data set, consisting of still images found on
a suspect’s computer during a sexual abuse case investigation.
Various source camera clustering algorithms, all based on the
photo-response non-uniformity (PRNU), are employed to organise
the images according to their source camera. The investigated
data set poses many challenges to the algorithms due to the
unknown origin of its images. The clustering result’s quality is
examined using different external and internal cluster validity
indices (CVIs). Before attempting to cluster the criminal case
data, the clustering algorithms and CVIs have been examined on
a different data set with known ground truth, which revealed that
some algorithms and CVIs are not appropriate for this scenario.

Finally, we give some recommendations on which clustering
algorithms and CVIs can be used in this scenario and discuss the
problems and challenges we faced while investigating the data
set.

Index Terms—Digital Image Forensics, Source Sensor Cluster-
ing, PRNU, Criminal Case Investigation.

I. INTRODUCTION

In forensic case work, source camera identification using
PRNU can yield important evidence for the criminal investi-
gation. The properties of the examination makes it well suited
to be used in a Bayesian evaluation scheme as a Likelihood
Ratio (LR) calculation [1]. Typical criminal cases, where such
examinations can be of use, include fraud, sexual child abuse,
rape and assault. Often, the perpetrators have an urge of
documenting their criminal actions, and the imagery is often
captured by mobile phones readily at hand. In the ideal case,
the suspect’s camera is available for collection of all necessary
reference data to conduct the examination. A detailed EXIF
data analysis is always complementing the PRNU examination
and is included in the evaluation. When signs of alteration are
found in the EXIF data, the weight of the PRNU examination
will be lower and the LR value approaches unity.

However, in cases where reliable reference data can not be
obtained, it can be useful to organise the images confiscated
on the suspect’s computer by their source camera instead.
These images should have general properties fitting that of
the questioned imagery, and preferably also a connection to

This work is partially funded by the Austrian Science Fund (FWF) under
Project No. P26630 and partially supported by a COST 1106 Short Term
Scientific Mission (STSM).

the suspect (e.g. family album). For this scenario, a prior
screening of the data based on the image origin or source
camera could be very useful. Source camera clustering based
on the camera’s PRNU offers an intuitive solution to this
problem by associating images that have been captured with
the same device. Such information could be important to
identify the number of victims in grooming cases and to find
more images taken with the same webcam (victim), or to
evaluate the number of perpetrators in sexual child abuse cases.

In the source camera clustering scenario, however, the in-
vestigator is usually confronted with a large set of images from
unknown source(s). The goal is to group all images according
to the source camera, where the number of cameras as well
as the distribution of the images among them is unknown.
In this case it is usually not possible for the investigator to
acquire additional data because the source cameras might not
be available. Several classical clustering techniques have been
proposed in literature to solve this problem [2–9].

As already mentioned, the source camera clustering problem
is solved by partitioning the data set under investigation using
a clustering algorithm. According to Wang et al. [10] the term
cluster validity assessment describes the process of evaluating
the clustering result. This evaluation is based on two criteria,
which are used to determine the “optimal” clustering solution:

• Compactness: The members of each cluster should be as
close to each other as possible.

• Separation: The clusters themselves should be widely
separated.

The partition that best fits the underlying data can be consid-
ered as the “optimal” clustering solution. Several clustering
validity indices (CVIs) have been proposed in literature, which
can be divided into external and internal indices (or criteria)
[11]: An external index is a measure of agreement between two
clusterings where the reference clustering is known a priori,
and the second results from a clustering procedure. Internal
indices are used to measure the quality of a clustering structure
without external information. For external indices the results
of a clustering algorithm based on a known cluster structure
of a data set (or cluster labels) are evaluated, while for internal
indices the results are evaluated using quantities and features
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TABLE I: Properties of images in criminal case data set:
number of examinable images for different image sizes, num-
ber of those images containing EXIF metadata and number of
different camera models in EXIF data.

Image Size Exam. Imgs. Imgs. EXIF (%) # Cameras

≥ 256× 256 3078 2097 (~68%) 60
≥ 512× 512 1961 1006 (~51%) 47
≥ 1024× 1024 851 765 (~90%) 35

inherent in the data set. The optimal number of clusters is
usually determined based on an internal validity index.

The main contribution of this paper is to show the challenges
of source camera clustering in a real world application and to
give an incentive for future research in this field. The paper is
organised as follows: Section II explains the motivation for this
work and some further details about the criminal case, Section
III describes the examined criminal case data set, Section IV
describes the experimental set up, Section V illustrates the
results of our experiments and the challenges faced during the
investigation, while Section VI concludes the paper.

II. MOTIVATION

The study presented in this paper is based on a criminal case
investigated by the Swedish Police Authority. The Swedish
National Forensic Centre (NFC) was consulted by the inves-
tigators regarding methods of victim identification in large
collections of images.

According to the investigators, an offender had been com-
municating and interacting with young adolescents through
an internet based communication application transmitting both
video and audio. The investigators also had information that
still images had been sent from the various victims to the of-
fender’s computer and observed that the confiscated computer
of a suspect contained a large amount of still images. Due to
the amount of data, the investigators requested a solution for
automatically processing this large collection of images, with
the aim of finding potential victims within it. The large number
of images made manual processing of each image unfeasible.

As part of this, NFC suggested that a clustering approach
could perhaps be performed by examining the PRNU of
images found on the confiscated computer. If images could
be organised by image source, the search for compromising
material depicting the victims could be performed more ef-
ficiently on a per-source basis. A methodology of clustering
images from unknown recording units based on PRNU was
not in use at NFC at that time. Due to time constraints,
the PRNU approach was abandoned in this specific instance.
However, the development of such a method for use in future
investigations has led to the study presented here.

III. CRIMINAL CASE DATA SET

The study presented in this paper is performed on digital
still images extracted from the criminal case presented in
the previous Section II. Still images, both allocated and
unallocated in the file system, have been extracted from the
investigated computer. Allocated data files are accessible and
readable by means of the file system on the digital storage
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Fig. 1: Distribution of image resolutions and ISO sensitivity
of images in the criminal case data set.

device, whereas unallocated data files are not. The unallocated
still images have been recovered using both commercial and
non-commercial forensic tools. These images are filtered based
on their uniqueness (calculated hash value) and file size fz ,
being in the range of 10 KB ≤ fz ≤10 MB. The final data
set contains 3078 images.

Figure 1 depicts the distribution of the images’ resolutions
and the images usable for different PRNU sizes, i.e. the size
of the extracted PRNU patch. From the graphs it is noticeable
that the number of the examinable images decreases as the
extracted PRNU’s size increases, because only images with a
size larger than the PRNU size can be examined. Furthermore,
it shows a histogram of the different ISO sensitivities used to
acquire the images.

Additional metadata information being stored in the EXIF
data is extracted and analysed. The EXIF metadata may
contain camera model names, suggesting that some of the
images might originate from the same camera model/unit.
Table I lists the number of examinable images and different
camera models retrieved from the EXIF data for each PRNU
size.

IV. EXPERIMENTAL SETUP

The goal of this work is to cluster images from potentially
multiple sensors in the data described in Section III, which was
found on a computer during a criminal case. The investigation
has been performed by extracting the PRNU with different
sizes from the image center: 256×256, 512×512 and 1024×
1024 pixels. This enables us to compare the PRNU of images
with different image sizes, which are mentioned in Section III.
The number of images available for the investigation decreases
with increasing PRNU size, which poses a trade-off between
the two. The PRNU extraction and calculation of the PRNU
fingerprints have been performed as proposed by Fridrich in
[12], but the Block-matching and 3D filtering (BM3D) filter
proposed by Dabov et al. [13] is used instead of the proposed
wavelet-based denoising filter. According to [14, 15], BM3D
is reported to yield a more consistent PRNU extraction on
large data sets compared to other denoising filters.

Four different source camera clustering techniques, based
on three distinct clustering principles, are investigated in this
work:
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• Agglomerative clustering: Blind Camera Fingerprinting
and Image Clustering (BCF)[5]

• Hierarchical clustering: Unsupervised Clustering of
Digital Images (UCDI)[2], Fast Image Clustering
(FICL)[3]

• Spectral clustering: Multi-Class Spectral Clustering
(MCSC) [16]

The outcome of all algorithms is a list of clusters with
associated images. More details on the algorithms can be
found in the corresponding papers. The clustering results of
the various source camera clustering algorithms are evaluated
in form of a cluster validity assessment, as described in Section
I. The internal CVIs used in this work, all computed using the
CVAP toolbox [10], are:
• Davies-Bouldin Index (DBI) [17]: Reflects the average

similarity between a cluster and its most similar one.
• Silhouette Index (SI) [18]: Index measuring the com-

pactness and separation of clusters.
• Calinski-Harabasz index (CHI) [19]: Measures

between-cluster isolation and within-cluster coherence.
• Dunn Index (DI) [20]: Index that maximises inter-cluster

distances, while minimising intra-cluster ones.
For DBI, smaller values indicate compact and well-separated
clusters, while for CHI and DI this is indicated by larger
values. For SI, negative values indicate an incorrect clustering,
values around 0 overlapping clusters and positive values a
dense clustering with high compactness and separation. Fur-
thermore, the following external CVIs have been computed
using the Scikit-learn toolbox (https://scikit-learn.org):
• Homogeneity (HOM) [21]: Measures if only members

of the same class are assigned to a cluster.
• Completeness (COM) [21]: Measures if all members of

the same class are assigned to the same cluster.
• Adjusted Mutual Information (AMI) [22]: Measures

the agreements of two clusterings ignoring permutations
and normalised against chance.

• Adjusted Rand Index (ARI) [23]: Measures the simi-
larity of two clusterings with adjustment for chance.

For all external indices, higher values (closer to 1) indicate
better results. AMI and ARI furthermore are adjusted against
chance, which means that they have a score of 0 when the
result could also be obtained by chance alone. For further
details on the various indices, the reader is referred to the
corresponding papers.

In order to assess the general performance of the used source
camera clustering algorithms and validity and reliability of
the CVIs, a source camera clustering has been performed on
a subset of the Dresden Image Database [24] first, where 30
images have been randomly selected for each of the 74 distinct
cameras.

V. RESULTS AND DISCUSSION

As described in the previous section, two different experi-
ments have been conducted in this work: First, the clustering
algorithms and CVIs are evaluated on a subset of the Dresden

(a) Dresden Image DB (b) Criminal Case

Fig. 2: Number of obtained clusters for the examined data sets.

Image Database with known ground truth. With the knowledge
gained from the first experiment, the same algorithms and
metrics are applied to the criminal case data. The results of
both experiments are presented in the remainder of this section
together with a discussion of the results.

A. Dresden Image DB

To begin with, the number of resulting clusters obtained
from applying the various source camera clustering algorithms
is illustrated in Figure 2(a). It can be observed, that a larger
PRNU size leads to an increase of clusters for BCF and UCDI,
while a decrease of the cluster number can be observed for
FIC and MCSC. When looking at the ground truth number of
74 clusters, BCF, FICL and UCDI come very close to it with
PRNU sizes of 512 × 512 and 1024 × 1024, while MCSC
yields very low cluster numbers for all PRNU sizes. It can
also be observed that FICL produces a very high number of
clusters compared to all other algorithms.

Obviously, the quality of the clustering outcome does not
rely on the number of resulting clusters alone. Thus, the results
of the external CVI are presented in Figure 3(a) to 3(d). As
expected from the number of clusters, MCSC shows the lowest
metric scores of all algorithms, making this algorithm unable
to cluster the data set properly. Since AMI and ARI are almost
equal to 0, the resulting cluster structure is almost equivalent
to a random assignment. BCF and UCDI show a very similar
behaviour: the larger the PRNU size, the better the metric
scores. With the largest PRNU size of 1024 × 1024 pixels,
good results can be achieved when looking at all external
CVIs, even the ones adjusted for chance. The overall best
results are achieved by FICL, which has the highest scores
of all investigated algorithms among all external clustering
indices. In particular, the stable HOM scores across all PRNU
sizes and the growing COM scores with larger PRNU sizes
are noteworthy.

Figure 3(e) to 3(h) illustrates the internal CVIs’ results. At
first glance, DBI and SI seem to reflect the external CVIs’
results, while CHI and DI do not. Furthermore, CHI seems to
be biased against a low number of clusters because MCSC for
all PRNU sizes and UCDI for 256 × 256 yield high scores.
DI indicates that the performance of MCSC is on par or even
better than other algorithms, which contradicts the previous
external CVIs’ results. Hence, CHI and DI do not seem to
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(a) BCF (b) FICL (c) MCSC (d) UCDI

(e) DBI (f) SI (g) CHI (h) DI

Fig. 3: External (a-d) and internal (e-h) CVI scores for the Dresden Image DB experiment.

be able to reliably assess the clustering performance in this
scenario. The DBI scores are very similar for the different
PRNU sizes, though rather large differences can be observed
in the previous external CVIs results. Nonetheless, the general
performance trends of the various algorithms are resembled in
the scores. Contrary to all other internal CVIs, the SI scores
have the highest consensus with the external CVIs regarding
the algorithm’s performance differences for the various PRNU
sizes as well as the relation performance differences among the
different algorithms themselves. Thus, SI can be considered as
the most trustworthy internal CVI in this case.

B. Criminal Case Data

With previous results on ground truth data in mind, we now
focus on the criminal case data presented in Section III. It
has to be noted, that for larger PRNU sizes less images can
be examined (illustrated in Table I). As it can be observed
in Figure 2(b), the various algorithms show a very similar
behaviour to the clustering of the Dresden Image DB. FICL
exhibits a very high amount of clusters, while MCSC exhibits
a very low amount. The number of clusters of UCDI is very
close to the number of models, while BCF’s one is above it.

The results of the external CVIs are illustrated in Figure
4(a) to 4(d). In order to evaluate the external CVIs for this
data set, some assumptions had to be made: The reference
clustering structure was generated with the EXIF data’s camera
model information, where images without metadata have been
excluded. In general, the external CVI scores of all algorithms
are significantly lower than the scores obtained on the Dresden
Image DB. Only HOM is very high, especially for BCF
which did not exhibit such high scores for ground truth data.
Considering the overall results, only FICL and BCF seem to
produce reasonable results. However, these results have to be
interpreted with caution, because the EXIF information might
have been manipulated and the reference clustering is based
on camera models and not unit level. Though, the number of

different camera models in the EXIF metadata could be seen
as lower bound for the expected number of clusters.

For the evaluation of the internal CVIs, all examinable
images are considered again for computing the internal CVI
scores, which are illustrated in Figure 4(e) to 4(h). CHI
and DI again show unintuitive results, which contradict all
other internal and external CVI results. DBI shows similar
scores to the clustering of the Dresden DB and attributes
similar performance to all clustering algorithms except MCSC,
while SI shows much higher performance gaps between the
various algorithms. FICL again yields the highest but highly
variable scores in this scenario, while a lower but consistent
performance is achieved by UCDI.

C. Discussion and Recommendations

The clustering of the criminal case data set poses many
challenges. It contains images from an unknown number of
different cameras taken under unknown acquisition conditions
and the images might have been subject to unknown post-
processings, such as cropping, scaling, rotation, contrast en-
hancement and other transformations. Datasets used in litera-
ture mostly contain images evenly distributed among different
cameras, which are acquired under controlled conditions using
the base ISO sensitivity of the cameras. In reality, however,
images might cover a wide range of different ISO sensitivities,
as shown in Figure 1. To the author’s best knowledge, there is
almost no literature which investigates and, more importantly,
proposes a solution to these challenges. Regarding scaling and
cropping, a brute force parameter search [25] and the use of
a computationally expensive filter (MACE-MRH) have been
proposed [26]. Both of these are not feasible for a clustering
scenario, since they must be recomputed for every image com-
parison. Furthermore, the effects of denoising, recompression
and demosaicing on the PRNU have been investigated in [27].

The data set furthermore contains images with different
resolutions as illustrated in Figure 1. It is well known, that
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(a) BCF (b) FICL (c) MCSC (d) UCDI

(e) DBI (f) SI (g) CHI (h) DI

Fig. 4: External (a-d) and internal (e-h) CVI scores for the criminal case data experiment.

a larger PRNU size leads to more reliable results, which we
confirmed in the first experiment investigating the Dresden
Image DB. However, when working with the criminal case
data set investigated in this work a forensic expert has to deal
with the trade-off between image size and number of images
available for investigation. The decision is made even more
difficult due to the fact that most images are of smaller size
and would not be examinable when choosing a larger PRNU
size.

The examined CVIs are also shown to not be very consis-
tent, especially the internal CVIs show contradicting results.
Because only internal CVIs can be used in a scenario with no
ground truth data, as in the case of the criminal case data set,
this leaves the selection of a reliable CVI an open question.
Our results suggest that the Silhouette Index (SI) might be the
most reliable index among the examined ones.

An alternative approach would be to use the EXIF metadata
to generate a reference clustering on model level and then
employ external CVIs to evaluate the resulting clustering,
as described in the previous section. However, this metadata
could potentially be manipulated and therefore not trustworthy.
Furthermore, images with missing EXIF information cannot be
examined with this approach. For this approach, we recom-
mend to use either the Adjusted Mutual Information (AMI)
or Adjusted Rand Index (ARI) to evaluate the clustering
result, due to them being adjusted for chance. This property is
valuable, especially when the number of clusters is expected
to be high compared to the number of investigated images.

Regarding the examined clustering algorithms, FICL shows
the most consistent performance, followed by BCF and UCDI.
We cannot recommend the use of MCSC in this scenario
because of the obtained results. The selection of the clustering
algorithm seems to be less important with increasing PRNU
size. For the scenario dealt with in this work, we recommend
FICL for the clustering, since the source camera clustering
would mainly be used for screening purposes, as described in

Section II, where the higher number of clusters compared to
the other algorithms is not a substantial issue.

In future work, we plan to investigate more recent clustering
algorithms [4, 6–9] as well as making use of the VISION
dataset [28] for clustering and CVI performance evaluation.

VI. CONCLUSION

The main aspect of this work is to examine a data set
comprised of a large amount of still images found on a
suspect’s confiscated computer during a criminal investigation.
The data is examined by employing different PRNU-based
source camera clustering algorithms, in order to organise the
images by their source camera(s). Thereafter, a quantitative
analysis of the clustering outcome is conducted by means of
different external and internal cluster validity indices (CVIs).

Before examining the criminal data set, we need to assess
the reliability and integrity of the clustering algorithms and
CVIs. This assessment is performed on a subset of the Dresden
Image Database, which enabled us to reveal the inability of
certain algorithms and CVIs to properly cluster and quan-
tify the output of this data with known ground truth. The
knowledge gained from this preliminary analysis enabled us
to better understand the contradicting results obtained when
examining the criminal case data. Finally, we gave some
recommendations on how to handle this kind of scenario. This
challenging data set left many open questions and issues for
future work, especially regarding the robustness of PRNU-
based algorithms in regard to real world data and how the
quality of a clustering can be reliably assessed.

Eventually, a robust and reliable source camera clustering
approach could be used to build a database holding PRNU sig-
natures of confiscated images of illicit content. If consistently
updated, such a database could reveal potential connections
and provide leads for further investigation.
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Abstract—In the recent past, face recognition systems have
been found to be highly vulnerable to attacks based on morphed
biometric samples. Such attacks pose a severe security threat
to biometric recognition systems across various applications.
Apart from some algorithms, which have been reported to
reveal practical detection performance on small in-house datasets,
approaches to effectively detect morphed face images of high
quality have remained elusive. In this paper, we propose a morph
detection algorithm based on an analysis of photo response non-
uniformity (PRNU). It is based on a spectral analysis of the
variations within the PRNU caused by the morphing process. On
a comprehensive database of 961 bona fide and 2,414 morphed
face images practical performance in terms of detection equal
error rate (D-EER) is achieved. Additionally, the robustness of
the proposed morph detection algorithm towards different post-
processing procedures, e.g. histogram equalization or sharpening,
is assessed.

I. INTRODUCTION

Automated face recognition represents a longstanding field
of research and a variety of methods have been proposed
over the past three decades [1], [2]. Generic face recognition
systems comprise four major modules: face detection, face
alignment, feature extraction, and comparison, where the latter
two are generally conceded as key modules. The potentially
high intra-class variability within human faces across time rep-
resents a main challenge in face recognition systems. Hence, in
order to achieve acceptable False Non-Match Rates (FNMRs)
deployments of face recognition systems are operated at rather
high False Match Rates (FMRs) [3].

In past years, researchers have pointed out diverse potential
vulnerabilities of biometric recognition systems [4]. In particu-
lar, face recognition systems have been found to be vulnerable
to presentation attacks [5]. Presentation attacks refer to a pre-
sentation of an attack instrument (e.g. print outs or electronic
displays) to the biometric capture device with the goal of
interfering with the operation of the biometric recognition
system [6]. More recently, attacks on face recognition systems
based on morphed biometric images have been presented
[7], [8], which represent a presentation attack at the time of
enrolment. Morphing techniques can be used to create artificial
biometric samples, which resemble the biometric information
of two (or more) individuals in image and feature domain.
If morphed biometric images are infiltrated to a biometric
recognition system during enrolment the subjects contributing
to the morphed image will both (or all) be successfully verified
against that single enrolled template. Hence, the unique link
between individuals and their biometric reference data is not

(a) Subject 1 (b) Morph (c) Subject 2

Fig. 1: Examples for bona fide and morphed face images

warranted. Fig. 1 shows an example of morphing two facial
images.

Attacks based on morphed biometric samples were first
introduced by Ferrara et al. [7]. Motivated by security gaps
in the issuance process of electronic travel documents, the
authors showed that commercial face recognition software
tools are highly vulnerable to such attacks, i.e. different images
of either subject are successfully matched against the morphed
image. In their experiments, decision thresholds yielding a
FMR of 0.1% have been used, according to the guidelines
provided by the European Agency for the Management of
Operational Cooperation at the External Borders (FRONTEX)
[3]. In a further study, the authors show that morphed face
images are realistic enough to fool human examiners [9].
Scherhag et al. [8] reported moderate detection performance
for benchmarking several general purpose texture descrip-
tors used in conjunction with machine learning techniques
to detect morphed face images. With respect to the above
attack scenario, it is stressed that a detection of morphed
face images becomes even more challenging if images are
printed and scanned. Hildebrandt et al. [10] suggest to employ
generic image forgery detection techniques, in particular multi-
compression anomaly detection, to reliably detect morphed
facial images. Kraetzer et al. [11] evaluate the feasibility of
detecting facial morphs with keypoint descriptors and edge
operators. The benefits of deep neural networks for detecting
morphed images has been recently investigated by Ramachan-
dra et al. [12].

Gomez-Barrero et al. [13] proposed the first theoretical
framework for measuring the vulnerability of biometric sys-
tems to attacks based on morphed biometric samples. Further,
key factors which take a major influence on a system’s
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vulnerability to such attacks have been identified, e.g. the
shape of genuine and impostor score distributions or the
FMR the system is operated at. To evaluate the vulnera-
bility of biometric systems to attacks based on morphed
images or templates, Scherhag et al. [14] introduced new
metrics for vulnerability reporting, which strongly relate to
the metrics defined in [15]. In addition, the authors provide
recommendations on the assessment of morphing techniques.
It is emphasized that unrealistic assumptions with respect to
the quality of morphed biometric samples might cloud the
picture regarding the performance of detection algorithms. It
is important to note that so far there is no publicly available
database of morphed face images and no publicly available
morph detection algorithms.

In this work, the photo response non-uniformity (PRNU) is
used to detect morphed face images. The PRNU [16] of an
imaging sensor has emerged as an important tool for diverse
forensic tasks including the detection of digital forgeries. It
is shown that the proposed region-based analysis of PRNU
behaviour reliably detects morphed face images. On a com-
prehensive database of bona fide and morphed face images
practical detection performance is achieved. Moreover, we
estimated the impact of different image post-processing steps
applied to morphed face images on the detection performance
of the proposed approach.

This paper is organized as follows: details on the employed
extraction of PRNU signals are summarized in Sect. II. The
proposed morph detection system is described in detail in Sect.
III. Experimental results are presented in Sect. IV. Finally,
conclusions are given in Sect. V.

II. PRNU EXTRACTION

The PRNU is a noise-like pattern, originating from slight
variations among individual pixels during the conversion of
photons to electrons in digital image sensors. It forms an
inherent part of those sensors, whereas this weak signal is
embedded into each and every image they capture.

This systemic and individual pattern is essentially an unin-
tentional stochastic spread-spectrum watermark that survives
processing, such as lossy compression or filtering. The extrac-
tion of the PRNU noise residual from an image is performed
by applying Fridrich’s approach [17]. For each image I the
noise residual WI is estimated as described in Eq. (1),

WI = I − F (I) (1)

where F is a denoising function which filters out the sensor
pattern noise. In this work, the denoising filter proposed by
Mihcak et al. [18] is used in conjunction with a filtering
distortion removal (FDR) PRNU enhancement proposed by
Lin et al. [19]. Said enhancement aims at improving the
SNR of the extracted PRNU noise residual WI in a two step
process by abandoning certain components that are severely
contamined by filtering errors introduced during the denoising
of images. For further details on the denoising filter and FDR
PRNU enhancement we refer to [18], [19]. Fig. 2 presents

(a) Original (b) PRNU (c) FDR enh.

Fig. 2: Example of PRNU extraction and FDR enhancement
for a pre-processed face image.

(a) Bona fide (b) Morphs

Fig. 3: DFT magnitude spectra of the PRNUs extracted from
bona fide and morphed face images, averaged over the whole
dataset.

the extracted PRNU and FDR enhancement result for an
exemplary image.

The following essential criteria, which have been described
by Fridrich et al. [20], make the PRNU well suited for the
face morph detection scenario dealt with in this work:

1) Universality: all imaging sensors exhibit PRNU.
2) Generality: the PRNU is present in every picture inde-

pendently of the scene content, with the exception of
completely dark or overexposed images.

3) Robustness: it survives lossy compression, filtering,
gamma correction, and many other typical processing
procedures. It is even reported to survive high quality
printing and scanning [21].

We decided to use the PRNU for the morphing detection,
because it is unrelated to the image content and is present
in every image acquired with a digital camera, as described
above. Thus, it offers significant advantages over analysing
other high-frequency image components.

By investigating the spectral characteristics of the PRNU it
is possible to detect whether the images have been subject
to further processing, e.g. non-geometrical operations have
an influence on the strength of the PRNU [17]. By taking
into consideration the processing steps applied during the face
morphing, which consist of non-linear warping and averaging
operations introducing interpolation artefacts, the distribution
of the PRNU values is expected to change after such process-
ing operations. Fig. 3 shows the discrete Fourier transform
(DFT) magnitude spectra obtained by averaging the PRNU
of all bona fide and morphed face images contained in the
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investigated dataset, which is described in Sect. IV. It clearly
reveals a reduction of the high-frequency components within
the DFT magnitude spectrum for the morphed images, as
compared to the bona fide images. Furthermore, the spectrum
is compressed, causing the area of the larger magnitudes to
shrink. These effects are likely caused by the averaging and
non-linear warping operations that occur during the morphing
process and change the distribution of the DFT magnitudes.

Our approach aims at exploiting these effects in order to
perform a blind no-reference face morph detection, which is
presented in the following section.

III. DETECTION OF MORPHED FACE IMAGES

As stated in the previous section, the goal of the proposed
PRNU-based morph detection system is to exploit the spectral
alterations introduced by the non-linear warping during the
face morphing process within the PRNU to be able to discrimi-
nate between bona fide and morphed images. Furthermore, the
discrimination is performed in a blind manner, i.e. without the
need for any trusted bona fide reference image of one of the
morphed subjects.

The proposed system follows the divide and conquer prin-
ciple and consists of four major components: (A) PRNU ex-
traction, (B) PRNU splitting, (C) cell-wise feature extraction,
and (D) cell aggregation. The remainder of this section will
discuss the different processing steps in more detail.

A. PRNU Extraction

The PRNU for each individual image is extracted, as
described in Sect. II, by using the wavelet-based denoising
filter by Mihcak et al. [18]. The extracted PRNU is then further
enhanced using the FDR (frequency distortion removal) PRNU
enhancement proposed by Lin et al. [19]. The PRNU is always
extracted for the whole image, whereat every colour image is
converted to grey-scale first according to [17]. The outcome
of the PRNU extraction and PRNU enhancement process is
illustrated in Fig. 2.

B. PRNU Splitting

The proposed system is able to work with the PRNU from
the whole image, as well as arbitrary splits of the PRNU into
multiple equisized cells. In this work, we investigate different
cells configurations, from the whole image as a single cell up
to N = 10 × 10 cells. A larger number of cells is expected
to further expose the non-linear transformations of the PRNU
during the morphing process by putting stronger emphasis on
local variations within an image. Eventually, we obtain N
different cells C1, . . . , CN . Fig. 4 shows an example of how
the PRNU is split into N = 2× 2 equisized cells.

C. Cell-wise Feature Extraction

The feature extraction is performed for every cell individu-
ally. The first step consists in obtaining the frequency spectrum
of the PRNU in each cell, which is done by means of the
discrete Fourier transform (DFT). The resulting magnitude
spectrum, as already shown in Sect. II, reveals the alterations

Fig. 4: Example for splitting the PRNU into N = 4 equisized
cells (2× 2).

of the PRNU signal caused by the morphing process. To
quantify these effects, we calculate the histogram of the DFT
magnitudes in order to represent the magnitude distribution
within the spectrum. Fig. 5 shows the DTF magnitude spectra
of a bona fide and morphed sample image with the correspond-
ing histograms, where a shift of the magnitude distribution
can be observed. All DFT magnitude histograms have been
constrained to the same universal range of [0, 8] and are
divided into 100 bins. The range has been established with
the values obtained from the DFT of all extracted PRNUs.

Based on the observations from Sect. II, this magnitude
histogram forms the basis for the different morph detection
approaches in this work. We select the position of the peak
Ppos in the histogram and its height or value Pval as being
suited for the discrimination between bona fide and morphed
images. We obtain Pval and Ppos as follows:

Pval = max
n=1...b

H(n) (2)

Ppos = arg max
n=1...b

H(n) (3)

where b is the number of bins and H is the histogram of a
cell. Ppos describes the position (bin) of the peak in the DFT
magnitude histogram, while Pval represents the value (relative
frequency) of the corresponding bin.

Furthermore, we consider the product of the peak position
and value Ppv within the DFT magnitude histograms as a third
combined feature:

Ppv = max
n=1...b

H(n) ∗ arg max
n=1...b

H(n) (4)

Finally, we obtain a scalar value P for each PRNU cell,
which is calculated using one of the the three approaches
defined in Eqs. 2 to 4.

D. Cell Aggregation

As final step, the extracted features P for each cell Cn, in
form of scalar values, are aggregated to obtain a global score
S for the image. We investigated various strategies, whereas
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(a) Bona fide image (b) Morphed image (c) DFT magnitude histograms

Fig. 5: Comparison of DFT magnitude spectra and histograms of a bona fide and a morphed sample image.

TABLE I: Database used for experimental evaluations

Gender No. of No. of Bona fide Morphed
subjects images images images

Male 58 2,210 499 1,711
Female 39 1,165 462 703

All 97 3,375 961 2,414

we will present the two best performing ones. The aggregation
strategies used in this work are:

Smean =
1

N

N∑

n=1

Pn (5)

Srms =

√√√√ 1

N

N∑

n=1

P2
n (6)

where N is the number of total PRNU cells and Pn is the
feature (scalar value) obtained for the PRNU cell Cn, as
described in the previous processing step.

Smean simply averages the scores of the individual cells,
while Srms characterizes the root mean square of the scores
of all PRNU cells within an image. Eventually, we obtain a
single scalar value S per image using one of the Eqs. 5 or
6. The value of S then indicates whether a face image has
been created by morphing other face images or not. The final
decision for a face image can be taken by a simple threshold.

IV. EXPERIMENTS

In the following subsection, the generation of morphed
face images and applied post-processing steps are described.
In subsequent subsections, experimental results are reported
which comprise a face recognition vulnerability assessment
and a morph detection performance estimation.

A. Morph Generation and Post-processing

Experiments are performed on a subset of the FRGCv2 face
database. A total number of 961 frontal faces with neutral
expression have been manually selected and ICAO compliance
has been verified, i.e. the distance between the eyes of a

(a) Subject 1 (b) Morph (c) Subject 2

Fig. 6: Examples of bona fide and morphed face images of
subjects of same gender, ethnicity and age group

face has to be at least 90 pixels [22]. Details about the
employed database are listed in Table I. In order to morph
two face images the dlib facial landmark detector [23] is
applied to both images. Subsequently, a Delaunay triangulation
is performed to the average of corresponding points. An affine
transform is then applied to the sets of triangles in both
face images resulting in two warped images which are alpha
blended using a alpha value of 0.5. In the pre-processing
stage an image is segmented and normalized according to eye
coordinates detected by the landmark detector. Subsequently,
the normalized region is cropped to 320×320 pixels using
predefined offsets to ensure that the morph detection algorithm
is only applied to the facial region. Based on this subset 2,414
morphed faces have been automatically generated for pairs of
subjects of same gender using the OpenCV library. Example
images of bona fide and morphed face images are shown in
Fig. 6, which illustrates the high quality of morphed face
images being well in the quality limits set forth by ICAO
and ISO/IEC standards.

In addition, we also investigate the robustness of the
proposed morphing detection system against different post-
processing techniques. For this work we investigate four dif-
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(a) Bona fide (b) Morph (c) EQU (d) SCL50 (e) SCL75 (f) SHRP

Fig. 7: Bonafide image (a) and results of applying the different post-processings to a morphed image (b to f). Below, the
corresponding DFT magnitude spectra are shown (averaged over the whole dataset).

ferent techniques, which aim at further modifying the quality
of the morphed face images:

• EQU: Contrast limited adaptive histogram equalization
(CLAHE)

• SCL50: Downscaling the image to 50% of its original size
and subsequent upscaling

• SCL75: Downscaling the image to 75% of its original size
and subsequent upscaling

• SHRP: Sharpening the image using unsharp masking
The results of applying these post-processings to a morphed
image and how they affect its DFT magnitude spectrum are
demonstrated in Fig. 7.

B. Face Recognition Vulnerability Assessment

The attack success of the generated morphing attacks on a
commercial-of-the-shelf face recognition system is evaluated
using the metrics defined in [14]. In particular, the Relative
Morph Match Rate (RMMR) and the ProdAvg Mated Morph
Presentation Match Rate (ProdAvg-MMPMR).

When employing the default decision threshold of the COTS
face recognition system a near-perfect MMPMR and RMMR
(> 0.99) is obtained for using original morphed face images as
well as post-processed. This means almost all face images of
subjects contributing to a morphed face image are successfully
matched against it which emphasizes the necessity of a robust
morph detection subsystem. While the post-processings have a
negligible impact on the vulnerability of the face recognition
systems to morphing attacks, they should hamper the auto-
matic detection of morphs.

C. Morph Detection Performance Evaluation

The performance of the detection algorithms is reported
according to metrics defined in ISO/IEC 30107-3 [15]. The
Attack Presentation Classification Error Rate (APCER) is de-
fined as the proportion of attack presentations using the same
presentation attack instrument species incorrectly classified as

bona fide presentations in a specific scenario. The Bona Fide
Presentation Classification Error Rate (BPCER) is defined as
the proportion of bona fide presentations incorrectly classified
as presentation attacks in a specific scenario. The D-EER,
i.e. the operation point where APCER = BPCER, is used
as general operation point and reported for images with and
without post-processing. In addition, the BPCER10, i.e. the
operation point where APCER = 10%, and BPCER20, i.e.
the operation point where APCER = 5%, are estimated.

The performance of the proposed morph detectors is listed
in Table II. The Feature column contains different combina-
tions of extracted features P and aggregation strategies S,
which are defined in Sect. III. The basic attempt using the
whole image as a single cell, denoted as 1 × 1 in the table,
is suitable to detect morphed face images with an D-EER as
low as 2.1%. It is possible to improve the performance by
splitting the image into cells, however, if the fragmentation is
smaller than 8 × 8 cells, where a D-EER as low as 1.4% is
achieved, the detection performance decreases again. Due to
the lack of robustness to histogram shifts some post-processing
techniques, e.g. equalization (EQU) and sharpening (SHRP),
are severely influencing the performance of the algorithm.
Note that depending on the direction of the histogram shift the
results might even improve, as for SCL. This lack of robustness
can be partially compensated for SHRP by employing a higher
fragmentation of 8 × 8 cells, which is able to lower the D-
EER to 11.9%. However, the EQU post-processing cannot
be compensated at all. Clearly, further improvement of the
detection algorithms is needed to counter this type of post-
processing. The performance of the detectors highly depends
on the type of aggregation (only the two best performing
ones are presented in this work), as well as on the number
of cells. On the given dataset the best overall performance
was achieved with Ppos|Smean and Ppos|Srms with 8×8 cells
(marked bold in Table II), yielding a D-EER as low as 2.2% on
the original morphed images, 0.0% to 0.8% on scaled images
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TABLE II: Performance of proposed PRNU-based morph detectors
D-EER BPCER10 BPCER20

Feature Cells Morph EQU SCL50 SCL75 SHRP Morph EQU SCL50 SCL75 SHRP Morph EQU SCL50 SCL75 SHRP
Pval|Smean

1

2.1% 34.8% 0.7% 2.2% 46.4% 0.6% 52.2% 0.2% 0.7% 78.4% 1.1% 58.5% 0.3% 1.3% 85.9%
Pval|Srms 2.1% 34.8% 0.7% 2.2% 46.4% 0.6% 52.2% 0.2% 0.7% 78.4% 1.1% 58.5% 0.3% 1.3% 85.9%
Ppos|Smean 5.1% 36.4% 4.5% 0.3% 20.1% 1.5% 68.2% 1.4% 0.0% 39.4% 5.3% 77.4% 3.8% 0.0% 57.0%
Ppos|Srms 5.1% 36.4% 4.5% 0.3% 20.1% 1.5% 68.2% 1.4% 0.0% 39.4% 5.3% 77.4% 3.8% 0.0% 57.0%
Ppv |Smean 2.2% 32.9% 0.9% 0.2% 36.9% 0.2% 50.5% 0.1% 0.0% 64.3% 0.6% 59.1% 0.2% 0.0% 77.3%
Ppv |Srms 2.2% 32.9% 0.9% 0.2% 36.9% 0.2% 50.5% 0.1% 0.0% 64.3% 0.6% 59.1% 0.2% 0.0% 77.3%
Pval|Smean

2

2.0% 36.3% 0.7% 2.0% 45.8% 0.5% 53.2% 0.1% 0.7% 77.4% 1.0% 59.9% 0.3% 1.1% 84.3%
Pval|Srms 2.0% 36.3% 0.6% 2.0% 45.9% 0.5% 53.0% 0.1% 0.7% 77.7% 1.0% 59.8% 0.3% 1.1% 84.6%
Ppos|Smean 3.3% 33.4% 2.5% 0.2% 17.1% 0.9% 63.2% 0.8% 0.0% 31.3% 2.1% 74.3% 1.4% 0.0% 49.6%
Ppos|Srms 3.2% 33.1% 2.4% 0.2% 17.0% 0.8% 62.8% 0.7% 0.0% 31.1% 1.9% 73.5% 1.3% 0.0% 47.4%
Ppv |Smean 1.7% 32.8% 1.0% 0.1% 32.6% 0.4% 50.7% 0.1% 0.1% 60.7% 0.8% 60.3% 0.3% 0.1% 74.0%
Ppv |Srms 1.6% 32.6% 1.0% 0.1% 33.1% 0.4% 50.4% 0.1% 0.1% 61.0% 0.8% 60.0% 0.3% 0.1% 74.4%
Pval|Smean

4

1.9% 35.3% 0.5% 3.6% 40.5% 0.7% 51.4% 0.1% 1.7% 64.5% 1.1% 58.2% 0.2% 3.0% 72.8%
Pval|Srms 1.9% 35.1% 0.5% 3.6% 41.3% 0.7% 51.3% 0.1% 1.8% 66.0% 1.1% 58.3% 0.2% 2.9% 73.6%
Ppos|Smean 2.9% 33.0% 1.5% 0.1% 12.3% 0.2% 59.9% 0.1% 0.0% 16.5% 1.1% 71.8% 0.4% 0.0% 39.5%
Ppos|Srms 2.8% 32.8% 1.4% 0.1% 12.3% 0.2% 59.5% 0.1% 0.0% 16.6% 1.0% 71.4% 0.4% 0.0% 40.0%
Ppv |Smean 1.5% 32.3% 0.5% 0.1% 22.0% 0.2% 48.9% 0.0% 0.0% 41.0% 0.4% 57.8% 0.1% 0.0% 58.3%
Ppv |Srms 1.5% 32.0% 0.5% 0.1% 23.7% 0.2% 48.5% 0.0% 0.0% 43.7% 0.4% 57.6% 0.1% 0.0% 60.7%
Pval|Smean

8

3.2% 35.5% 0.4% 7.4% 34.5% 1.2% 53.5% 0.0% 6.2% 54.5% 2.1% 61.1% 0.1% 9.3% 64.1%
Pval|Srms 3.3% 35.6% 0.4% 7.6% 35.8% 1.3% 53.5% 0.0% 6.5% 56.7% 2.3% 61.0% 0.1% 10.1% 65.9%
Ppos|Smean 2.2% 33.8% 0.7% 0.0% 10.8% 0.1% 60.2% 0.0% 0.0% 11.7% 0.6% 71.5% 0.1% 0.0% 30.8%
Ppos|Srms 2.3% 33.6% 0.8% 0.0% 11.0% 0.1% 59.8% 0.0% 0.0% 13.2% 0.6% 71.4% 0.1% 0.0% 32.8%
Ppv |Smean 1.4% 31.8% 0.3% 0.1% 15.9% 0.2% 51.9% 0.0% 0.0% 24.0% 0.4% 60.5% 0.0% 0.0% 44.2%
Ppv |Srms 1.5% 31.3% 0.3% 0.0% 17.3% 0.2% 51.2% 0.0% 0.0% 26.9% 0.4% 60.2% 0.0% 0.0% 48.8%
Pval|Smean

10

3.8% 36.7% 0.3% 9.0% 33.1% 1.5% 54.5% 0.0% 8.3% 51.2% 3.0% 60.4% 0.1% 13.2% 61.3%
Pval|Srms 3.9% 36.7% 0.3% 9.3% 34.1% 1.6% 54.8% 0.1% 8.6% 53.2% 3.3% 60.7% 0.1% 14.3% 63.0%
Ppos|Smean 2.4% 34.9% 0.6% 0.0% 10.5% 0.0% 61.7% 0.0% 0.0% 11.2% 0.7% 71.6% 0.0% 0.0% 28.4%
Ppos|Srms 2.6% 34.6% 0.6% 0.0% 10.9% 0.0% 61.3% 0.0% 0.0% 12.3% 0.8% 71.6% 0.0% 0.0% 30.3%
Ppv |Smean 1.8% 32.8% 0.2% 0.1% 13.9% 0.1% 53.3% 0.0% 0.0% 20.8% 0.3% 62.7% 0.0% 0.0% 41.7%
Ppv |Srms 1.8% 32.4% 0.2% 0.0% 15.0% 0.1% 52.7% 0.0% 0.0% 25.0% 0.3% 62.3% 0.0% 0.0% 46.1%

and as low as 10.8% on sharpened images. An appropriate
choice for the amount of used cells obviously relates on the
resolution of the processed image. Overall, it can be observed
that both aggregation strategies Smean and Srms obtain similar
results across all extracted features. Furthermore, a higher
fragmentation of up to 8 × 8 cells, and therefore analysis
of the local alterations within the image, is observed to be
beneficial to the detection performance. The position of the
peak Ppos in the DFT magnitude spectrum emerged as the
most stable among the extracted features across all applied
post-processings.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed an automated morph detection for
face images based on the PRNU. The procedure of creating
morphed face images takes influence on the property of PRNU
values, in particular across different image regions. It is shown
that a cell-based PRNU analysis allows for a reliable detection
of morphed face images. Furthermore, we analysed the impact
of different image post-processing techniques on the detection
performance, where the proposed detection system was robust
against scaling and sharpening of the images, and only failed
for the applied histogram equalisation. Deeper investigation
and an improvement of the detection approaches is clearly
needed to counter the failed detection of morphed images in
this case.

Future studies might also include a vulnerability analysis
of proposed detection algorithms to attacks based on PRNU
insertion/substitution. Additionally, an investigation of the

proposed morph detection systems for images from different
cameras as well as for printed and scanned images could be
subject to future work.
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Abstract

In this work, a method to detect morphed face images
based on Photo Response Non-Uniformity (PRNU) is pre-
sented. More specifically, the variance of PRNU-based fea-
tures across image cells is estimated to distinguish bona fide
from morphed and potentially post-processed morphed face
images. The proposed morph detector is shown to be ro-
bust against post-processing techniques, which are likely to
be applied to conceal the morphing process, e.g. histogram
equalisation or image sharpening. Tested on a database
of 961 bona fide and 2,414 automatically morphed face
images, a detection equal error rate (D-EER) of 10.5% is
obtained over all investigated attacks, including unaltered
morphed images and various post-processing techniques.

1. Introduction

Automated face recognition [36, 17] represents a long-
standing field of research in which a major break-through
has been achieved by the introduction of deep neural net-
works [33, 24]. Resulting performance improvements
paved the way for deployments of face recognition tech-
nologies in diverse application scenarios, ranging from mo-
bile device access control to Automated Border Control
(ABC). However, recently researchers found that the in-
tended generalisability of deep face recognition systems
also increases their vulnerability against attacks, e.g. spoof-
ing attacks (a.k.a. presentation attacks) [22]. Most notably,
a specific attack against face recognition systems based on
morphed face images has been proposed in [3].

Morphing techniques can be used to create artificial bio-
metric samples, which resemble the biometric information
of two (or more) individuals in image and feature domain.
In order to morph two face images, an attacker usually de-
fines corresponding landmarks and a triangulation of land-

(a) Subject 1 (b) Morph (c) Subject 2
Figure 1: Examples for bona fide and morphed face images

marks is done on both images. The landmarks are then av-
eraged to a single set of landmarks and both images are
warped according to the resulting triangulation. Finally,
alpha-blending is performed. Realistic morphed face im-
ages can be generated by non-experts employing easy-to-
use face morphing software which can be purchased at a
reasonable price, e.g. FantaMorph1. Fig. 1 depicts an ex-
ample of morphing two face images.

It has been shown that morphed face images are real-
istic enough to fool human examiners [4]. This means,
there is a risk that morphed biometric images are infiltrated
to a biometric recognition system at enrolment, e.g. dur-
ing the issuance process of electronic travel documents. In
[3] commercial face recognition software tools have been
exposed to be highly vulnerable to attacks based on mor-
phed face images. This means that the subjects contribut-
ing to the morphed image were both (or all) successfully
matched against that single enrolled morphed image. These
findings have been confirmed by other researchers, e.g. in
[32]. In their vulnerability analysis, researchers used deci-
sion thresholds yielding a False Match Rate (FMR) of 0.1%,
following the guidelines provided by the European Agency
for the Management of Operational Cooperation at the Ex-

1FantaMorph: http://www.fantamorph.com/

978-1-5386-7180-1/18/$31.00 c©2018 IEEE
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ternal Borders (FRONTEX) [1].
In the recent past, researchers have presented different

approaches to distinguish bona fide from morphed face im-
ages, see Sect. 2. Proposed approaches either processes a
single potentially morphed image, i.e. no-reference morph
detection, or a potential morph together with a trusted live
capture from an authentication attempt, i.e. differential
morph detection. In the no-reference scenario different me-
dia forensic concepts have been applied [23, 16, 2]. Adapta-
tions of such techniques, which are designed to detect dig-
ital forgeries, revealed promising results for the detection
morphed face images. In particular, a PRNU-based detec-
tion of morphed face images was introduced in [2]. The
extraction of the PRNU and an analysis of its distributions
across image cells has been reported to reliably detect mor-
phed face images, while the approach fails if image post-
processing, e.g. histogram equalisation, is applied to gener-
ated morphs.

The work presented in this paper was inspired by the ap-
proach of [2] and proposes a PRNU variance analysis for
morphed face image detection. It is shown that an increased
variance of different PRNU statistics across image cells is
a reliable indicator for image morphing. Further, the im-
proved PRNU-based morph detector is shown to be resis-
tant against common image post-processing methods. Fi-
nally, the presented approach is expected to be more robust
against arbitrary post-processings, since it analyses image
block interrelations rather than image features which might
specifically result from a distinct morphing process applied
to a certain face database.

This paper is organized as follows: related works are
briefly discussed in Sect. 2. Fundamentals of PRNU extrac-
tion are explained in Sect. 3. The proposed morph detection
method is described in detail in Sect. 4. Experimental re-
sults are reported in Sect. 5. Finally, conclusions and future
works are summarized in Sect. 6.

2. Related Work
The topic of face morph detection has sparked the inter-

est of numerous research laboratories working in the field of
biometrics. Efforts to define evaluation metrics for morph
detection and vulnerability analysis have already been made
[28, 10], see Sect. 5. A recent overview on conducted
vulnerability analyses and morph detection methods can be
found in [20]. Presented approaches can be coarsely cat-
egorized with respect to the considered morph detection
scenario. The majority of works assume the challenging
no-reference scenario while some implement a differential
morph detection which is motivated by the fact that trusted
live captures are available in ABC scenarios.

A differential morph detection method referred to as de-
morphing was proposed in [5]. Within this approach a
trusted live capture is aligned to a potential morph and sub-

tracted from it in the image domain. The resulting image
is then compared against the trusted live capture. A morph
is detected if the biometric decision changes from “accept”
to “reject”. Robustness of de-morphing against slight face
pose variations has been confirmed in [6]. Nevertheless, the
authors note that in an ABC scenario the performance of
de-morphing might degrade due to potential variations of
quality and environmental conditions.

Several researchers have suggested the use of gen-
eral purpose texture descriptors, e.g. Local Binary Pat-
terns (LPB) or Binarized Statistical Image Features (BSIF),
which have been employed widely for biometric recogni-
tion. Machine learning-based classifiers, e.g. Support Vec-
tor Machines (SVMs), are either trained directly on ex-
tracted feature vectors for no-reference morph detection
[25, 29, 14] or differences between feature vectors can (ad-
ditionally) be employed in a differential scenario [32]. Also,
face-specific features such as differences between landmark
positions or angles could be employed in a differential sce-
nario which so far has been shown to reveal rather mod-
erate detection performance [27]. Depending on the fea-
ture representation of texture descriptors the inputs of clas-
sifiers have to be adapted, e.g. for Scale-Invariant Fea-
ture Transform (SIFT) the number of extracted keypoints
has been shown to be suitable for the task of morph de-
tection [16, 32]. Score level fusions of different types of
features have been proposed, too [30]. In particular, in
the no-reference scenario classifiers may overfit to distinct
micro texture features. These can be dataset-specific fea-
tures which are altered or introduced by the applied mor-
phing process. It has been shown that the performance of
morph detectors based on general purpose texture descrip-
tors might significantly decrease if training and test images
stem from a different source, i.e. face database [31].

The use of convolutional neuronal networks for no-
reference morphed face detection has been proposed by
different researchers reporting promising results [26, 35].
Again, with these methods there is potentially a prob-
lem of overfitting. In particular, resulting deep classifiers
may favour image locations where artefacts, e.g. shadows
around the iris region, are likely to appear due to an imper-
fect automated morph creation process. Further, published
approaches have been trained and tested for a single morph
generation method, i.e. generalizability still has to be eval-
uated.

Focusing on the no-reference scenario diverse ap-
proaches related to media forensics have been presented. In
different works, the detection of JPEG double-compression
artefacts has been suggested for the purpose of morph de-
tection [19, 10, 20]. However, the presence of such arte-
facts implies a strong assumption on the image format of
face images used for morph generation as well as the re-
sulting morphed face image. The International Civil Avi-
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ation Organization (ICAO) suggests face image data to be
stored in accordance with the specifications established by
the International Organization for Standardization (ISO) in
[12]. More specifically, the ICAO recommends face im-
ages to be stored in electronic travel documents at an av-
erage compressed sizes of 15kB to 20kB in JPEG or JPEG
2000 format [11]. Hence, depending on the image size and
the employed compression algorithm the detection of JPEG
double-compression artefacts might not be feasible. In [34]
a morph detection method based on reflection analysis in
face images is presented. The lightning direction is esti-
mated based on reflections detected in the eyes of a po-
tentially morphed image. Subsequently, reflections on the
nose of the face are analysed. However, ISO requires hot
spots and specular reflections to be absent in face images
used in electronic travel documents. In particular, diffused
lighting, multiple balanced sources or other lighting meth-
ods shall be used, i.e. a single bare “point” light source
like a camera mounted flash is not acceptable for imaging
[12]. Morph detection methods based on continuous image
degradation have been proposed in [23, 16]. The basic idea
behind these methods is to continuously degrade the image
quality, e.g. by using JPEG compression, to create multiple
artificial self-references of a face image. The distances from
these references to the original image are then analysed for
morph detection. Additionally, PRNU-based morph detec-
tion has been proposed in [2]. This approach is described in
more detail in Sect. 4.

Despite promising results reported in many works a re-
liable detection of morphed face images still represents
an open research challenge. Note that the generalizabil-
ity/robustness of published approaches has not been shown,
as these have been mostly trained and tested on single
databases using a single morph generation algorithm. Fur-
ther, the likely application of image post-processing tech-
niques, e.g. image sharpening, is neglected in most works.
Lastly, so far there are no publicly available database of
bona fide and morphed face images and no publicly avail-
able morph detection algorithms.

3. PRNU Extraction and Characteristics
Digital image forensics aims at acquiring knowledge on

visual contents and acquisition devices by evaluating the
traces that are left on the data during the acquisition and in
the subsequent processing. The PRNU of imaging sensors
[7] emerged as an important forensic tool. It can be used
for a variety of important tasks, such as device identifica-
tion, device linking, recovery of processing history, and de-
tection of digital forgeries. The PRNU is an intrinsic prop-
erty of all digital imaging sensors, which is characterised
by slight variations among individual pixels in their abil-
ity to convert photons to electrons. Consequently, every
sensor casts a weak noise-like pattern onto every image it

captures. This noise-like pattern can be considered as an
unintentional stochastic spread-spectrum watermark.

In [7] Fridrich presents an approach on how to extract
the PRNU noise residual from an image. For each image I
the noise residual WI is estimated as described in Eq. (1),

WI = I − F (I) (1)

where F is a denoising function which filters out the sensor
pattern noise. In this work, the denoising filter proposed by
Mihcak et al. [21] is used in conjunction with a Filtering
Distortion Removal (FDR) PRNU enhancement proposed
by Lin et al. [18]. Said enhancement aims at improving the
SNR of the extracted PRNU noise residual WI in a two step
process by abandoning certain components that are severely
contamined by filtering errors introduced during the denois-
ing of images. For further details on the denoising filter and
FDR PRNU enhancement we refer to [21, 18]. Fig. 2 shows
the extracted and enhanced PRNU for an exemplary face
image.

The PRNU offers some essential advantages for the de-
tection of morphed face images. First of all, as stated by
Fridrich et al. [8], all digital image sensors exhibit PRNU,
which makes this sensor noise virtually present in every
captured image. Furthermore, it is independent from the
scene content and even robust against typical processing
procedures like lossy compression or gamma correction,
and it is even reported to be robust against high quality
printing and scanning [9].

These criteria make the PRNU well suited for the morph
detection scenario investigated in this work, because it
offers significant advantages over analysing other high-
frequency image components: First and foremost the PRNU
is present in every image acquired with a digital camera,
hence virtually every face image. In addition, in princi-
ple the PRNU is unrelated to the image content, but its
high-frequency components might interfere with the PRNU.
However, this interference can be attenuated by different
PRNU enhancement approaches.

(a) Original (b) PRNU

Figure 2: Extracted and enhanced PRNU for an exemplary
face image.
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(a) Bona fide (b) Morph (c) EQU

(d) SCL50 (e) SCL75 (f) SHRP
Figure 3: Averaged PRNU DFT magnitude spectra of bona
fide images (a), morphed images (b) and post-processed
morphed images (c to f).

The spectral characteristics of the PRNU reveal whether
an image has been subject to further processing [7]. Since
face morphing usually comprises different non-linear warp-
ing and averaging operations, the distribution of the PRNU
values is affected by these operations, as previously shown
in [2]. The PRNU’s DFT magnitude spectrum of mor-
phed images shows a reduction of the high-frequency com-
ponents as well as a compression of the whole spectrum,
which is illustrated in Fig. 3b.

Debiasi et al. [2] furthermore investigated the effects of
various post-processings on the PRNU’s DFT magnitude
spectrum. They applied four different post-processings to
the morphed face images: Histogram equalisation (EQU),
downscaling and subsequent upscaling (SCL50, SCL75) and
sharpening (SHRP). More details are given in Sect. 5, while
the effects of these operations are presented in Fig. 3. One
can observe that the DFT spectra of SCL50 and SCL75 are
clearly discriminable from bona fide images, whereas the
spectra of SHRP and especially EQU show a high similar-
ity to bona fide images.

4. Detection of Morphed Face Images
The PRNU-based morph detection system proposed by

Debiasi et al. in [2] aims at exploiting the spectral alter-
ations of the PRNU introduced by the non-linear warping
during the face morphing process and therefore discrimi-
nate between bona fide and morphed images. Furthermore,
the discrimination is performed in no-reference manner.

The morph detection system consists of five major com-
ponents: (A) PRNU extraction, (B) PRNU splitting, (C) cel-
l-wise feature extraction, (D) cell aggregation and the
(E) decision. In short, the PRNU is extracted from a face
image and divided into cells. Thereafter, the DFT magni-
tude spectrum is computed for each cell, whereof different

(a) Bona fide images (b) Morphed images

Figure 4: Illustration of variations across DFT magnitude
spectra in morphed images compared to bona fide ones for
4 × 4 image cells (average of all images in dataset).

features P are derived. By averaging the extracted features
for each cell an aggregated score S is obtained. Finally, the
system performs a binary decision (bona fide or morphed)
based on a simple threshold, which can be determined by
analysing the score distribution of bona fide images.

4.1. Variance Analysis

In this work, the approach of [2] is extended by propos-
ing an analysis of the PRNU variance for morphed face
image detection. Due to the morphing process’s nature of
producing inhomogeneous alterations across different im-
age regions, an increased variance of the PRNU signal is
expected across image cells. Fig. 4 shows the variations
of the DFT magnitudes across different image cells of bona
fide and morphed images. These local variations can be use-
ful as a reliable indicator for image morphing. In order to
analyse the variance of the PRNU, we propose some adap-
tations to Debiasi et al.’s [2] approach, which are presented
in the remainder of this section. The proposed system is
illustrated in Fig. 5.

4.1.1 Feature Extraction

In this work we propose to analyse the variance of two dis-
tinct features: Ppos and Pen. The first one, Ppos, has been
proposed in [2] and is based on the PRNU’s DFT magnitude
histogram. It represents the peak’s position (bin) within the
histogram and is obtained as follows:

Ppos = arg max
n=1...b

H(n), Pen =
∑

x∈M

|x|2 (2)

where b is the number of bins and H is the magnitude his-
togram of a cell. As the second feature, Pen, we propose
to compute the energy of the PRNU’s DFT magnitudes, as
defined in Eq. 2, where M are the DFT magnitudes within
a cell and x their respective values. Both features lead to a
scalar value P for each PRNU cell.

PRNU Variance Analysis for Morphed Face Image Detection

81



�

Face
Image

PRNU Cell
Splitting

DFT
Magnitudes Feature

Extraction:
Ppos, Pen

Cell
Aggregation:
Svar, Sdisp

Decision:
Variance

Analysis Based
Thresholding

Figure 5: Processing steps of the proposed PRNU-based morph detection system.

4.1.2 Cell Aggregation

In order to perform the variance analysis across all image
cells, we make use of two measures of dispersion. The vari-
ance, Svar, is given by

Svar = Var(P ) =
1

N

N∑

n=1

(Pn − P̄ )2 (3)

P̄ =
1

N

N∑

n=1

Pn, Sdisp =
Var(P )

P̄
(4)

The index of dispersion, Sdisp, or variance to mean ratio, is
given in Eq. 4, where N is the number of total PRNU cells,
Pn is the feature (scalar value) obtained for the PRNU cell
Cn, as described previously, and P̄ is the average feature
value for all PRNU cells C. In both cases, we obtain a
single scalar value S for each image.

4.2. Decision

As mentioned above, the PRNU-based morph detection
system proposed in [2] makes use of a simple thresholding
to determine if the presented image is a bona fide one or not.
It was shown that with this one dimensional decision it was
not possible to reliably detect some of the post-processed
morphed images, i.e. SHRP and in particular EQU.

Due to the large variety of possible unknown post-
processings, we decided to focus on the known properties
of bona fide images and to use this knowledge to our advan-
tage by simply deriving the mean variation B̄ from the bona
fide images. With this characteristic of bona fide images, we
are able to calculate the distance D of an investigated image
to bona fide images as

D = |S − B̄|, B̄ =
1

NB

NB∑

n=1

S (5)

where S is the result of the cell-aggregation, B̄ is the mean
variation of all bona fide images NB . The variation is either
Svar or Sdisp, whichever is used in the cell aggregation pro-
cessing step. The final decision for a presented face image
is taken by thresholding the distance D.

5. Experiments
In the following section, we describe the morphed face

data set investigated in this work. In addition, we report ex-
perimental results which comprise a morph detection per-
formance estimation and robustness under the presence of
common post-processing techniques.

5.1. Face Morphing Data Set

In order to allow a direct comparison of the morph detec-
tion performance with [2], experiments are performed on
a subset of the FRGCv2 face database, where 961 frontal
faces with neutral expression have been manually selected
as bona fide samples, which are all ICAO compliant accord-
ing to [12]. Two face images are morphed by applying the
dlib facial landmark detector [15] to both images. Subse-
quently, a Delaunay triangulation is computed, which forms
the basis for a subsequent affine transform to the sets of tri-
angles in both face images. The final morphed image is
generated by alpha blending of the two warped images us-
ing an alpha value of 0.5.

The face images are then segmented and normalized ac-
cording to eye coordinates detected by the dlib landmark
detector. The resulting normalised region of interest is
cropped to 320×320 pixels, to ascertain that the morphing
detection algorithm is only applied to the facial region.

In total, 2, 414 high quality morphed face images have

(a) Bona fide (b) Morph (c) EQU

(d) SCL50 (e) SCL75 (f) SHRP
Figure 6: Data set examples: bona fide image (a), morphed
image (b) and post-processed morphs (c - f).
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Table 1: Performance of proposed PRNU-based morph detectors
D-EER BPCER10 BPCER20

Algorithm Cells Morph EQU SCL50 SCL75 SHRP Morph EQU SCL50 SCL75 SHRP Morph EQU SCL50 SCL75 SHRP
Ppos|Smean

4

2.9% 33.0% 1.5% 0.1% 12.2% 0.2% 59.9% 0.1% 0.0% 16.5% 1.1% 71.8% 0.4% 0.0% 39.5%
Ppos|Svar 30.3% 49.6% 18.2% 42.0% 14.0% 75.1% 88.2% 45.5% 85.0% 24.9% 87.1% 94.0% 71.1% 91.6% 54.4%
Ppos|Sdisp 25.2% 49.7% 14.1% 33.3% 12.9% 64.1% 88.6% 27.6% 77.3% 21.4% 79.9% 93.9% 57.5% 87.3% 50.9%
Pen|Svar 19.4% 29.5% 4.3% 9.0% 2.3% 47.8% 51.6% 1.3% 7.9% 0.1% 69.3% 64.6% 3.5% 19.0% 0.6%
Pen|Sdisp 15.3% 30.3% 3.4% 5.5% 2.5% 30.2% 53.5% 0.6% 2.9% 0.1% 54.6% 67.0% 2.1% 6.1% 0.8%
Ppos|Smean

8

2.2% 33.8% 0.7% 0.0% 10.8% 0.1% 60.2% 0.0% 0.0% 11.7% 0.6% 71.5% 0.1% 0.0% 30.8%
Ppos|Svar 18.5% 49.8% 2.5% 34.9% 4.9% 36.7% 89.4% 0.7% 78.6% 1.3% 64.6% 94.4% 1.3% 88.3% 4.7%
Ppos|Sdisp 11.1% 49.8% 1.7% 16.5% 4.8% 12.4% 89.6% 0.1% 29.8% 1.2% 27.7% 94.5% 0.7% 51.3% 4.1%
Pen|Svar 20.2% 15.8% 4.2% 11.0% 1.3% 44.6% 20.3% 1.5% 12.3% 0.0% 66.0% 30.1% 3.5% 24.7% 0.2%
Pen|Sdisp 12.7% 16.8% 2.9% 4.5% 1.6% 16.2% 23.0% 0.5% 2.4% 0.0% 33.9% 33.1% 1.6% 4.1% 0.4%
Ppos|Smean

10

2.4% 34.9% 0.6% 0.0% 10.5% 0.0% 61.7% 0.0% 0.0% 11.2% 0.7% 71.6% 0.0% 0.0% 28.4%
Ppos|Svar 15.3% 50.0% 1.4% 32.2% 3.6% 25.9% 90.0% 0.1% 77.6% 0.9% 44.2% 95.0% 0.4% 88.7% 2.2%
Ppos|Sdisp 7.5% 50.0% 1.0% 11.9% 3.8% 5.4% 90.0% 0.1% 15.1% 1.0% 11.8% 95.0% 0.1% 27.8% 2.2%
Pen|Svar 18.3% 14.5% 3.5% 9.2% 1.1% 36.5% 17.5% 0.6% 8.3% 0.0% 56.4% 24.5% 2.3% 17.7% 0.0%
Pen|Sdisp 11.0% 15.9% 2.6% 3.8% 1.5% 11.9% 20.0% 0.1% 1.9% 0.0% 22.0% 29.0% 0.9% 3.1% 0.1%

been automatically generated for pairs of subjects of same
gender using the OpenCV library, which are well within
the quality limits defined by ICAO and ISO/IEC standards.
Furthermore, Debiasi et al. [2] reported that the morphed
face images generated for this data set pose a severe risk for
a COTS face recognition system, since probe face images
from both contributing subjects can match with the morph
at high success rate. They obtained a Relative Morph Match
Rate (RMMR) and the ProdAvg Mated Morph Presentation
Match Rate (ProdAvg-MMPMR) of > 0.99, which empha-
sises the necessity of a robust morph detection system. For
more details on metrics for reporting the vulnerability of
face recognition systems to morphed faces, the reader is re-
ferred to [28].

Moreover, the data set also includes a variety of different
post-processing techniques applied to the morphed images:
EQU, SCL50, SCL75 and SHRP. They aim at hampering
the detection performance of the morph detection system.
Some examples for post-processed morphs, which are part
of the investigated data set, are shown in Fig 6.

5.2. Morph Detection Performance Evaluation

The morph detection performance is examined according
to metrics defined in ISO/IEC 30107-3 [13]: Attack Pre-
sentation Classification Error Rate (APCER) and bona fide
Presentation Classification Error Rate (BPCER). APCER
reports the proportion of attack presentations incorrectly
classified as bona fide presentations in a specific scenario.
BPCER, on the other hand, reports the proportion of bona
fide presentations incorrectly classified as presentation at-
tacks in a specific scenario. The operation point of the sys-
tem, where APCER = BPCER, is defined as detection equal
error rate D-EER. Furthermore, two additional operation
points, BPCER10 (where APCER = 10%) and BPCER20
(where APCER = 5%), are reported.

Tab. 1 summarises the obtained morph detection per-

formance in form of D-EER, BPCER10 and BPCER20
for images with (EQU, SCL50, SCL75, SHRP) and without
post-processing (Morph). The column Algorithm comprises
the combinations of extracted features P and aggregation
strategies S defined in Sect. 4. The column Cells contains
the cell splits of the investigated images. We focused on cell
splits of 4 × 4, 8 × 8 and 10 × 10 in this work due to the
improved results with higher cell counts reported in [2].

The proposed algorithm by Debiasi et al. in [2],
Ppos|Smean for 8×8 cells, serves as baseline and achieves a
D-EER performance of 2.2% for unaltered morphs, but fails
at detecting morphs post-processed with EQU at 33.8% and
shows a high performance decrease for detecting sharpened
morphs (SHRP) at 10.5%. Because the magnitude spectra
of SCL50, SCL75 and SHRP post-processing are quite dis-
tinct bona fide image’s ones, as it can be observed in Fig. 3,
they can be detected quite reliably in general. The remain-
ing algorithms are based on the variance analysis described
in Sect. 4.1.

The proposed Ppos|Svar and Ppos|Sdisp algorithms
show rather inconsistent results among the different post-
processings, especially they completely fail at detecting
EQU morphs. Since they are based on the DFT magnitude
histograms, they are highly vulnerable to histogram shifts
such as those caused by histogram equalisation (EQU),
leading to a D-EER of up to 50%. When looking at
Pen|Svar and Pen|Sdisp, one can immediately note the
degradation in unaltered morph detection of 11% in the best
case (compared to the baseline of 2.2%), as shown in Fig.
7a. However, a more stable performance across all post-
processed morphs is achieved. The highest performance
gains are achieved for EQU and SHRP with a D-EER of
14.5% and 1.1% respectively, as compared to the baseline
of 33.0% and 10.5%, which are illustrated in Fig. 7b and
7c. In general, the variance analysis based algorithms lead
to a trade off between unaltered morph detection and post-
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Figure 7: DET curves for PRNU-based morph detectors (10 × 10 cells).

processed morph detection. It enables the system to be
more robust against different attacks, while also increas-
ing the overall performance when all attacks are considered
(Morphs, EQU, SCL50, SCL75, SHRP). This can mainly be
attributed to the statistical variations caused by the morph-
ing procedure across the image, which are most prominent
in the Pen feature and can be captured best by the Sdisp

cell-aggregation strategy.
Thus, the overall best performing and most stable algo-

rithm is based on the proposed variance analysis, Pen|Sdisp

for 10 × 10 cells, is able to achieve respectable results
across all altered and unaltered morphed images and is ro-
bust against a wide variety of post-processing attacks aim-
ing at deteriorating the morph detection system. This ro-
bustness is a significant improvement over the baseline al-
gorithm proposed in [2], which is much more vulnerable
to post-processing attacks. Furthermore, the overall system
performance is also improved from 15.7% average D-EER
(baseline) to 10.5% D-EER (proposed algorithm), when
all altered and unaltered morphs are considered. A di-
rect comparison of both algorithms is presented in Fig. 7d
and Tab. 2, where it can be observed that both algorithms
have opposing strengths and weaknesses regarding the sin-
gle post-processing techniques. Hence, a fusion of both ap-
proaches might be beneficial for the overall performance of
the morph detection system.

Table 2: D-EER performance comparison of proposed
PRNU variance analysis based detector (Pen|Sdisp) with
baseline (Ppos|Smean) proposed in [2]. The column ALL
reports the D-EER including all attacks (Morph to SHRP).

D-EER
Algorithm Cells Morph EQU SCL50 SCL75 SHRP ALL
Ppos|Smean 8 2.2% 33.8% 0.7% 0.0% 10.8% 15.7%
Pen|Sdisp 10 11.0% 15.9% 2.6% 3.8% 1.5% 10.5%

Difference + 8.8% -17,9% +1,9% +3,8% -9,3% -5,2%

6. Conclusion and Future Work
When infiltrated during the enrolment process of a face

recognition system, morphed face images pose a serious se-

curity risk, in particular in the context of ABC. In this work,
a morph detector, which analyses the variance of PRNU-
based features across image cells, is proposed. In con-
trast to related work [2], the presented approach is shown
to be robust to diverse image post-processing techniques
and even improves the D-EER for all investigated attacks,
which include unaltered morphed images and various post-
processing techniques, to 10.5%.

Compared to many other schemes, the presented system
is expected to achieve high robustness, as it analyses rel-
ative changes of PRNU-based features across images re-
gions rather than distinct texture features. Such changes
inevitably occur if image morphing is applied. In order to
avoid artefacts, some morphing algorithms paste morphed
face regions within the convex hull of averaged landmarks
into the outer region of one of the contributing face images.
This would cause an even higher variance of PRNU fea-
tures across image regions resulting in improved detection
performance.

Future work will be focused on a more thorough anal-
ysis of the proposed approach, i.e. detection performance
will be evaluated for bona fide and morphed images created
from different face image databases using different morph
generation algorithms. A comparison of the presented sys-
tem against published face morph detectors will also be per-
formed in future work. Finally, the creation of a database
of printed and scanned (morphed) face images and a corre-
sponding evaluation of the presented morph detection meth-
ods in different scenarios is subject to future work.
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Abstract. Face recognition systems (FRS) have been found to be highly
vulnerable to face morphing attacks. Due to this severe security risk,
morph detection systems do not only need to be robust against classical
landmark-based face morphing approach (LMA), but also future attacks
such as neural network based morph generation techniques. The focus
of this paper lies on an experimental evaluation of the morph detection
capabilities of various state-of-the-art morph detectors with respect to
a recently presented novel face morphing approach, MorGAN, which is
based on Generative Adversarial Networks (GANs).

In this work, existing detection algorithms are confronted with differ-
ent attack scenarios: known and unknown attacks comprising different
morph types (LMA and MorGAN). The detectors’ performance results
are highly dependent on the features used by the detection algorithms. In
addition, the image quality of the morphed face images produced with
the MorGAN approach is assessed using well-established no-reference
image quality metrics and compared to LMA morphs. The results indi-
cate that the image quality of MorGAN morphs is more similar to bona
fide images compared to classical LMA morphs.

Keywords: Face morphing · Generative adversial networks ·
Presentation attack detection
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1 Introduction

Recently, automated face recognition systems (FRSs) are increasingly being used
in different application scenarios, such as mobile device authentication or Auto-
mated Border Control (ABC). This wide spread deployment makes them attrac-
tive for attacks. In particular, their expected robustness to different environmen-
tal and user-specific conditions, e.g. varying illumination and subject poses, and
the widespread use of deep neural networks in FRS has been found to increase
their vulnerability against presentation attacks [14]. In this context, face mor-
phing attacks have attracted notable interest from the research community in
the recent past.

Ferrara et al. [6] unleashed the vulnerability of FRSs against attacks based
on morphed face images, which can be introduced in the issuance process of elec-
tronic travel documents due to security gaps. They compared morphed images
with images of the original subjects using two commercial face recognition solu-
tions, and concluded with the high vulnerability of face recognition to such
attacks. Further studies considered the human expert vulnerability to morphed
face images when comparing faces [7,20]. They found out that human experts
fails most of the times in detecting morphing attacks.

Different solutions were developed to detect face morphing attacks.
Ramachandra et al. [19] were first to propose the automated detection of mor-
phed face images. They applied local image descriptors such as the Binarised
Statistical Image Features (BSIF) that capture textural properties of the image,
which are later classified using a Support Vector Machine (SVM). Later works
looked into using convolutional neural network(CNN) based features [18], image
quality measures [16], the effect of printing and re-scanning the images [23],
and differences between triangulating and averaging the facial landmarks on the
detection [17]. Recent works by Debiasi et al. [4] propose to exploit the Photo
Response Non-Uniformity (PRNU) of an image sensor to detect morphed face
images, which is a widely used tool in the field of Digital Image Forensics (e.g.
image forgery detection).

A standardised manner to evaluate the vulnerability of biometric systems
to morphing attacks was recently proposed by Scherhag et al. [22]. A recent
work by Ferrara et al. [8] viewed the morphing attack detection problem from a
different perspective by proposing an approach to revert the morphed face image
(demorph) enough to reveal the identity of the legitimate document owner, given
a bona fide capture.

Other works considered that it might be possible in practice to use a live
probe image along with the investigated image to detect a morphing attacks.
This was done either by looking at the differential vector between both images
[24], analysing the absolute distances and angles of the landmarks in both images
[21], analysing the directed distances between these landmarks [1], or using the
live probe image for demorphing [8]. The mentioned works so far developed
and evaluated their approaches based on morphing attacks databases that were
created based on facial landmarks.
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Recently, a work by Damer et al. [2] proposed a new possibility of morphing
attacks. They built their solution on generative adversarial networks (MorGAN).
They morphed the latent representation of the morphed images and generated
the morphing attacks based on that morphed latent vector. These morphing
attacks proved to be hard to detect in the cases where they were not considered
in the training process of the morphing detector [2].

The work presented in this paper aims at evaluating the detectability of
LMA- and GAN-based morphed face images in different attack scenarios (known
and unknown attacks) using several state-of-the-art morph detectors based on
different features. The experimental evaluation performed in this work gives a
preliminary outlook on the detectability future face morphing attacks. These
attacks might include novel morphing strategies such as GANs for face morph
generation, where it is not clear how the morph detection performance is affected
by the artefacts that they introduce. For example, it is not clear if the properties
of the image’s PRNU are preserved in morphed images generated using a GAN-
based approach or if the properties are altered, which has a decisive impact on
the detection performance of PRNU-based morph detection approaches. Further-
more, this work also includes an image quality assessment of morphed face images
generated using the MorGAN approach compared to classical LMA morphs.

The paper is organised as follows: the MorGAN approach and data set are
described in Sect. 2. The image quality assessment of the generated MorGAN
images is reported in Sect. 3, while the experimental setup and investigated state-
of-the-art morph detectors are described in Sect. 4. The experimental results are
reported and discussed in Sect. 5 and the paper is concluded in Sect. 6.

Fig. 1. Examples of the used morphing attacks, both the MorGAN and LMA. Original
reference images are on the right and left.

2 MorGAN Dataset

A database containing attacks created by the conventional landmark-based mor-
phing technique, as well as the recently MorGAN-based approach, is used in this
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work. This allows the evaluation of detection performance of known and unknown
attacks of the investigated morph detection approaches.

The database is based on recent work by Damer et al. [2] foreseeing using
GANs to create morphing attacks and built on the CelebA [12] data set.

The MorGAN database contains a total of 1500 bona fide references, 1500
bona fide probes, 1000 LMA morphing attacks, and 1000 MorGAN morphing
attacks. The database is split into disjoint (identity and image) and equal train
and test sets, each including 750 bona fide references, 750 bona fide probes, and
500 attack images from each of both attack types (LMA and GAN). Because
of computational and structural limitations of the MorGAN approach, the Mor-
GAN attack images are of 64× 64 pixels size (below the ICAO recommenda-
tions). Examples of the resulting image attacks and the original images creating
these attacks are presented in Fig. 1.

3 Quality of Morphed Face Images

As shown in [2] by Damer et al., the morphed face images contained in the
MorGAN data set are capable of successfully attacking pre-trained FRS, i.e.
OpenFace and VGG-Face. They conclude that MorGAN attacks are weaker than
the LMA ones, however, still make successful attacks on both FRSs. It has to
be noted that the MorGAN approach has only recently been presented and that
images with higher quality and resolution are expected to be generated with
future versions of the approach.

In this work, the insights on the vulnerability of FRSs against face morph
presentation attacks are complemented by an image quality analysis of the Mor-
GAN morphs, which is compared to the quality of bona fide images and LMA
morphs. Ferrara et al. [6] demonstrated, that even human experts are not able to
discriminate between bona fide and high quality morphed face images. Therefore,
the image quality of morphed plays an important role, since common pattern
recognition techniques and humans in particular can easily detect obvious arte-
facts within the images. For examples on such obvious artefacts, the reader is
referred to [22]. In order to assess the image quality of the different images in
the MorGAN data set (bona fide, MorGAN and LMA morphs), the following
no-reference image quality metrics have been evaluated on all 1500 bona fide,
1000 MorGAN and 1000 LMA images: BIQI [15], BRISQUE [13], OG-IQA [10]
and SSEQ [11]. To render a fair comparison with the MorGAN images possi-
ble, LMA and bona fide images have been downsized to the same resolution of
64 × 64 pixels. We did not consider any face-specific sample quality assessment
metrics in this work due to the small resolution of the MorGAN images.

All image quality results are illustrated in Table 1, while only two selected
quality metrics are presented in Fig. 2. Overall, the evaluation shows that the
image quality of both morphed MorGAN and LMA images is very similar to
the image quality of the bona fide images within the MorGAN data set. BIQI,
OG-IQA and SSEQ show that the image quality score distributions of MorGAN
images are more resemblant of the bona fide distribution compared to LMA
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Table 1. Statistical properties of image quality metrics for bona fide images and LMA
and MorGAN-based morphed images.

Metric Property Bona fide MorGAN LMA

BIQI Mean 35.06 34.56 43.55

Std 8.95 9.51 10.71

Min 8.43 10.83 17.47

Max 71.86 67.13 73.17

BRISQUE Mean 25.22 17.23 28.30

Std 9.13 9.45 8.50

Min −3.31 −12.71 2.28

Max 59.76 90.29 59.29

OG-IQA Mean −0.82 −0.87 −0.74

Std 0.09 0.07 0.10

Min −0.95 −0.95 −0.94

Max −0.25 −0.39 −0.39

SSEQ Mean 30.25 29.51 37.80

Std 9.30 7.82 7.70

Min −6.78 4.71 3.48

Max 59.76 55.81 62.26
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Fig. 2. Image quality score distributions of bona fide images compared to LMA and
MorGAN-based morphs.

morphs. Only BRISQUE shows a different result, where the quality scores of
LMA morphs are more alike the ones of bona fide images compared to MorGAN
morphs. Due to time and space constraints, this deviation will be investigated
more thoroughly in future work.

These results, using equally sized images of 64 × 64 pixels, reveal that mor-
phed images generated with the MorGAN approach are more similar to bona
fide images compared to the classical LMA approach in respect to their image
quality, which is underlined by the distortion independence (BIQI), generalisabil-
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ity (OG-IQA) and closeness to human perception (SSEQ) of the image quality
metrics supporting these results.

4 Experimental Setup

This study aims at investigating the detection performance of various morph
detection approaches based on distinct features for MorGAN attacks. In partic-
ular, their ability of dealing with known and unknown attacks is of special inter-
est, especially when future attacks based on unknown (neural network based)
morphing techniques are considered.

4.1 Morph Detection Algorithms

Our morph attack detection methodology aims at enabling a wider range of
conceptual evaluation and more diverse coverage of the state-of-the-art by con-
sidering image feature extraction methods of three different natures. One is the
hand crafted classical image descriptors, the Local Binary Pattern Histogram
(LBPH) [18], the second is based on transferable deep-CNN features [19] and
the third type is based on the Photo Response Non-Uniformity (PRNU) [3,4]. All
three types of features were previously utilised for the detection of face morphing
attacks based on LMA approaches.

4.2 Experiments

The morph attack detection experiments are ordered by the feature type (CNN,
LBPH, PRNU-VAR and PRNU-HIST) and by the type of attack, i.e. known
or unknown and the type of morphs used for the attack (MorGAN and LMA).
Due to the nature of the investigated detection algorithms and their design, the
experiments had to be conducted in a slightly different manner for the various
detectors, in order to ensure fair and comparable results. This has an effect on
the sample size used for evaluation and the number of unknown attacks, which
is described in more detail in the following.

Since CNN and LBPH are learning-based algorithms, the data is split into
distinct train and test sets, both containing 750 bona fide images and 500 images
for each attack type (LMA and MorGAN). A “known” attack (K) is given when
the algorithm is evaluated with the same attack type as it is trained with, e.g. the
algorithm was trained using LMA morphs and is evaluated on LMA morphs. An
“unknown” attack (U), on the other hand, is given when different attack types
are used to train and evaluate the algorithm, e.g. the algorithm is trained using
LMA morphs and evaluated on MorGAN morphs. This leads to the following
attack types for CNN and LBPH:

– K-LMA: Trained with LMA morphs, tested with LMA morphs.
– K-MorGAN: Trained with MorGAN morphs, tested with MorGAN morphs.
– U-LMA: Trained with MorGAN morphs, tested with LMA morphs.
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– U-MorGAN: Trained with LMA morphs, tested with MorGAN morphs.

The two PRNU-based algorithms, PRNU-VAR and PRNU-HIST, do not rely
on any training for classification, thus the whole data set, comprised of 1500 bona
fide images and 1000 images for each attack type (LMA and MorGAN), is used
for evaluation of the detectors. Therefore, all attacks with LMA or MorGAN
morphs can be considered as “unknown” (U) for the PRNU-based algorithms.
This leads to the following attack types for PRNU-VAR and PRNU-HIST:

– U-LMA: Tested with LMA morphs.
– U-MorGAN: Tested with MorGAN morphs.

4.3 Evaluation

The assessment of the morph detection performance is based on metrics defined
in ISO/IEC 30107-3 [9]: Attack Presentation Classification Error Rate (APCER)
and Bona Fide Presentation Classification Error Rate (BPCER), as suggested
in literature [22]. APCER defines the proportion of morphed face presentations
incorrectly classified as bona fide presentations, while BPCER is the proportion
of bona fide presentations incorrectly classified as morphed face presentation
attacks. The detection systems are evaluated at different operating points: The
operation point of the system, where APCER = BPCER, is defined as detec-
tion equal error rate D-EER. Furthermore, two additional operation points,
BPCER10 (where APCER = 10%) and BPCER20 (where APCER = 5%), are
reported.

5 Morph Detection Results

The outcome of the morph detection experiments described in Sect. 4, are sum-
marised in Table 2 and illustrated with DET plots in Fig. 3.

Table 2 shows the D-EER, BCPER10 and BCPER20 results for the various
attack scenarios and morph detection algorithms described in Sect. 4. CNN shows
the best performance at detecting LMA morphs, independent of the attacks
being known or unknown. It achieves a perfect result for the K-LMA attack, and
a D-EER of only 4% for U-LMA. However, it struggles in case of K-MorGAN or
completely fails to detect U-MorGAN attacks. LBPH yields the overall lowest
error rates among all morph detection algorithms and across all attack scenar-
ios. It is able to detect both LMA and MorGAN morphs, but the performance
gap between known and unknown attacks is very large. For known attacks, it
is able to achieve low D-EERs of 9% for LMA and 1% for MorGAN attacks,
while for unknown attacks the performance drops significantly to 23% and 19%,
respectively. The results indicate that the CNN and LBPH detectors are not
able to generalise well over different attack types, as it can be clearly seen in
Fig. 3(a) and (b), which might be caused by the closed-set training design of
both algorithms.
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Table 2. Morph detection performance of investigated algorithms under different
attack scenarios.

Algorithm Attack type D-EER BCPER10 BCPER20

CNN K-LMA 0.00 0.00 0.00

K-MorGAN 0.34 0.67 0.78

U-LMA 0.04 0.00 0.02

U-MorGAN 0.50 0.90 0.95

LBPH K-LMA 0.09 0.08 0.14

K-MorGAN 0.01 0.00 0.00

U-LMA 0.23 0.38 0.49

U-MorGAN 0.19 0.29 0.39

PRNU-VAR U-LMA 0.47 0.85 0.92

U-MorGAN 0.43 0.85 0.92

PRNU-HIST U-LMA 0.30 0.49 0.58

U-MorGAN 0.33 0.69 0.81

The performance of the two PRNU-based algorithms is worse compared to
the previously discussed CNN and LBPH algorithms, with D-EERs around 45%
for PRNU-VAR and 30% for PRNU-HIST. Nonetheless, the results for these
two algorithms show a very promising property: their stable performance across
all attack types (known and unknown) and morph types (MorGAN and LMA).
This consistency becomes evident when looking at Fig. 3(c) and (d). While they
might not perform as well as CNN and LBPH in some cases, the results indicate a
high potential for the generalisabilty of PRNU-based algorithms across different
morph types, independently of the morph type being known or unknown. Fur-
thermore, it can be observed that the PRNU of MorGAN morphs shows similar
properties as the PRNU of LMA-based morphs, which leads to an almost equal
detection performance for the PRNU-based detectors. Due to time and space
constraints, a more thorough investigation of the PRNU signal resulting from
the GAN operations is left for future research, in particular whether a PRNU-
based identification of the source camera in images generated with GANs might
still be possible. The D-EER performance of the two approaches is reported to
be much better for larger images (320 × 320 pixels) in [4] and [3], thus we con-
clude that the overall poor performance for the PRNU-VAR and PRNU-HIST
is a result of the small image size of 64 × 64 pixels in the MorGAN data set. It
is commonly known in the field of Digital Image forensics, that the performance
of PRNU-based approaches tends to degrade significantly with smaller image
resolutions, as it is shown in [5].

Summarising the morph detection results, it can be observed that all inves-
tigated detection algorithms have their advantages and drawbacks. CNN works
well for detecting LMA attacks, but fails at detecting MorGAN attacks. LBPH
works quite well overall, but shows a high performance gap between known and
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unknown attacks, leaving it vulnerable for unknown attacks. PRNU-HIST and
PRNU-VAR show an overall weak performance (presumably caused by the low
image resolution), but they have the big advantage of being very stable across all
evaluated attacks. If the general performance of the PRNU-based algorithms can
be improved, it can be expected that they will show a high robustness against
many unknown attack scenarios.
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Fig. 3. DET plots for investigated morphing detection algorithms and different attack
scenarios.

6 Conclusion

The detection of morphed face images has become an important part of auto-
mated face recognition systems, due to their severe vulnerability to such attacks.
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In this work, we investigate the performance of different state-of-the-art
face morph detection algorithms on the recently proposed MorGAN data set.
This data set, besides containing bona fide images and classical landmark-based
morphs, also contains morphed images generated using the MorGAN approach.
As the name implies, this novel type of morphed face images is created using
Generative Adversarial Networks. The focus of this work lies on the evaluation of
different attack scenarios: known and unknown attacks as well as different morph
types. Furthermore, we also compare the image quality of MorGAN images to
LMA based morphs using different well-established no-reference image quality
metrics to evaluate the quality of generated morphs. The experimental evalu-
ation performed in this work gives a preliminary prospect at the detection of
future face morphing attacks, which might make use of unknown, most likely
neural network based, morph generation techniques.

Summarising, the image quality assessment shows that the quality of Mor-
GAN face morphs is closer to the quality of bona fide images as compared to
classical LMA morphs, which underlines the capabilities of the MorGAN morph
generation approach.

The morph detection performance results for the state-of-the-art detectors
show that CNN fails at detecting the MorGAN morphs, but excels at detect-
ing the classical LMA morphs. LBPH can achieve a very low D-EER of 1% for
MorGAN and 9% for LMA morphs, but only in the case of known attacks. How-
ever, the performance of LBPH lacks consistency when confronted with unknown
attacks. The two PRNU-based algorithms show a weaker overall performance of
around 30% in the best case for both MorGAN and LMA morphs, which is most
likely caused by the small image resolution.

Clearly, the MorGAN approach needs to be enhanced and further developed
to produce images with higher resolutions, i.e. ICAO compliant images. This
would allow for a more comprehensible analysis of the detectability and quality
of the generated morphed face images.
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Detection of Face Morphing Attacks
Based on PRNU Analysis

Ulrich Scherhag , Luca Debiasi , Christian Rathgeb, Christoph Busch , and Andreas Uhl

Abstract—Recent research found that attacks based on mor-
phed face images, i.e., morphing attacks, pose a severe security
risk to face recognition systems. A reliable morphing attack
detection from a single face image remains a research challenge
since cameras and morphing techniques used by an attacker are
unknown at the time of classification. These issues are commonly
overseen while many researchers report encouraging detection
performance for training and testing morphing attack detection
schemes on images obtained from a single face database employ-
ing a single morphing algorithm. In this work, a morphing attack
detection system based on the analysis of Photo Response Non-
Uniformity (PRNU) is presented. More specifically, spatial and
spectral features extracted from PRNU patterns across image
cells are analyzed. Differences of these features for bona fide and
morphed images are estimated during a threshold-selection stage
using the Dresden image database which is specifically built for
PRNU analysis in digital image forensics. Cross-database evalu-
ations are then conducted employing an ICAO compliant subset
of the FRGCv2 database and a Print-Scan database which is a
printed and scanned version of said FRGCv2 subset. Bona fide
and morphed face images are automatically generated employing
four different morphing algorithms. The proposed PRNU-based
morphing attack detector is shown to robustly distinguish bona
fide and morphed face images achieving an average D-EER of
11.2% in the best configuration. In scenarios where image sources
and morphing techniques are unknown, it is shown to signifi-
cantly outperform other previously established morphing attack
detectors. Finally, the limitations and potential of the approach
are demonstrated on a dataset of printed and scanned bona fide
and morphed face images.

Index Terms—Biometrics, face recognition, face morphing, face
morphing attack, morphing attack detection, photo response
non-uniformity.

I. INTRODUCTION

FACE recognition systems have recently been exposed
to be vulnerable against attacks based on morphed face

images [1], [2]. Image morphing has been an active field of
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Fig. 1. Example for a morphed face image (b) of subject 1 (a) and subject
2 (c) (images taken from [5]).

image processing research since the 1980s [3], [4] with a vari-
ety of application scenarios, especially in the film industry.
Morphing techniques can be used to create artificial biometric
samples that resemble the biometric information of two (or
more) individuals in the image and feature domain. An exam-
ple of a morphed face image is shown in Fig. 1. The morphed
face image is successfully verified against probe samples of
both subjects involved using state-of-the-art face recognition
systems. This means that if a morphed face image is some-
how stored as a reference in the database of a face recognition
system, both individuals involved are successfully verified
against this manipulated reference. Morphed face images thus
pose a serious threat to face recognition systems, as the basic
principle of biometrics, the unique link between the biometric
reference data and the subject, is violated.

In many countries, the face image used for the ePassport
application process is provided by the applicant either in ana-
logue or digital form. In the scenario of a face morphing
attack, a wanted criminal could morph his facial image with
one of a lookalike accomplice. If the accomplice applies for
an ePassport with the morphed face image, he will receive a
valid ePassport equipped with corresponding document secu-
rity features. It is important to note that morphed face images
can be realistic enough to fool human examiners [6], [7] as
well as commercial face recognition systems. Both the crim-
inal and the accomplice could then be successfully verified
against the morphed image stored in the ePassport. This means
that the criminal can use the ePassport issued to the accom-
plice to pass through Automated Border Control (ABC) gates
(or even human inspections at border crossings). The risk of
this attack, called face morphing attack, is amplified by the
fact that realistic face morphs can be generated by non-experts

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
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using user-friendly face morphing software that is either freely
available or can be purchased at a reasonable price.

In 2014 Ferrara et al. [1] were the first to thoroughly investi-
gate the vulnerability of commercial face recognition systems
to attacks based on morphed face images. So far, a consid-
erable amount of morphing attack detection approaches has
been published, see Section II. For a comprehensive survey the
reader is referred to [2]. Proposed approaches can be catego-
rized with respect to the considered morphing attack detection
scenario:

• No-reference morphing attack detection: the detector
processes a single image, e.g., the analysis of a printed
image that is presented and scanned in a passport appli-
cation procedure and subsequently stored in an electronic
travel document or at any later point in time an off-line
authenticity check of said document by police investi-
gators (this scenario is also referred to as single image
morphing attack detection or forensic morphing attack
detection);

• Differential morphing attack detection: a trusted live cap-
ture from an authentication attempt serves as additional
source of information for the morph detector, e.g., dur-
ing authentication at an ABC gate (this scenario is also
referred to as image pair-based morphing attack detec-
tion). Note that all information extracted by no-reference
morph detectors might as well be leveraged within this
scenario [8].

Obviously, the no-reference scenario turns out to be more
challenging compared to the differential one. While the major-
ity of no-reference approaches reports practical detection error
rates, these are commonly evaluated on a dataset of bona
fide and morphed face images which are extracted from
a single (in-house) face database. In such an experimen-
tal setup the use of machine learning-based feature extrac-
tors or/and classifier increases the risk of overfitting, i.e.,
the robustness of morph detection algorithms may not be
retained with regard to images stemming from other sources as
shown in [9].

This work represents a significant extension of the prelim-
inary studies towards PRNU-based morphing attack detection
previously published in [5], [10]. The proposed system has
been complemented by a more thorough investigation of
different features and aggregation strategies, more specifi-
cally spatial features have been investigated in addition to
spectral ones from previous work. Complementary to those
efforts cross-database experiments on morphed face images
generated by four different morphing algorithms have been
conducted. The generalizability of the PRNU-based morphing
attack detection across a wide range of distinct cameras of var-
ious makers is further investigated on a database specifically
built for PRNU analysis in digital image forensics and it is
shown that said database is suitable to determine the decision
threshold for the proposed system. In addition, a database of
printed and scanned face images is employed in evaluations.
Moreover, in experiments the proposed system is benchmarked
against state-of-the-art morphing attack detectors. Also, vul-
nerability analysis of the proposed concept with respect to
potential attacks to circumvent the detection system is given.

The remainder of this work is organized as follows:
related works are discussed in Section II. Fundamentals of
PRNU extraction are explained in Section III. The proposed
morph detection method is described in detail in Section IV.
Experimental results are reported in Section V. Finally, con-
clusions are summarized in Section VI.

II. RELATED WORK

In recent years, numerous no-reference face morphing attack
detection schemes have been proposed. Published methods
and their properties are summarized in Table I which has
been derived from [2]. In some papers more than one system
was presented, in such cases approaches that showed the
best performance in detecting morphing attacks are listed.
It is important to note that the generalizability/robustness of
the published approaches could not be demonstrated. So far,
there are no publicly accessible large databases of bona fide
and morphed facial images and hardly any publicly avail-
able morph recognition algorithms which allow comprehensive
experimental evaluations. The vast majority of published meth-
ods were trained and tested on various sequestered databases,
which hampers reproducibility of results.1 In addition, morph
detection methods are usually trained and tested on a single
database with a single morph generation algorithm. Based on
these facts, a comparison of published approaches with respect
to reported detection performance would be potentially mis-
leading and is deliberately avoided in this work. However, it
is expected that planned benchmark tests, e.g., by the National
Institute of Standards and Technology (NIST) [40], will enable
a meaningful quantitative comparison of published approaches
in the near future.

Several researchers have suggested the use of general-
purpose image descriptors, such as Local Binary Patterns
(LBP) [41] or Binarized Statistical Image Features
(BSIF) [42], which are widely used for biometric recog-
nition. Ramachandra et al. [11] proposed a system based
on a Support Vector Machine (SVM) trained on extracted
BSIF features. For the training and evaluation of the
SVMs, an internal database with morphed facial images
was created. In a derivative version of the same database,
Scherhag et al. [12] examined the accuracy of morphing
detection on printed and scanned images using the proposed
algorithm. Furthermore, Ramachandra et al. [13] proposed
a Probabilistic Collaborative Representation Classifier (Pro-
CRC) [43] trained on LBP features extracted from the
color channels. The database used was an internal database
derived from FRGCv2 [14]. The authors concentrate on the
differences between morphed and averaged images in the
evaluation.

A more complex method for morphing attack detection
is proposed in [16], [17], where a Vietoris-Rips complex is
formed from the reactions of uniform LBP extractors on the
image. In [38] a high detection performance was shown by

1Also the morphed images used in this work can not be published due
to licensing conditions as these are generated based on subsets of available
image database collected by different institutions. However, efforts are cur-
rently made by different research laboratories to acquire new datasets of bona
fide and morphed face images that shall serve future open benchmarks.
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TABLE I
OVERVIEW OF MOST RELEVANT NO-REFERENCE FACE MORPHING ATTACK DETECTION ALGORITHMS

Wandzik et al. for a linear SVM trained on high-dimensional
LBP features [44] extracted from the FEI database [28]. In [45]
Ramachandra et al. proposed an LBP extraction of Laplacian
pyramids build on different color channels. Agarwal et al. [15]
suggest training an SVM with Weighted Local Magnitude
Pattern. Similar to LBP, the proposed descriptor encodes the
differences between a central pixel and its neighbors. However,
instead of binarizing them, it assigns weights inversely pro-
portional to the difference to the middle pixel. Depending on
the feature representation of texture descriptors, the input of
classifiers has to be adjusted. E.g., for Scale-Invariant Feature
Transform (SIFT) [46] it has been shown that the number of
extracted key points is suitable for the task of morph recogni-
tion [8], [20]. A score level fusion of several image descriptors
could further improve the recognition rate [21]. Therefore,
LBP, BSIF, SIFT, Speeded Up Robust Features (SURF) [47],
Histogram of Oriented Gradients (HOG) [48] and the deep
features of Openface [49] were merged and evaluated by
Scherhag et al. [21]. Damer et al. [25] tested the suitabil-
ity of LBP features for the detection of morphs generated by
Generative Adversarial Networks (GANs). In the no-reference
scenario, classifiers may rely on different microtexture prop-
erties. These can be dataset-specific features that are changed
or can be introduced by the morphing process. Especially the
combination of features that reflect different information, e.g.,
LBP and SIFT, leads to improvements. It has been shown that
the performance of morph detectors based on general-purpose

image descriptors may decrease significantly if training and
test images are taken from another image source [9], [24].

During the morphing process, not only the texture but
the entire signal of the image is manipulated. A further
recognition approach is therefore the analysis of the changes
in the sensor noise pattern, e.g., PRNU [5]. Therefore, the
PRNU pattern, which originates from imperfections within
the camera’s sensor, not only differing for each model, but
also for each individual camera, is extracted from a facial
image and the discrete Fourier variables are calculated. The
mean value and variance are then derived from the result-
ing histogram. Recently, Debiasi et al. [10] proposed an
improved version of this scheme based on PRNU vari-
ance analysis across image blocks. A similar approach has
been proposed by Zhang et al. [27] confirming the use-
fulness of morph detection based on sensor noise pattern
analysis.

Both PRNU-based morph detection approaches analyse the
Fourier Spectrum of the PRNU and quantify spectral differ-
ences between bona fide and morphed images using statistical
measures. The main difference between both approaches lies
within the processing pipeline, block-based analysis in the spa-
tial [5], [10] vs. spectral domain [27], and final classification.
The morph detector proposed in [5] and [10] does not need
any training data, since it solely relies on a simple threshold-
ing for the final decision, while the one in [27] utilises a linear
SVM, which needs to be trained with bona fide and morphed

Chapter 3. Publications

100



SCHERHAG et al.: DETECTION OF FACE MORPHING ATTACKS BASED ON PRNU ANALYSIS 305

images and makes the latter approach potentially more vulner-
able against unknown morphing attacks. Furthermore, different
PRNU extraction and enhancement techniques are used for
both approaches. In contrast to [5], [10], the authors of [27] did
not consider image post-processings. Also, no cross-database
performance evaluations were performed.

Morphing attack detection methods based on continuous
image degradation were proposed in [20], [50], [51]. The basic
idea behind these methods is to continuously deteriorate the
image quality, e.g., by JPEG compression, in order to gen-
erate several artificial self-references of a facial image. The
distances between these references and the original image are
then analyzed for morph detection. Ramachandra et al. [31]
suggests the analysis of high frequencies. In their approach
images are converted to grayscale and a controllable pyra-
mid is built and a Collaborative Representation Classifier
(CRC) is trained on the high frequencies. The database used
was printed and scanned. An alternative to handcrafted fea-
ture extractors is the use of statistical machine learning on
the unprocessed image to distinguish between morphed and
bona fide images. Ramachandra et al. [32] suggested adapt-
ing two convolutional neural networks (CNNs) (VGG19 [52]
and AlexNet [53]) by transfer learning and combining the
intermediate features to train a CRC. In [54] three CNNs,
namely VGG19, AlexNet and GoogLeNet [55], are assessed
as pre-trained and non-pre-trained models with respect to their
morph detection abilities. Also with these methods there is
a potential problem of over-fitting. In particular, the result-
ing classifiers may prefer image sites where artefacts, such as
shadows around the iris region, may occur due to an imperfect
automated morphing process. In order to avoid over-fitting,
Seibold et al. [33] trained a VGG19 network on a series of
different images with two different databases, morphing algo-
rithms and postprocessings (motion blur, Gaussian blur, salt
and pepper noise, Gaussian noise). Since the CNN has been
trained on all types of databases, morphing algorithms, and
postprocessing, it is difficult to assess the resulting robust-
ness of the classifier. Wandzik et al. [38] suggested to use
pre-trained facial recognition networks, e.g., VGG-Face [56]
or FaceNet [57], to detect morphing attacks. The high-level
features generated by the networks are classified with a linear
SVM.

Different approaches based on media forensics were
presented, too. In several papers the detection of JPEG dou-
ble compression artefacts for the purpose of morph detection
was proposed [18], [29]. However, the presence of such arte-
facts implies a strong assumption of the image format of facial
images used for morphing and the resulting morphed facial
image. ICAO proposes to store facial image data in accordance
with the specifications of the International Standard ISO/IEC
19794-5 [58]. More specifically, ICAO requires facial images
to be stored in electronic travel documents with an average
compressed size of 15kB to 20kB in JPEG or JPEG 2000 for-
mat [59], [60]. However, JPEG 2000 is the de-facto standard
for electronic travel documents as it maintains a higher quality
when compressing facial images to 15kB. Therefore, depend-
ing on the image size and the compression algorithm used,
JPEG double compression artefacts may not be detected. A

morph detection method based on reflection analysis in facial
images is introduced by Seibold et al. [30]. The flash direc-
tion is estimated based on reflections detected in the eyes
of a potentially morphed image. Reflections from the nose
of the face are then analyzed. However, the ISO/IEC stan-
dard requires the absence of hot spots and reflections in facial
images used in electronic travel documents. In particular, dif-
fuse lighting, multiple symmetrical sources or other lighting
methods should be used, i.e., a single bright “point” light
source such as a camera-internal flash is not acceptable for
imaging [58].

Apart from no-reference approaches differential morph-
ing attack detection schemes have been presented, too.
Most notably, face de-morphing [61], [62] and facial
landmark-based approaches have been introduced [63], [64].
Additionally, some no-reference approaches, e.g., general-
purpose image descriptors, can be extended to a differential
scenario by estimating differences between feature vectors
extracted from trusted live captures and potential morphs [8].

III. PRNU-BASED IMAGE FORENSICS

The photo response non-uniformity (PRNU), also known
as sensor noise, has previously been utilised as a reliable tool
to perform various forensic tasks such as device identification,
device linking, recovery of processing history and the detection
of digital forgeries. The PRNU origins from slight variations
among individual pixels during the photoelectric conversion in
digital image sensors. All digital image sensors cast this weak
noise-like signal into all acquired images. Thus, the PRNU can
be considered as an intrinsic property of all digital imaging
sensors and an inherent part of their output.

A. PRNU Extraction and Analysis

In this work, we make use of the PRNU to detect morphed
face images. This systemic and individual pattern can be seen
as an unintentional stochastic spread-spectrum watermark that
survives processing, such as lossy compression or filtering.
The extraction of the PRNU noise residual from an image
can be performed by applying Fridrich’s approach [65]. For
each image I the noise residual WI is estimated as described
in Eq. (1),

WI = I − F(I) (1)

where F is a denoising function which filters out the sensor
pattern noise. The extraction is performed using the denois-
ing filter proposed by Mihcak et al. [66]. For further details
on the denoising filter, we refer to [66]. Fig. 2 presents the
extracted PRNU for an exemplary image. Further visualiza-
tions of PRNU signals extracted from face images can be
found in [5], [10].

Since the PRNU extraction is relying on a denoising
of the image, the resulting pattern might be contami-
nated with different signals, such as other high frequency
image components, e.g., edges, or different types of non-
unique artefacts (NUAs) [67]. Many alternative PRNU
extraction schemes [68], [69], [70], [71], [72], [73], [74] and
PRNU enhancements [75], [76], [77], [78], [79] have been
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Fig. 2. PRNU extraction example for a pre-processed face image.

proposed in literature to attenuate different types of PRNU
contaminations and improve the quality of the extracted PRNU
in source camera identification scenarios. However, to the best
of our knowledge, their impact on the general properties of
the PRNU signal has not yet been extensively investigated.
Therefore, we decided to rely on Mihcak et al.’s [66] denoising
filter for the PRNU extraction.

The following essential properties, based on the character-
istics of the PRNU described by Fridrich in [80], make the
PRNU well suited for a face morph detection scenario:

1) Dimensionality: The sensor fingerprint is stochastic in
nature and has a large information content, which makes
it unique to each sensor.

2) Unavoidability: All imaging sensors exhibit PRNU.
3) Universality: The sensor fingerprint is present in every

picture independently of the camera optics, camera set-
tings, or scene content, with the exception of completely
dark images.

4) Permanence: It is stable in time and under a wide
range of environmental conditions (temperature, humid-
ity, etc.).

5) Robustness: It survives lossy compression, filtering,
gamma correction, and many other typical processing
procedures. It is even reported to survive high quality
printing and scanning [81].

Due to the criteria described above, the PRNU offers sig-
nificant advantages over analysing other high-frequency image
components to detect morphed face images.

According to Fridrich [65], the spectral characteristics of
the PRNU reveal whether an image has been subject to further
processing, e.g., non-geometrical operations have an influence
on the strength of the embedded PRNU signal. Since the face
morphing process involves non-linear warping and averaging
operations, the distribution of the PRNU values is expected to
change after these processing operations. Fig. 3 illustrates the
PRNU and Fig. 4 the Discrete Fourier Transform (DFT) mag-
nitude spectra obtained by averaging the extracted PRNU of
500 bona fide and 500 morphed face images from the FRGCv2
dataset, which is described in more detail in Section V.

These effects on the distribution of the PRNU values in the
spatial domain can be observed in Fig. 3(c), where the dis-
tribution of morphed images is squashed compared to bona
fide ones, i.e., the values around the mean of the distribu-
tion become more frequent and the values around the tails of

Fig. 3. PRNU values and histograms of the PRNU extracted from a single
bona fide image (a) and morphed face images (b). The PRNU values have
been averaged over 500 randomly selected images of the FRGCv2 dataset.

Fig. 4. DFT magnitude spectra and histograms of the PRNU extracted from
bona fide and morphed face images. The DFT spectra have been averaged
over 500 randomly selected images of the FRGCv2 dataset.

the distribution become less frequent which leads to a steeper
slope. Furthermore, some undesired components of the PRNU,
e.g., edges in the image content, are emphasised in the mor-
phed images, as it can be observed in Fig. 3(b). These effects
are caused by the averaging operations applied during the
morphing process.

The magnitude spectra of bona fide and morphed face
images in Fig. 4, representing the frequency domain of the
PRNU, show a clearly visible discrepancy among each other,
where the most obvious differences can be observed in the
reduction of high-frequency components within the morphed
images’ DFT magnitude spectrum as compared to the bona
fide ones. Furthermore, the DFT spectrum of the morphed face
images appears more compressed, i.e., the area covered by the
large magnitudes is smaller compared to bona fide images.

These effects are caused by the previously mentioned oper-
ations involved in the face morphing process, which lead to
changes in the distribution of the PRNU values. The approach
presented in this work aims at exploiting these effects in order
to perform a blind no-reference face morph detection.

B. Potential Attacks and PRNU Robustness

PRNU-based forensics and counter forensics can be con-
sidered as a cat-and-mouse game, since attacks and counter
attacks are presented on a regular basis in the related litera-
ture. While attackers try to bypass various forensic approaches
and conceal their counter-forensic approaches, techniques are
developed to reveal such attacks.

The counter-forensic techniques proposed to overcome
PRNU-based forensics can be divided into the following
categories:

• Destroying the Image Identity: This class of counter
forensic techniques tries to conceal the identity of
an image and therefore prevents an identification
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of the image source or camera, respectively. Some
examples are: removing the PRNU [82], [83], [84], [85],
seam carving [86], [87], adaptive PRNU denoising [88].
Applying these techniques to morphed face images poses
a lower threat to a PRNU-based morph detection system,
since the aim is not to detect the image source, but to
analyse the general properties of the PRNU signal. When
the PRNU is destroyed, it can be assumed that its general
properties are also not preserved.

• Forging the Image Identity: The goal of this class
of counter forensic techniques is to fake the iden-
tity of an image, i.e., changing the identity of the
image or concealing traces of its modification. Some
examples for this are: Insertion of a differing PRNU
signal [83], [85], fingerprint copy attacks [89], [90], [91],
hiding of post-processing operations [83]. When applied
to morphed face images, these type of counter foren-
sic techniques can most likely be considered as a threat
for a PRNU-based morph detection system, because
their aim is to spoof an authentic image source, which
usually contains similar characteristics to the PRNU
of unaltered images. A potential attack on the PRNU-
based morph detection system could involve extracting
the PRNU from an authentic image and inserting it
into a morphed image. This would restore the origi-
nal properties of the PRNU when it is extracted again
for the detection and therefore conceal the morphing
operations.

Different approaches are proposed in literature to detect
such intentional counter forensic attacks, e.g., the “Triangle
Test” [92] and more recently Sameer et al. [93] proposed
a deep learning based CNN model for the detection of
counter forensic images. In biometrics, forging of the image
identity has only been investigated for iris sensor data by
Banerjee et al., [94] and Uhl and Höller [95], where the
detection of such attacks is furthermore evaluated in the latter.

Another type of attacks on the PRNU are unintentional
ones, such as recompression, geometric transformations (crop-
ping, scaling, rotation), photometric transformations and post-
processing of the images. These attacks might occur uninten-
tionally, i.e., when images are simply processed to enhance the
appearance of a subject within the image, like it is often done
for portrait photos. The PRNU has been shown to be resilient
to photometric transformations [96] to a certain degree. While
geometric transformations heavily affect the image source
identification because they destroy the alignment of the PRNU
signal, they are expected to not affect the general properties
of the PRNU. However, post-processing of images, such as
sharpening, blurring or contrast enhancement, can severely
affect the PRNU. In previous work we showed that differ-
ent post-processing techniques might even completely prevent
a PRNU-based detection of morphed face images [5], [10].
Furthermore, recompression [97] is reported to alter the PRNU
pattern after several passes in a way that source identification
performance is affected. However, its influence on the general
properties of the PRNU has not been investigated.

We consider intentional attacks on the PRNU to be less
likely compared to unintentional ones, because the former

require profound knowledge about the PRNU and its properties
as well as an attacker with experience in the field. As the
robustness of PRNU-based morph detection against simple
post-processings has been already investigated in previous
works [5], [10], an evaluation of four morphing algorithms
has been included in order to provide a more comprehen-
sive performance analysis in Section V-B. The four morphing
algorithms picture a more realistic attack scenario, since they
use different combinations of the simple post-processings.
To address the question whether a PRNU-based approach
can be applied for a wide range of distinct cameras, in
Section V-C we evaluated the generalizability of the proposed
morph detection approach on the Dresden Image Database [98]
containing images from 63 different cameras from multiple
manufacturers.

IV. PROPOSED SYSTEM

Based on the observed effects of the face warping proce-
dure on the spatial and spectral characteristics of the PRNU, in
this work we propose a PRNU-based morph detection system
which is able to discriminate between bona fide and morphed
images. Therefore, we analyse the spatial and spectral charac-
teristics of the PRNU in a no-reference manner, thus there is
no need for a trusted bona fide reference image of one of the
morphed subjects.

The proposed system relies on a divide and conquer prin-
ciple and its processing steps are illustrated in Fig. 5. In
the remainder of this section, we will discuss the various
processing steps in more detail.

A. Preprocessing and PRNU Extraction

The first step of the system consists in extracting the facial
region from a face image, which is normalised and then
cropped to the facial area (320×320 pixels) before being con-
verted to grayscale. This process is described in more detail
in Section V-A.

Following, the PRNU is extracted from the preprocessed
image, as described in Section III, using the wavelet-based
denoising filter by Mihcak et al. [66] in conjunction with
the filtering distortion removal (FDR) enhancement proposed
in [79]. The extracted PRNU is then split into multiple equally
sized cells. The proposed system is able to work with arbitrary
splits from 1 cell (whole image) to N cells. In this work, only
a cell size of 10×10 cells is investigated, because it yields
the best performance according to previous work [5], [10].
In general, a larger number of cells is expected to further
expose the non-linear transformations of the PRNU during
the morphing process by putting stronger emphasis on local
variations within an image. Eventually, we obtain N different
cells C1, . . . , CN . Fig. 5 shows an example of how the face
image is preprocessed and the PRNU is extracted and split
into 10×10 equisized cells.

B. Feature Extraction

The feature extraction is performed individually for each
cell. In previous work [5], [10], only spectral features based
on the DFT magnitude histogram and magnitude energy have
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Fig. 5. Processing steps of the proposed PRNU-based morph detection system and different feature types: spatial features (upper path) and spectral features
(lower path).

been investigated. In this work, two different feature types are
investigated: spectral features based on the PRNU’s DFT mag-
nitudes and new spatial features based on the PRNU values,
since the PRNU values are affected by the morphing proce-
dures and post-processings in the spatial domain as well the
spectral one.

Both feature types are described in more detail in the
following.

1) Spatial Features: The newly proposed spatial features
aim at analysing the distribution of the PRNU values, which
is observed to differ between bona fide and morphed images
according to Fig. 3(a) and Fig. 3(b).

For the first spatial feature, Pvar, the histogram of the PRNU
values is computed, which is constrained to a range of [−5, 5]
and divided into 100 bins. These values have been selected by
analysing the DFT spectra of extracted PRNUs of bona fide
and morphed images. Due to the different slope of bona fide
and morphed image’s PRNU value distributions that can be
observed in Fig. 3(c), we decided to compute the variance of
the histogram bin frequencies Pvar, which we defined as

Pvar = 1

B

B∑

n=1

(
HP(n) − H̄P

)2 (2)

where B is the number of bins in the PRNU cell’s histogram
HP. H̄P represents the mean frequency of the histogram bins.

As second spatial feature, we consider the energy of the
PRNU values, Pen, which is defined as

Pen =
∑

x∈V

|x|2 (3)

where x is a value within all PRNU values V of a cell.
As the Eqs. (2) and (3) show, both spatial features yield a

simple scalar value SV for each PRNU cell.
2) Spectral Features: In order to compute the spectral

features, the first step consists in obtaining the frequency spec-
trum of the PRNU in each cell, which is done by means of the
DFT. The resulting magnitude spectrum, which is illustrated
in Fig. 4(a) and Fig. 4(b) respectively, reveals the alterations
of the PRNU signal caused by the morphing process.

These effects are quantified, on one hand, by calculating the
DFT magnitude histogram to represent the magnitude distribu-
tion within the spectrum. As described in Section III, a shift
of the magnitude distribution can be observed for morphed

images. The DFT magnitude histograms are constrained to the
same universal range of [0, 8] and are divided into 100 bins.
These values have again been estimated by analysing the DFT
spectra of extracted PRNUs of bona fide and morphed images.
Based on the observations in Section III, we select the variance
of the histogram Dvar as being suited for the discrimination
between bona fide and morphed images. We obtain Dvar in a
similar manner as the previously described Pvar:

Dvar = 1

B

B∑

n=1

(
HM(n) − H̄M

)2 (4)

where B is the number of bins in a cell’s DFT magnitude
histogram HM , with H̄M being the mean frequency of the
histogram bins.

On the other hand, we propose to compute the energy of the
PRNU’s DFT magnitudes Den, as defined in Eq. (5), where M
are the DFT magnitudes within a cell and x their respective
values.

Den =
∑

x∈M

|x|2 (5)

As for the spatial features, both spectral features yield a
simple scalar value SV for each PRNU cell when considering
Eqs. (4) and (5).

C. Feature Aggregation

After obtaining the scalar values SV for all cells Cn, the
values are aggregated to obtain a global aggregation score A
for the image. We investigated various strategies, where
we present the two best performing ones. The aggregation
strategies used in this work are:

Amin = min∀n∈1...N
SVn (6)

Amax = max∀n∈1...N
SVn (7)

where N is the number of total cells and SVn is the feature
(scalar value) obtained for the cell Cn, as described in the
previous processing step.

Amin yields the minimum score among the individual cells,
while Amax characterizes maximum score among all cells. As
already mentioned, we obtain a single scalar value A for each
image using one of the Eqs. (6) or (7).
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Fig. 6. Examples of bona fide portrait and pre-processed face images of the used datasets. Due to the printing and scanning face images from the Print-Scan
dataset exhibit slightly lower resolution.

Fig. 7. Used morphing algorithms applied to a female (top) and a male (bottom) image pair. Note that the FaceFusion algorithm uses the inner eye regions
and nostrils of subject 1 in order to avoid artefacts in these regions.

D. Decision

The final decision, whether a face image has been created
through morphing of multiple images or not, is taken by a
simple thresholding.

Previous work [5] showed that a one dimensional decision
was not able to reliably detect some of the post-processed mor-
phed images for some spectral features. Hence, we introduce
an additional decision step and derive a mean value B̄ from
bona fide images, where the characteristics of the PRNU are
well known. With this property, we can calculate the distance
D of an investigated image to bona fide images as

D = |A − B̄| (8)

B̄ = 1

NB

NB∑

n=1

A (9)

where A is the cell aggregation result, B̄ is the mean variation
of the NB bona fide images.

It has to be noted, that this distance calculation is only
applied for the two spatial and spectral energy-based features
Pen and Den, while it is not calculated for the histogram-
based features Pvar and Dvar, due to the histogram-based
features yielding more consistent scores among different post-
processings which can be classified with a one dimensional
threshold.

If the distance calculation is applied, the final decision for
a presented face image is taken by thresholding the calcu-
lated distance D. Otherwise, the final decision simply relies on
thresholding of the value A, which is obtained directly from
the cell aggregation.

V. EXPERIMENTS

In the following subsection the experimental setup,
i.e., used databases, morphing algorithms, baseline systems
and performance metrics, are described. Subsequently, the
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detection performance of the proposed systems and the base-
line systems is reported and discussed. Further, the generaliz-
ability of the proposed PRNU-based morph detection approach
with respect to utilized cameras and printed and scanned face
images is investigated.

A. Experimental Setup

Performance evaluations are conducted based on a subset
of 1,948 images selected from the FRGCv2 [14] face image
database. Face images have been manually filtered to meet
ICAO requirements for electronic travel documents [59], e.g.,
frontal pose, neutral expression, homogeneous background and
sufficient resolution (at least 90 pixels between left and right
eye center). Images of this database have been developed using
a Fujifilm Frontier 5700 R Minlab and scanned using a Epson
DS-50000 Scanner at 300 dpi to obtain the Print-Scan database
of equal size. In addition, a subset of 1,058 images from
the FERET [22] face image database which exhibit the same
properties are used for training purposes of baseline morph
detection algorithms. Note that the latter database is not used
for evaluation of the proposed PRNU-based morph detection
scheme since it has been acquired using an analog camera.
PRNU is primary caused by Pixel Uniformity Noise related
to the sensor which are non-existent if images are acquired
with a film camera, i.e., only the PRNU signal of the sen-
sor inside the scanner used to digitize the images might be
present in this case. Instead, the Dresden Image Database [98]
is used for training the PRNU-based morph detection schemes
to underline the claim that the proposed PRNU-based morph
detector is not dependent of a specific camera unit, since it
contains images from 63 distinct cameras from various mod-
els and manufacturers. More details on how the bona fide and
morphed images have been generated using the Dresden Image
Database are given in Section V-C.

In a pre-processing step the face of a subject is segmented
and normalized according to eye coordinates detected by the
dlib landmark detector [99]. Subsequently, the normalized
region is cropped to 320×320 pixels to ensure that the morph
detection algorithm is only applied to the facial region. Finally,
the cropped face part is converted to a grayscale image.
Examples of original face images (cropped to portrait format)
and pre-processed face images of the FRGCv2 and Print-Scan
database are depicted in Fig. 6.

The subsets are split into images used for morph cre-
ation and images used as bona fide references. The resulting
database constellation is listed in Table II. In order to generate
a great variation of morphs, four morphing algorithms were
employed:

1) OpenCV/dlib: a self-scripted morphing algorithm based
on th “Face Morph Using OpenCV” tutorial2 using the
dlib landmark detector [99].

2) FaceMorpher3: an open-source implementation using
python.

3) FaceFusion4: a proprietary morphing algorithm.

2http://www.learnopencv.com/face-morph-using-opencv-cpp-python/
3https://github.com/alyssaq/face_morpher
4http://www.wearemoment.com/FaceFusion/

TABLE II
NUMBER OF SUBJECTS, BONA FIDE AND MORPHED FACE IMAGES OF

USED DATASETS. “F” AND “M” INDICATE FEMALE AND MALE

SUBJECTS, RESPECTIVELY

4) UBO: the morphing tool developed by the University of
Bologna, as used, e.g., in [61].

In order to be able to conduct comparable experiments,
the same combination of morphed face images was created
for each of the listed algorithms. All algorithms detect corre-
sponding landmarks in two face images to be morphed which
are averaged. Subsequently, both face images are warped
accordingly. Finally, alpha-blending is performed to create
the morphed face image. All morphs were created in a way
such that both used images tend to contribute equally to the
inner facial region. Note that FaceFusion and UBO morphing
algorithms are closed-source and might apply certain image
post-processing methods to enhance the quality of resulting
morphs. Examples of cropped facial regions of morphed face
images generated all four morphing algorithms are shown in
Fig. 7.

The vulnerability of a COTS facial recognition system
to attacks based on the generated morphed face images is
assessed by using the metrics specified in [100], in partic-
ular the Mated Morph Presentation Match Rate (MMPMR).
This measure is an adaptation of the general Impostor
Attack Presentation Match Rate (IAPMR) introduced in
ISO/IEC 30107−3 [101] and is defined as the proportion of
attack presentations using the same type of presentation attack
instruments in which the target reference matches. In the adap-
tation, however, the MMPMR covers the fact that not one
target subject (contained in the morphed reference) is matched
- but for a successful face morphing attack, both data subjects
that previously contributed to the morphed image are expected
to match.

Using the default decision threshold of the COTS facial
recognition system, an MMPMR of 1 is obtained across all
used face image databases and morphing techniques. This
means that all facial images of individuals contributing to a
morphed facial image are successfully compared to it, so that
the attacks have a 100% chance of success.

As baseline face morphing attack detection systems Local
Binary Patterns (LBP) [102], Binarized Statistical Image
Features (BSIF) [42], FaceNet features [57] and the FS-SPN
analysis of [27] are applied. At feature extraction for LBP
and BSIF the pre-processed face image is optionally divided
into 4×4 cells to retain local information. That is, feature
extractors are applied pixel-wise storing feature value in his-
tograms for each texture cell. The final feature vector is
formed as a concatenation of histograms extracted from each
cell. While LBP simply processes neighboring pixel values of
each pixel, BSIF utilizes specific filters learned from a set of
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TABLE III
PERFORMANCE RESULTS IN TERMS OF D-EER (IN %) FOR DIFFERENT

CONFIGURATIONS OF THE BASELINE MORPHING ATTACK DETECTION

SYSTEMS. BEST PERFORMING SYSTEMS ARE MARKED BOLD. μ IS THE

MEAN ERROR AND σ 2 THE VARIANCE OVER ALL MORPHING METHODS

images. For details on these texture descriptors the reader is
referred to [42], [102]. The use of these well-established gen-
eral purpose texture descriptors has shown to be successful
in diverse texture classification problems. As the process of
image morphing is expected to cause changes in textual prop-
erties between bona fide and morphed face images said texture
descriptors have been shown to reveal competitive morphing
attack detection performance [8], [11], [12], [21]. Minimum
filter sizes of 3×3 pixels which have been reported to reveal
best detection performance in [8] are used for both texture
descriptors. In the training stage feature vectors are extracted
for each baseline system and SVMs with Radial Basis
Function (RBF) kernels are trained to distinguish between
bona fide and morphed face images. Similarly, an SVM is
trained with deep facial features extracted from cropped face
image using the FaceNet recognition system. This approach
resembles the schemes proposed in [31], [33]. The SVM-based
classifiers of these morph detection schemes are trained on
the subset of the FERET image database. Eventually, the pre-
trained open-source implementation5 of [27] is directly applied
for morph detection. The major advantage of the proposed
PRNU-based morph detection over the baseline algorithms
is that it does not need any training. Only for some of the
proposed features, a pre-computed decision threshold has to
be computed. In such cases, the threshold has been estimated
on the Dresden image database [98].

The performance of the detection algorithms is reported
according to metrics defined in ISO/IEC 30107−3 [101].
The Attack Presentation Classification Error Rate (APCER)
is defined as the proportion of attack presentations using the
same presentation attack instrument species incorrectly clas-
sified as bona fide presentations in a specific scenario. The
Bona Fide Presentation Classification Error Rate (BPCER) is
defined as the proportion of bona fide presentations incorrectly
classified as presentation attacks in a specific scenario. The
D-EER, i.e., the operation point where APCER = BPCER, is
used as general operation point and reported for the different
morphing methods.

B. Performance Evaluation

Table III lists the D-EERs for different configurations of
the baseline systems. It can be observed that morphs created
using OpenCV with dlib are generally harder to detect, in
contrast to the images created by other morphing algorithms.

5https://github.com/Le-BingZhang/FS-SPN

Fig. 8. DET curves for different configurations of the baseline morphing
attack detection systems in the presence of all morphing attacks on FRGCv2.

Fig. 9. DET curves for different configurations of the baseline morphing
attack detection system in the presence of all morphing attacks.

However, FS-SPN performs best detecting morphs created
with OpenCV and dlib, but the detection rate drops when
detecting morphs created by FaceFusion or the UBO algo-
rithm. In contrast, BSIF4×4 shows improved performance for
detecting FaceFusion morphs, but lacks detecting morphs cre-
ated by OpenCV. The DET curves for the baseline systems in
presence of all morphing attacks are shown in Fig. 8. In sum-
mary, it appears that a heterogeneous training and test database
as well as the utilization of different morphing algorithms sig-
nificantly deteriorate the detection performance of the baseline
systems leading to significantly worse results to what has been
reported in previous works.

Performance results for the proposed PRNU-based mor-
phing attack detection scheme for best performing feature
extractors and cell aggregation techniques are summarized
in Table IV. DET plots for the best performing proposed
approaches across all post-processings are shown in Fig. 9.
In addition, Fig. 10 compares the average D-EERs and their
variances of all proposed morphing attack detection schemes
to the baseline systems. In contrast to the baseline systems,
the PRNU-based approaches yield low error rates detecting
morphs created using OpenCV and dlib, but struggle detect-
ing FaceFusion morphs. However, compared to the baseline
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TABLE IV
PERFORMANCE RESULTS IN TERMS OF D-EER (IN %) FOR DIFFERENT CONFIGURATIONS OF THE PROPOSED PRNU-BASED MORPHING

ATTACK DETECTION SYSTEMS. BEST PERFORMING SYSTEMS ARE MARKED BOLD. μ IS THE

MEAN ERROR AND σ 2 THE VARIANCE OVER ALL MORPHING METHODS

Fig. 10. Error bars of D-EERs for different configuration of the proposed
PRNU-based morphing attack detection system and the baseline morphing
attack detection systems in presence of all morphing attacks.

systems average D-EER are observably lower and exhibit
smaller standard deviations. Additionally, smaller variance in
detection performance across different datasets and morphing
algorithms are obtained, which is vital for an application of any
morphing attack detection algorithm in real world scenarios
where said parameters are unknown.

Compared to the baseline systems, significantly improved
results are achieved for the newly proposed spatial features,
i.e., Pvar followed by Pen, which significantly outperform
the baseline systems. The spectral Den feature, proposed in
previous work, also obtains very competitive results on this
new dataset. Another aspect to note is that the energy-based
features Den and Pen, whose mean bona fide threshold B̄ has
been determined on the Dresden image database, underlines
the generalisability of the approach in regard to cameras from
different models and manufacturers.

At this point, it is important to note that morphing attack
detection algorithms analyze cropped faces only. Thereby
higher generalizability is achieved since outer facial parts can
be created in different ways during morph creation. Many
morph generators copy the outer facial image part of one sub-
ject contributing to the morph, e.g., in [29], [61]. In such
cases, the PRNU signal of the outer part of the morph is
expected to remain almost unaltered. That is, if the proposed
PRNU-based morphing attack detection schemes are extended
to analyze the entire face image, a variance-based cell aggre-
gation is expected to reveal improved results for detecting
morphs created in the aforementioned way.

Overall, some of the proposed PRNU-based morph-
ing attack detection configurations reveal promising results

considering the challenging experimental setup. In contrast to
trained morphing attack detection schemes, e.g., [32], [54],
the proposed schemes do not rely on the presence of distinct
artefacts, e.g., ghost artefacts, which might occur due to imper-
fect morph creation. Hence, similar results are to be expected
if advanced morphing algorithms are developed which allow
for an automated creation of morphs comprising less or no
artefacts.

C. Generalizability Across Cameras

As mentioned in Section III, the proposed PRNU-based
morph detection system relies on changes in the distribution
of the PRNU values. Since the PRNU differs for each cam-
era, it might contain camera (model) specific contaminations
(non-unique artefacts) that might affect the PRNU values’
distribution.

In order to investigate the generalizability of the proposed
morph detection approach and due to a lack of suitable face
image datasets acquired with different cameras, we decided
to fall back to the Dresden image database [98], which offers
images from multiple cameras and even multiple instances of
the same camera model. More specifically, we selected the
flatfield dataset, since it contains images beneficial for PRNU
extraction, i.e., bright images of an evenly illuminated surface,
which do not contain any contaminations from the image con-
tent like edges or other high-frequency patterns. The flatfield
dataset contains images from 63 distinct digital cameras from
20 different camera models across many camera manufactur-
ers. For some camera models, images from up to 5 instances
are available in the dataset.

To generate the bona fide and morphed images, we first
selected 315 images from the Dresden image database [98],
consisting of 5 random images for every one of the 63 cam-
eras. For the generation of the morphed image samples, we
used the same morphing parameters as they would occur in a
face morphing attack. In this experiment, they were obtained
from applying the OpenCV with dlib approach on the FRGCv2
database, as described in Section V-A. With these parameters,
we generated a total of 53, 362 morphed images from bona fide
image pairs of different cameras. Finally, a patch of 320×320
pixels is cropped from the center of all bona fide and morphed
images.

The results of applying the proposed PRNU-based face mor-
phing system on these bona fide and morphed images are
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TABLE V
PERFORMANCE RESULTS IN TERMS OF D-EER (IN %) FOR DIFFERENT CONFIGURATIONS OF THE PROPOSED PRNU-BASED MORPHING ATTACK

DETECTION SYSTEMS (CELL SIZE OF 10×10) AND 63 DIFFERENT CAMERAS FROM THE DRESDEN IMAGE DATABASE.
“ALL” INDICATES THE RESULT FOR ALL CAMERA INSTANCES

presented in Table V. Looking at the overall results for all cam-
eras at the bottom of the table, we obtain a D-EER of 13.65%
with Pvar|Amin aggregation. For most cameras the detection
error rate is very low. However, some cameras exhibit higher
error rates of around 15−20% and cameras of a specific model
(Practica DCZ59) even of up to 41.56%. We assume that this
degradation might be caused by camera-specific non-unique

artefacts, since the degradation mostly occurs for all cam-
eras of the same model, as the mentioned Practica DCZ59
or FujiFilm FinePixJ50 and Panasonic DMCFZ50. Though, it
has to be noted that the degradation does not persist among
all investigated features, where a fusion of multiple features
might yield improved performance and more consistent results.
The other proposed features Den, Pvar and Pen also achieve
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TABLE VI
PERFORMANCE RESULTS IN TERMS OF D-EER (IN %) FOR DIFFERENT

CONFIGURATIONS OF THE PROPOSED PRNU-BASED MORPHING

ATTACK DETECTION SYSTEMS (CELL SIZE OF 10×10) FOR

THE PRINT-SCAN DATASET

Fig. 11. DET curves for different configurations of the proposed morphing
attack detection on the printed and scanned images for all morphing algorithms
(OpenCV/dlib, FaceMorpher, FaceFusion, UBO).

respectable overall results between 14.5 and 28.6% D-EER.
The histogram-based feature Pvar, which is independent of any
training data, show a better generalizability over the various
cameras compared to the energy-based features Den and Pen.

These results demonstrate that PRNU-based features in gen-
eral are able to generalize well over a large number of different
cameras and show promising results for a face morph detection
scenario.

D. Printed and Scanned Images

In this last experiment, we look at the performance of the
PRNU-based morph detection approach when applied to the
Print-Scan dataset described in Section V-A. This scenario is
very challenging for a PRNU-based approach, since the scan-
ning process of the images embeds the scanner’s PRNU within
all scanned images, which might prevent the detection of the
morphed images. The D-EER results are presented in Table VI.

We can observe, that the detection performance signif-
icantly drops for all proposed feature-aggregation combi-
nations, where the best result is obtained with Pvar|Amin

with a D-EER of 30.52%. Fig. 11 illustrates the DET plots
for all proposed morph detection algorithms on the printed
and scanned images, where all morphing algorithms, i.e.,
OpenCV/dlib, FaceMorpher, FaceFusion and UBO, have been
included. These results show that the scanners PRNU leads to
a detection performance degradation for the proposed PRNU-
based approach, however Pvar|Amin is still able to discriminate
bona fide and morphed images to some degree in this print and
scan scenario.

VI. CONCLUSION

Face morphing attacks pose a serious security risk to
face recognition systems. In this work, the potential PRNU
analysis has been thoroughly analyzed for the challenging
task of no-reference face morph detection. In comprehensive
cross-database experiments for which different face morph-
ing and image post-processing techniques have been applied,
the proposed PRNU-based morphing attack detection system
has been shown to outperform other state-of-the-art methods.
Moreover, the feasibility of detecting morphed face images
from printed and scanned image data has been investigated.
Since the proposed system is based on a simple and min-
imal approach, further detection performance improvements
can be expected by fusing multiple PRNU features and by a
more sophisticated classification approach based on machine
learning techniques.

In contrast to differential morphing attack detection
schemes, e.g., [61], which additionally process a trusted live
capture of a subject’s face the proposed approach is particu-
larly useful in cases where only a single potentially morphed
face image is presented, e.g., digital transmission of a face
image for issuance of an electronic travel document which
turns out to be relevant in some countries. In other scenarios,
e.g., facial recognition at ABC gates, the presented PRNU-
based morphing attack detection scheme could be fused with
other (differential) approaches to further improve the detection
performance.
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Abstract. Most approaches for product counterfeit detection are based
on identification using some unique marks or properties implemented
into each single product or its package. In this paper we investigate a
classification approach involving existing packaging only in order to avoid
higher production costs involved with marking each individual product.
To detect counterfeit packages, images of the package’s interior show-
ing the plain structure of the paperboard are captured. Using various
texture features and SVM classification we are able to distinguish drug
packages coming from different manufacturers and also forged packages
with high accuracy while a distinction between single packages of the
same manufacturer is not possible.

Keywords: Drug counterfeit detection · Paper structure classification ·
Texture classification

1 Introduction

Counterfeit products are a serious world wide issue affecting all industries. A
recent OECD study [13] reports that in 2013 about 2.5 % of the world wide
traded products were faked ones. For the European Union (EU) a remarkably
higher value of 5 % for faked and imported products is reported.

In case of medical products counterfeit medicines and drugs lead to an eco-
nomic loss and are all the worse a threat for the health of the consumers and
patients. The International Medical Products Taskforce (IMPACT) of the World
Health Organization (WHO) estimated a share of 1 % of faked products in the
developed countries and 10 to 30 % in many developing countries [16]. Conse-
quently, medical product authentication is becoming increasingly important. On
European level the Falsified Medicines Directive (FMD) 2011/62/EU should be
implemented until 2018. The overall aim is to improve patient safety stipulating
an efficient anti-counterfighting system. Unique identifiers (2D barcodes) will be
used to track and authenticate each medical package along the supply chain.
A central repository system is required to enable authentication of each pack-
age. Such a system will not be available in developing countries. Furthermore,
it suffers costs and is exposed to getting compromised by the forgers.

c© Springer International Publishing AG 2016
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Another approach to verify the originality of a product is to use intrinsic
features visible on the packaging or the product itself. For this work we focus on
authentication of a medical product using intrinsic features from the packaging
surface. Literature in this field relates to package fingerprinting based on the
theory of physically uncloneable functions (PUFs). Paper PUFs use the fiber
structure of paper as physical/intrinsic characteristic. The approaches presented
in [1,3,10] show that the micro-structure in a certain region of a paper or package
material is discriminative enough to identify it. Detailed investigations on paper
identification, using a public available microstructure dataset [18], are presented
in [4,5]. In [5] the authors explore the applicability of two approaches to over-
come geometric distortions. The same approaches and a hybrid one are used to
investigate package identification using mobile phones in [4]. Furthermore, in [6]
a new feature descriptor for micro-structure identification using mobile phones
is introduced. By comparing the performances for different PUFs the results in
[20] indicate that the approach by [3] outperforms the approaches by [4,5,18] but
it requires a commodity scanner. Thus, in [19] the authors showed that mobile
devices and the camera built-in flash lights can also be used to capture images
as required for [3].

As shown, research exclusively deals with identification of paper or packages.
To the best of our knowledge no works which consider paper or package classifica-
tion have been presented so far. Like in the work of [17] we assume that the fibre
structure pattern of the packaging material is suited for classification, i.e. for a
certain medical product the packaging fibre structure shows constant features.
If so, one step for checking the authenticity of a medical product could be to
assess if the packaging material is the same as used for the original product. To
answer this question, we perform a preliminary study for nine different medical
products from three different manufacturers and some forged packages for one
medical product. The results of this work enable to draw conclusions which are a
first step towards medical product authentication using the packaging material.

Section 2 introduces the basic concept of paper classification. The experimen-
tal setup and the data set acquisition are described in Sect. 3. Our experimen-
tal results together with a discussion of these results can be found in Sect. 4.
Section 5 concludes this paper.

2 Paper Texture Classification

This section describes our proposed approach using paper texture classification
for package counterfeit detection. The general procedure is the following: At first
an image of the interior of the package is taken and several patches are extracted
from random positions in the image. These patches are then preprocessed. After-
wards different features are extracted from the preprocessed patches. Based on
these features a classifier returns a decision predicting the class a questioned
image is belonging to (by utilizing a pre-trained SVM). The steps are explained
in the following.
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2.1 Image Acquisition

Several images of the package’s interior are captured at different positions. For
the image acquisition a Canon 70D (100 mm lens and flash light), mounted on a
tripod, was utilized. The flashlight was placed besides the package. The camera
is set to the smallest possible distance from the package (about 30 cm) trying
to capture as most as possible of the paper’s fibre-structure. An image of the
acquisition setup can be seen in Fig. 1 together with an acquired image from the
interior of a sample package.

Fig. 1. Set-up for image acquisition of the fiber structure on the inside of a drug
package (left) and acquired image sample (right).

2.2 Preprocessing

During preprocessing of the images a contrast limited adaptive histogram equal-
ization (CLAHE) [21] is applied in order to improve contrast and enhance the
paper structure. After this contrast enhancement all images are converted to
grayscale and several patches are extracted from random positions in the images
to reduce the computational effort and increase the amount of data that can
be extracted from each package. Figure 2 shows the paper structure of different
packages extracted from the random patches after preprocessing.

Fig. 2. Example preprocessed image patches

2.3 Feature Extraction Techniques

All techniques tested in this work are usually used for texture classification,
image tampering detection and printer/paper identification and are applied on
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the preprocessed images taken from the inside of the package. The techniques
utilized in this work are briefly described in the following list, further information
on the single techniques can be found in the corresponding papers.

– Histogram
Gray-level histogram of all pixels as the extracted feature.

– LBP: Local Binary Patterns
The local binary patterns (LBP) by Ojala et al. [14] observe the variations of
pixels in a local neighbourhood and are represented in a histogram.

– DMD: Dense Micro-block Difference
Texture classification approach by Metha et al. [9] which captures the local
structure from the image patches at high scales, but instead of the pixels small
blocks which capture the micro-structure of the image are processed.

– RI-LPQ: Rotation-Invariant Local Phase Quantization
The rotation-invariant local phase quantization (RI-LPQ) by Ojansivu et al.
[15] consists of two stages: Estimation of the local characteristic orientation
for a given image patch and directed descriptor extraction.

– Dense SIFT: Dense Scale Invariant Feature Transform
Lowe [8] proposed a technique used in object recognition which is commonly
known as scale invariant feature transform (SIFT). This technique is invari-
ant to image scale and rotation and robust against various affine distortions,
addition of noise, illumination changes and changes of the viewpoint.

– GLCM: Gray-level Co-occurence Matrix
Mikkilineni et al. proposed to use gray-level co-occurence features for printer
identification in [11]. The features model the spatial relationships among the
pixels of an image to represent its texture information.

– WP: Weber Pattern
In [12] Muhammad proposed a multi-scale local texture descriptor which was
applied as part of an image forgery framework.

– BSIF: Binarized Statistical Image Features
The Binarized Statistical Image Features (BSIF) proposed by Kannala et al.
in [7] rely on pre-computed local image descriptors which efficiently encode
texture information.

– LSB+JD: Least Significant Bitplane + Jaccard Distance
Extraction of the images least significant bitplane (LSB-plane) and calculate
the Jaccard distance between the LSB-planes of two images.

2.4 Classification Approach

The features extracted with the techniques described in the previous section are
used to classify the images of the various kinds of drug packages.

The classifier is designed according to the improved Fisher vector (IFV) SVM
classifier in [2]. The features are soft-quantized using a Gaussian mixture model
(GMM), decorrelated and dimensionality reduced by PCA to obtain a Fisher
vector (FV) encoding. A pre-trained linear SVM is then used to classify the IFV
encoded features. The SVM is trained using a subset of the package’s images
which is subsequently not used for the testing (evaluation) step.
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3 Experimental Settings

The following section describes the dataset used in this work, which contains
images showing the paper structure of different forged and original drug pack-
ages. Furthermore a description of the two different dataset splits and our eval-
uation methodology to avoid overlapping between training and testing data is
given.

3.1 Dataset

Unfortunately, only a limited number of drug packages was available for our
work. In particular we have packages of 9 different kinds of drugs from 3 different
manufacturers denoted by A, B and C.

For all 9 kinds of drugs we have genuine packages and for 2 of them we also
have forged packages. The forged packages for the Levitra drug (ID 1) are real
counterfeits confiscated by customs, while the forged packages for the Neradin
drug (ID 8) have been purpose-made by the manufacturer of the drug.

Table 1 lists the number of genuine and forged packages for each kind of drug
(ID 1...9). We acquired 10 to 20 slightly shifted and overlapping images from each
of the packages’ interiors from which 5 patches of 512 × 512 pixels are extracted
at random position within each image. The extracted patches correspond to a
section of approximately 4.1 × 4.1 mm, or 16.81 mm2, of the package. From this
data we generated two distinct data sets to analyze two different issues using
the paper structure of the packages:

1. Is it possible to distinguish different packages of the same manufacturer?
2. Is it possible to distinguish packages of different manufacturers?

The first data set, SMDP (Same Manufacturer Different Packages), con-
tains images from packages of the same manufacturer, which correspond to the

Table 1. Number of genuine (G) and forged (F) packages in the data set with drug
name, corresponding ID and manufacturer (MF).

ID Name # G # F MF

1 Levitra 3 4 A

2 Kijimea Reizdarm 2 0 B

3 Kijimea Immun 1 0 B

4 Kijimea Derma 2 0 B

5 Narumed 3 0 B

6 Deseo 4 0 B

7 Signasol 2 0 B

8 Neradin 4 2 B

9 Unistop 2 0 C
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manufacturer B in Table 1. We only considered packages of this manufacturer
since it is the only one from which we had more than one different type of drug
package.

The second data set, FGDM (Forged and Genuine Different Manufacturers),
contains images from all the packages, genuine and forged, from all manufactur-
ers in Table 1.

3.2 Evaluation Methodology

To investigate the two questions of Sect. 3.1, we split the evaluation according
to the two data sets SMDP and FGDM.

For the SMDP data set, where we want to find out if it is possible to dis-
tinguish between different types of drug packages from the same manufacturer,
images having the same drug ID are defined as corresponding to the same class.
A class thus can contain images from different packages of the same drug. Forged
and genuine packages are furthermore split into different classes. This yields 8
different classes, because we have 7 different types of drug packages for manu-
facturer B and for one drug we also have 2 packages, which have been forged by
the manufacturer.

To find out if it is possible to distinguish packages of different manufacturers
(FGDM data set), images having the same manufacturer ID are defined as cor-
responding to the same class. Forged and genuine packages are again split into
different classes for the Levitra drug produced by manufacturer A, but not for
the Neradin drug of manufactuer B because these forgeries have been produced
by the manufacturer and use the same material as the genuine packages. The
different classes for the SMDP and FGDM data set are summarized in Table 2.

Table 2. Evaluation classes and corresponding IDs with number of packages

Name # Packages SMDP Class ID FGDM Class ID

Levitra forged 4 - 1

Levitra genuine 3 - 2

Kijimea Reizdarm genuine 2 1 3

Kijimea Immun genuine 1 2 3

Kijimea Derma genuine 2 3 3

Narumed genuine 3 4 3

Deseo genuine 4 5 3

Signasol genuine 2 6 3

Neradin forged 2 7 3

Neradin genuine 4 8 3

Unistop genuine 2 - 4
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The acquired images of the drug packages are slightly overlapping, this might
lead to patches of the same image belonging to both, the training and the testing
subset. Hence we used leave one package out (LOPO) for the selection of the
training and testing images/patches: Training is done with randomly selected
patches from all images except the images from one specific package. The patches
for the testing subset are then randomly selected only out of images from this
package. If there is only a single package in a class, like for the class with ID
2 in the case of the SMDP data set, the patches for this class are only used to
train the classifier. Thus, no intra-class comparisons for this class exist and the
average precision is not calculated and shown as 0 in the plots. By using the
LOPO approach for the evaluation, the slight overlap of images from the same
package does not introduce any bias to the results.

4 Experimental Results

This section presents the results of the conducted experiments and the con-
clusions made from those. We analysed the two cases, at first the separation
according to manufacturer (FGDM) and second the separation of packages all
from the same manufacturer (SMDP).

Table 3 lists the mean accuracies (mAcc) and mean average precisions (mAP)
for both cases. The mean accuracy corresponds to the mean of the values of the
confusion matrix diagonal. It can be seen that for FGDM the results for Dens-
eSIFT and DMD are close to 100 % meaning that almost a perfect classification
of the paper and thus the manufacturer is possible. Consequently, the true forg-
eries (corresponding to class 1) can be seperated from the other classes well.

Some example confusion matrices using a heat map for selected feature types
(DMD, DenseSIFT and GLCM) can be seen in Figs. 3 and 5 for the FGDM and
SMDP case, respectively. The numbers on the axes denote the classes according

Table 3. Mean accuracies (mAcc) and mean average precisions (mAP)

Data set FGDM SMDP

Method mAcc mAP mAcc mAP

BSIF 0.428 0.403 0.138 0.171

DMD 0.97 1 0.328 0.423

DenseSIFT 0.91 1 0.37 0.476

GLCM 0.953 0.964 0.14 0.18

Histogram 0.603 0.662 0.145 0.176

LBP 0.758 0.863 0.265 0.272

LSB 0.71 0.818 0.113 0.182

RI-LPQ 0.842 0.888 0.158 0.226

WP 0.861 0.896 0.158 0.197
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Fig. 3. Confusion matrix for DMD, DenseSIFT and GLCM in the FGDM case

Fig. 4. Average precision for DMD, DenseSIFT and GLCM in the FGDM case

Fig. 5. Confusion matrix for DMD, DenseSIFT and GLCM in the SMDP case

to Table 2, which shows the correspondence of the class labels to the drug pack-
ages. Figures 4 and 6 show the corresponding average precision plots for FGDM
and SMDP, respectively. These confirm that the recognition works well if the
split is done according to different manufacturers and does not work if the split
is done according to different drugs all from the same manufacturer.

We do not have any information about which kind of paper is used for the dif-
ferent drug packages. But the experimental results suggest (distinction between
different types of drugs from the same manufacturer was not possible) that one
manufacturer uses the same kind of paper and the same printing facility/printing
process for his drug packages. As long as the forgers do not have access to the
same kind of printing facility the genuine manufacturers utilizes, drug counterfeit
detection is feasible using our proposed approach.
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Fig. 6. Average precision for DMD, DenseSIFT and GLCM in the SMDP case

5 Conclusion

In this paper we investigated whether counterfeit drug package detection using
texture classification based on the intrinsic paper texture is possible. The avail-
able data was split to investigate two different issues.

In the SMDP case (same manufacturer) a distinction between single pack-
ages of the same manufacturer was not possible. We concluded that this is not
possible because all packages have very likely been produced using the same
manufacturing process and therefore share a very similar paper structure.

In the FGDM case (different manufacturers) it was indeed possible to classify
different genuine and forged packages with high accuracy. This indicates that it
is possible to identify counterfeit packages not produced by the original manu-
facturer, since they are most likely being produced in a different manufacturing
facility and hence do not share a similar paper structure. The class containing
the forged packages and the classes containing genuine packages could all be
clearly separated in this case.

This promising results however have to be taken with a grain of salt because of
the small data set size and the availability of only a few real counterfeit packages.
Hence the first step of our future work is the acquisition of more test data, i.e. a
higher number of distinct types of drug packages and even more important more
counterfeit and genuine packages of the same type of drug. In addition we want
to acquire further information about the printing and manufacturing process of
the packages.
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Abstract—Depending on the product category the authenticity
of a consumer good concerns economic, social and/or environ-
mental issues. Counterfeited drugs are a threat to patient safety
and cause significant economic losses. Different from physical-
marking based approaches this work investigates authentication
of drugs based on intrinsic texture features of the packaging
material. Therefore, it is assumed that the packaging material of
a certain drug shows constant but discriminative textural features
which enable authentication, i.e. to prove if the packaging
material is genuine or not. This objective requires considering a
binary classification problem with an open set of negative classes,
i.e. unknown and unseen counterfeits. In order to investigate
the feasibility a novel drug packaging texture databases was
acquired. The experimental evaluation of two basic requirements
in texture classification serves as an evidence on the basic
feasibility.

I. INTRODUCTION

Counterfeiting is an economic issue affecting all industries.
The OECD [1] reports that in 2013 2.5% of the worldwide
traded products were counterfeited ones. For the European
Union (EU) a remarkably higher value of 5% for counterfeited
and imported products is reported. In case of medicals, coun-
terfeits cause an economic loss and are moreover a potential
threat to the consumer and patient health. On the European
level, the Falsified Medicines Directive (FMD) 2011/62/EU
should be implemented until 2018. The overall aim is to im-
prove patient safety stipulating an efficient anti-counterfeiting
system. The actual solution is based on product serialization,
i.e. each package is assigned a unique identifier (e.g. 2D
barcode) which enables to track and identify each medical
package along the supply chain. Hence a central database
is required to enable authentication of each package. Such a
system will not be available in developing countries. Further-
more, it suffers costs and is exposed to getting compromised
by forgers. For example, packages will have to be equipped
with safety features in order to avoid tampering. Summarizing,
serialization-based product authentication requires to adapt the
production, shows significant risks & costs and cannot be
implemented in a set of countries.

For this reason, we move from serialization to classifica-
tion. This means that a product is authenticated based on
constant but discriminative intrinsic features of the product
or packaging material. Therefore, we target at pill drugs
which are packaged in blisters and housed in a cardboard
packaging. In [2] we showed that 9 different drugs from 3

WIFS‘2017, December, 4-7, 2017, Rennes, France. 978-1-
5090-6769-5/17/$31.00 c©2017 European Union.

manufacturers and some forged ones can be classified based on
their cardboard packaging material, in a closed-set multi-class
scenario. Results were promising and showed a classification
accuracy of 100% for all 8 drugs. However, the testset is
fairly small and drug package material authentication is a
simplistic two-class (binary classification) problem, i.e. a drug
is classified as being genuine or not. Contrasting to the setup
in [2], package authentication has to be considered as an
open set binary classification problem. In the training stage,
the authentication system can capture only a limited subspace
of other (known) drugs and forged packagings. It is a basic
requirement that the authentication system is able to reject
unseen counterfeited packages not known or available at the
time of training. For a drug packaging authentication system
this requires that a specific drug is distinguished from other
known and unknown forgeries and drugs which is referred
to as open set recognition. The general open set recognition
problem has recently been addressed in the works of [3], [4],
[5] which are outlined in Section II. Furthermore, in [6], [7],
[8] the authors investigate the performances of the invented
open set classification approaches in different applications.

In this work, we investigate the feasibility of a classification-
based drug authentication system based on images of the
cardboard packaging and top & bottom blister surface textures.
Within this work the cardboard packaging texture and the
blister top & bottom textures are referred to as modalities.
A substantial drug packaging texture database, consisting
of images from 45 drugs (multiple instances, i.e. multiple
packages in the range of 1 and 15 per drug are acquired).
Due to security concerns, strategic purposes and legal issues
(toll, pharma industry) no forged packages were available.

So far, packaging or paper authentication refers to iden-
tification or serialization of each instance. These are based
on the concept of physically unclonable functions (PUFs)
which rely on the mapping between a challenge and response
function depending on the physical nature of the object. PUFs
are unclonable and unpredictable and thus ideally suited to
implement identification-based anti-counterfeiting approaches.
These either rely on extrinsic or intrinsic PUFs, i.e. which are
attached to the product or can be derived from a part of the
product itself. The encrypted PUF signature can be attached
to the product enabling off-line authentication. [9], [10], [11]
showed that the microstructure in a certain region of a paper or
package material is discriminative enough to identify it (Paper
PUFs). Detailed investigations on paper identification, using a
publicly available microstructure dataset [12], are presented
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in [13], [14]. In [13] publicly availablethe authors explore
the applicability of two approaches to overcome geometric
distortions. The same approaches and a hybrid one are used
to investigate package identification using mobile phones in
[14]. Furthermore, in [15] a new feature descriptor for micro-
structure identification using mobile phones is introduced. By
comparing the performances for different PUFs the results
in [16] indicate that the approach by [11] outperforms the
approaches by [12], [13], [14] but it requires a commodity
scanner. Thus, in [17] the authors showed that mobile devices
and the camera built-in flashlights can also be used to capture
images as required for [11].

As identified in previous literature the fibre structure of
paper or packaging material is positional highly unique and en-
ables to identify single instances. The move from identification
to classification, as done in this work, raises two fundamental
research questions:

Positional invariance: Paper PUFs rely on the local unique-
ness of the paper fibre texture. Thus, for the paper or card-
board packaging fibre structure it is not clear if (i) the fibre
structure shows constant features across different regions and
(ii) if those features are discriminative enough to distinguish
between different types of paper or cardboard packaging.

Instance generalisation: The second question is a spe-
cialisation of the first for which the positional invariance
is considered across different instances (i.e. packages) of a
modality. Instance generalisation is a pre-requirement for a
real-world application. For paper and packaging material it
is not clear how the texture and the computed features vary
between different instances, i.e. if a classifier which is trained
with features from one instance is able to authenticate unseen
features from another package instance and to distinguish them
from other types of paper or cardboard packaging.

In this work, positional invariance and instance generali-
sation of the corresponding textural features are investigated
for all three modalities. By considering these pre-requirements
for classification-based drug packaging authentication, this
work enables to draw fundamental conclusions. Based on the
new insights the feasibility of a novel serialization-less anti-
counterfeiting approach can be considered.

Section II introduces into open set drug package authenti-
cation: (i) Section II-A describes a possible scheme for an
package authentication system and (ii) in Section II-B the
open set recognition problem is considered in more detail.
Section III introduces the acquired database. The classification
pipeline is outlined in Section IV. Experiments and results are
presented in Section V and Section VI concludes this paper.

II. OPEN-SET DRUG PACKAGE AUTHENTICATION

A. Drug package authentication system

For a given drug sample a mobile application guides the
user to open/disassemble the drug packaging and to capture
images of three different packaging modalities: The cardboard
packaging texture ICB as well as the textures visible on the
top and bottom blister sides (IBT , IBB). Furthermore, the
user is guided to capture the product code IPC (e.g. EAN

which is the European article number). All four images com-
pose the authentication vector ÂV = (ICB , IBT , IBB , IPC).
IPC is processed in order to determine the product code
specifying the target product. ICB , IBT , IBB are prepro-
cessed (segmentation, image enhancement). For the result-
ing texture images TCB , TBT , TBB a set of feature vec-
tors FVCB = {ĉb1, ..., ĉbi}, FVBT = {b̂t1, ..., b̂tj} and
FVBB = {b̂b1, ..., b̂bk} are computed, where the number of
feature vectors per modality i, j, k depends on the size of
the preprocessed images and on the utilized feature extraction
strategy. Based on the product code, the authentication system
selects the corresponding precomputed classification models
MCB , MBT , MBB from a model repository. If the required
models are not available on the device they could be requested
from a remote repository. For each model M and a given
feature vector v̂ the prediction function pF (M, v) = 1 in case
the vector is labelled as being genuine and −1 if not. For
each model MCB , MBT , MBB and the corresponding feature
vector sets FVCB , FVBT , FVBB the prediction function is
applied to all feature vectors which leads to the predictions for
each modality of the packaging instance PCB = {p1, ..., pi},
PBT = {p1, ..., pj} and PBB = {p1, ..., pk}. Finally, a
decision function f(PCB , PBT , PBB) = (v, p) needs to be
defined, where v ∈ {1, −1} gives the final authenticity vote of
the authentication system and p ∈ [0, 1] specifies a probability
score for the final vote which are then presented to the user.

Such an authentication system relies on the assumption that
different modalities of the packaging material of all instances
from the same product show constant but discriminative fea-
tures which enable to detect and distinguish the product from
a known and unknown set (=open set) of other as well as
from counterfeited products. For training of a classifier, only
a limited subset of other drugs and available counterfeits is
utilized. As a precondition for authentication, the classifier
must be able to reject unseen data. This is a typical binary
classification problem, either a given sample is labelled as
genuine or not. The undefined set of unknown other classes
leads to an open set recognition problem. This differs from
closed-set classification where only known classes are sepa-
rated from each other. Substantial efforts in the field of open
set recognition were made in [3], [4], [5]. In [3] the authors
introduce and formalize the open set recognition problem.
Furthermore, in [3], [4], [5] the authors propose different SVM
extensions which specifically address the open set recognition
problem. In order to investigate the two research questions
and as a consequence to prove the principal feasibility of
an authentication system we base our experiments on the
formalization of the open set recognition problem provided
in [3], [4].
B. Formalization of the open set recognition problem

In [3] the authors define the Open Space Risk as RO(f) =∫
O

f(x)dx∫
SO

f(x)dx
. SO needs to be considered as a large ball which is a

subspace of the open space including all training samples. O is
the open space. f(x) is a recognition function where f(x) = 1
if x is recognized as the class of interest y and f(x) = 0 if
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(a) Collected drug packages (b) Image acquisition setup

(c) CB sample (d) BT sample (e) BB sample

(f) CB image (g) BT image (h) BB image
Fig. 1: Image Acquisition Overview: 3rd Row: exemplary images showing
the selected 128×128 and 256×256 image patches.

not. Consequently, the open set risk RO is the fraction of the
positively labelled open space in SO compared to the positive
labelled samples in O. The goal in open set recognition is to
minimize the open space risk RO whilst balancing it against
the empirical (known) risk RE computed over the available
training data. Therefore, P̂ = {p1, ..., pn} are samples from
the positive training class P and N̂ = {n1, ..., nm} are
samples from a set of other known classes N . N̂ is defined
as the negative training data. U is the larger universe of
negative unknown classes only utilized for evaluation and
E = {e1, ..., ez}, ei ∈ P ∪ N ∪ U specifies all evaluation
data. For a given training data P̂ ∪ N̂ and the open space
and empirical risk functions RO, RE the open set recognition
problem is to find a function f , where f(x) > 0 for positive
recognitions, which minimizes the open set risk:

arg min
f

{RO(f) + λrRE(f(P̂ ∪ N̂))} (1)

where λr is a regularization constant.
Hence, open set recognition is a minimization problem

which combines the open set and the empirical risk over the
space of allowable recognition functions. Further, the empirical
risk (i.e. the training error) can be optimized using predefined
constraints. The stated minimization problem requires a set
of known classes which are utilized for training and a set
of known unknown classes in U which are only used for
evaluation.

III. DRUG PACKAGINGS TEXTURE DATABASE (DPT-DB)
For image acquisition, a large variety of drug packages

were collected from different pharmacies (1st row in Fig. 1).

From each drug package (=instance) the CB fibre texture
on the inner raw side of the packaging, the BT texture
(blister top side) and the BB texture (blister bottom side) were
captured. For image acquisition a Canon 70D (100mm lens and
flashlight), mounted on a tripod, was utilized (see Fig. 1b).
From each CB,BT&BB instance images from different and
non-overlapping sections were captured (e.g. Fig. 1c)). In
total images for 45 drugs from 28 different producers were
taken. For each drug between 1 and 15 package instances
are available. All captured images were manually cropped
ensuring that just texture remains.

IV. CLASSIFICATION PIPELINE

Two different classification scenarios are considered: (i)
CLASS to investigate the positional invariance of the
CB,BT&BB texture. (ii) PACKAGE to prove instance invari-
ance which is a step towards a real-world setup. In order
to train and evaluate SVM-based classifiers data needs to be
sampled and then partitioned into training (T) and evaluation
(E) data. The amount of data (k) to be sampled is predefined
for both scenarios. In this work, data relates to image texture
patches of CB,BT&BB. For patch sampling, each CB,BT&BB
image is subdivided into a grid which is specified by the size
of the feature descriptor (e.g. 128×128 or 256×256 pixels).
The 3rd row in Fig. 1 depicts sample images for CB,BT&BB
for which the image patch grids are shown.

In case of CLASS k patches are sampled from all instances
of each drug and modality. Contrary, for PACKAGE k patches
are selected from each instance of each drug and modality.
This is important in that for cross-validation the partitioning
into T and E differs in principle as illustrated in Fig. 2. For
CLASS the k patches of a drug and modality are partitioned so
that different patches of each instance are included in T & E.
On the other hand for PACKAGE the patches are partitioned
instance-wise into T and E.

A. Feature vector computation

For each selected patch in CLASS or PACKAGE a set of
discriminative features is computed. Prior to feature extraction
Contrast Limited Adaptive Histogram Equalization (CLAHE)
[18] is applied to each patch (parameters: block radius=50,
bins=256, slope=40). Exemplary CLAHE enhanced patches
are shown in the 1st and 2nd row of Fig. 3.

a) Feature Extraction: For the experiments feature ex-
traction approaches producing low dimensional feature-vectors
are utilized, mainly due to the fact that high dimensional fea-
tures and feature encoding cause computational and memory
issues when computing all classification configurations (CCs)
for different SVMs, i.e. RAM & I/O limitations. We already
did small-scale experiments on a subset of the CCs with SIFT,

 PACKAGE

T
1 2 3 4

E

PACKAGE

1 2 3 4

CLASS

|1|,|2|,|3|,|4| = k|1+2+3+4| = k

Fig. 2: Training (T) and evaluation (E) data sampling and partitioning
strategies applied for CLASS and PACKAGE
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Fig. 3: Preprocessed patches of the CB,BT&BB images in Fig.1 - 1st Row:
256×256 pixels, 2nd Row: 128×128 pixels

SURF & feature encoding and the results indicate that the
classification performance even increases.

The following features are utilized: Local Binary Pattern
(LBP) [19], Local Ternary Pattern (LTP) [20], LiLBP (LiLBP)
[21], Histogram of Gradients (HOG) [22], Dual Tree Complex
Wavelet Transform (DTCWT) [23], Multifractal Spectrum
(MFS) [24], Edge Co-Occurence Matrix (ECM) [25].

For each selected patch of CLASS & PACKAGE a feature
vector for each listed feature extraction approach is computed.

B. Classification Approaches

For classification LIBSVM [26] and the open set extensions
provided by [27] are utilized. From LIBSVM we use the
ONE-CLASS and the C-SVC SVM (BINARY C-SVC)for one-
class and binary classification, respectively. Additionally, as
an approach specifically addressing open set recognition, the
WSVM [4] is applied for binary classification. As the ONE-
CLASS SVM uses a radial basis function (RBF) kernel, the
same is chosen for BINARY C-SVC and WSVM.

In the experiments, the classification approaches are utilized
to investigate a large set of different CCs. D = {d1, ...d45}
is the set of drugs and DM = {dm1, ..., dm28} is the
set of drug manufacturers in the testset where fdm(di) :
D → DM specifies the drug manufacturer for each drug.
M = {CB, BT, BB} specifies the packaging modalities.
FE = {fe1, ..., fen} is the set of feature extraction methods
and CS = {CLASS, PACKAGE} gives the classification
scenarios. The feature vector sets for a certain drug d ∈ D
& modality m ∈ M , for the k-patches defined for the cla
ssification scenario cs ∈ CS computed with feature extraction
method fe ∈ F , are given by FV(d,m,f,cs) = {fv1, ..., fvk}.
Following, a specific CC is defined by the tuple

CC = (d ∈ D, m ∈ M, fe ∈ FE, cs ∈ CS) (2)

where d specifies the target drug which should be authen-
ticated. The respective set of feature vector sets for CC is
given by FVCC = {FV(d1,m,f,cs), ..., FV(d45,m,f,cs)} which
is composed by the CC specific feature vector sets from
each drug. The positive training data PCC = FV(d,m,f,cs) is
specified by the target drug d in CC. The negative training
data NCC = {FVCC} \ {FV(d,m,f,cs)} is composed by
all feature vector sets of all other drugs. The positive and

negative training data PCC , NCC are then used for nested
cross-validation using a specific classification approach.
C. Cross-fold validation

Optimization is crucial as the standard LIBSVM parameters
did not succeed in our experiments. Therefore, cross-validation
(CV) strategies have been carefully designed and employed in
order to optimize the SVM parameters and to strictly avoid
that training data is used for evaluation.

Therefore, the negative training data is split into known
negatives KNCC and unknown negatives UNCC =
NCC/KNCC . Therefore, for KNCC the feature vector sets
from a fixed number of drugs (e.g. 6) are selected, where the
manufacturers are different to the target drug manufacturer of d
in CC. Now, a set of positive training data PCC , a set of known
negatives KNCC and unknown negatives UNCC is available.
Based on PCC , KNCC , UNCC nested CV procedures for
CLASS and PACKAGE are defined as illustrated in Fig.4.

For CLASS, we apply a k-fold data split strategy, i.e.
PCC , KNCC are class-wise split into k-folds {P1, ..., Pk} and
{KN1, ..., KNk}, i.e. all drug classes are distributed equally
in the k folds. In the outer loop, we iterate over the k positive
and k negative known data folds. Thereby, the ith positive
and jth negative was selected for evaluation. The evaluation
set is given by Ei,j = Pi ∪ KNj ∪ UNCC and the training
set by T i, j = {P1, ..., Pk}\{Pi}∪{KN1, ..., KNk}\{KNj}.
Thus a large set of known unknown drugs UNCC are used
only for evaluation. Note that |{KN1, ..., KNk}\{KNj}| is
reduced to the same size of the positive training data |Pi|
in a classwise manner. For each Ti,j in the inner CV loop
the best hyperparameters are determined in a grid search.
Same as in the outer loop, k-fold validation is performed
repeatedly in order to test a set of SVM parameters. For the
ONE-CLASS SVM just the positive samples in Ti,j are split
into k-folds and the known negative training samples are only
used for validation. As a measure for the performance the F-
Measure is utilized which is well suited to balance between
specialisation and generalisation in binary classification tasks.
For the binary SVM approaches, each prediction is assigned
a probability. In the inner loop, the probabilities are used to
determine a threshold which maximizes the F-Measure. The
SVM parameters delivering the highest F-Measure (and the
probability threshold in case of binary SVMs) are selected for
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Fig. 4: Cross-validation scheme for CLASS and PACKAGE
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CC

CLASS PACKAGE
128×128 256×256 128×128 256×256

CB BT BB CB BT BB CB BT BB CB BT BB

ONE-
CLASS

LTP

0.83 +−7.9
LTP

0.9 +−6.2
LTP

0.92 +−5.8
LTP

0.91 +−4.4
LTP

0.85 +−13.6
LBP

0.87 +−13.5
LBP

0.81 +−8.7
LBP

0.86 +−6.3
LTP

0.84 +−11.3
LTP

0.85 +−9.1
LBP

0.88 +−5.0
LBP

0.85 +−7.1

BINARY LTP

0.88 +−6.9
LiLBP

0.94 +−3.2
LTP

0.93 +−4.1
LTP

0.91 +−5.2
LiLBP

0.92 +−9.0
LTP

0.93 +−5.0
LTP

0.82 +−9.5
LTP

0.92 +−3.7
LTP

0.87 +−8.9
LTP

0.85 +−5.5
LTP

0.94 +−5.7
LiLBP

0.87 +−10.0

WSVM LTP

0.86 +−7.6
LTP

0.93 +−4.1
LTP

0.93 +−4.3
LiLBP

0.88 +−6.0
LTP

0.88 +−7.6
MFS

0.88 +−9.1
LTP

0.85 +−8.2
LTP

0.91 +−4.2
LiLBP

0.85 +−9.2
LiLBP

0.83 +−8.5
LTP

0.89 +−8.7
LiLBP

0.84 +−10.1

TABLE I: Classification performances: For each configuration the mean F-Measure (CLASS=45 & PACKAGE=8 target drugs) and the StDev for the best
feature are presented. BEST CLASS/ PACKAGE configurations for each modality are layered green.

the outer loop. Finally, the SVM approach is trained with Ti,j

(for ONE-CLASS only the positive data Pi is utilized) and
the selected hyper parameters from the inner CV loop. The
trained model is evaluated using the evaluation data Ei,j and
probability threshold in case of binary SVMs.

For PACKAGE, a nested leave-one-package-out (LOPO)
CV procedure is applied. Thereby, PCC is split into k-folds
in a package-wise manner, where k is given by the number of
packages in PCC , i.e. the number of available packages from
the target drug. KNCC is reduced to contain a fixed number
of feature vectors from each class which are sampled package-
wise. Furthermore, for KNCC the features of each drug are
split into two folds KN1, KN2 package-wise. Same as for
CLASS, in the outer CV loop we iterate over the i positive and
the j = 2 known negative training folds T i, j and evaluate it
with Ei,j , as done in the CLASS scenario. For ONE-CLASS
in the inner CV loop the same procedure as for the outer
loop is applied. However, for binary SVMs the inner CV loop
has been adopted to better match the open set recognition
problem. Therefore, the known negative training data in T i, j
is split classwise into two folds TKN1 and TKN2. One
fold simulates known negatives and the other one unknown
negatives in the inner loop. While the known negatives are
further used for training and validation, the unknown negatives
are just used for validation. This strategy adapts the inner CV
loop and the parameter grid search to the open set recognition
problem and is supposed to minimize the difference between
the inner CV validation- and the outer CV evaluation-error.

V. EXPERIMENTS

A. Experimental setup

All classification approaches (Section IV-B) were utilized
to cross-validate all CC combinations (Eq.2) using the CS-

TPR F TNR

CB-LTP BT-LiLBP BB-LTP
4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

(a) CLASS - 128×128
CB-LTP BT-LTP

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

BB-LTP

(b) PACKAGE - 256×256

Fig. 5: CLASS vs. PACKAGE (Binary C-SVC): TPR = TP
TP+FN

, TNR =
TN

TN+FP
[Y-Axis: Mean accuracies, min, max and variance in %]

specific CV strategies (Section IV-C). For both, PACKAGE
and CLASS a patch number k of 500 is set. For CLASS the
outer and inner CV loops are iterated twice and the data is split
into 2-folds. In case of PACKAGE LOPO is performed for all
package instances of drugs with at least 5 instances. For each
LOPO CV the positive data is split into 2-folds, in the inner
and outer CV loop. For both CSs, 5 drugs are selected for the
known negative training data KNCC . In order to enable a fair
evaluation, all data splits for CLASS & PACKAGE are stored
and reused for different features and classification approaches.

B. Results and discussion
Table I provides an overview of the results for each classi-

fication scenario, different patch sizes, modalities and SVMs.
For CLASS the averaged results over all 45 drugs are shown.
In case of PACKAGE, mean values for drugs with at least 5
instances are shown.

Considering positional invariance, the results for the best
(green layered) CLASS configurations show high mean F-
Measures over 0.9. This indicates that the textures from
all three modalities show constant but highly discriminative
features which enable to recognize the same drug class and
to distinguish it from other classes. Regarding the question of
instance invariance, the F-Measures for the best PACKAGE
configurations provide an evidence on the feasibility of a drug
package authentication system. The PACKAGE results show
that the textural features are constant across different instances
for all three modalities. This is a basic requirement for a
classification-based authentication system. Although only low-
level features have been utilized, the achieved F-Measures are
very promising. Most of the best results for both scenarios
and the different modalities were achieved with the BINARY
C-SVC Y SVM. Fig. 5 provides a more detailed view on
the BINARY C-SVC CLASS and PACKAGE results for the
best features from each modality. Thereby, it is clearly visible
that the performance decreases in case of the more difficult
PACKAGE scenario. Furthermore, the comparison between
the class accuracy (=true positive rate - TPR) and the others
accuracy (=true negative rate - TNR) shows that for all results
a higher class accuracy is achieved.

Finally, Fig. 6 shows accuracies and errors for PACK-
AGE,CB and all SVMs for the best features. For each tested
drug (=8) and all SVMs, results show that the error for
known data (KN=seen in training) is lower than the error
for unknown data (UN=open set). Considering the different
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Error UN F TPR TNR Error KN

A 1 A 2 G1 I 1 I 2 K 1 N 1 T 1
0

2 0

4 0

6 0

8 0

1 0 0

(a) ONE-CLASS
A 1 A 2 G1 I 1 I 2 K 1 N 1 T 1

0

2 0

4 0

6 0

8 0

1 0 0

(b) BINARY C-SVC
A 1 A 2 G1 I 1 I 2 K 1 N 1 T 1

0

2 0

4 0

6 0

8 0

1 0 0

(c) WSVM

Fig. 6: PACKAGE (256×256) – SVM
performance comparison for CB and all
target drugs with more than 5 instances
(=8 drugs): Accuracies (TPR,TNR) and
recognition errors for the unseen data
(Error UN) and seen training data (KN)
are shown [X-Axis: Target drug (d) ids:
e.g. A1 = manufacturer A+drug num-
ber].

SVMs, the accuracies and errors for ONE-CLASS and WSVM
vary more compared to the per-drug results of the BINARY
C-SVC. Furthermore, the WSVM does not outperform the
classical BINARY C-SVC in terms of achieving a lower error
for recognizing unknown data (UN ).

VI. CONCLUSION

Results showed that textural features of drug packaging ma-
terial are constant and highly discriminative. Very important,
the experiments indicate that a classifier can be trained with
a set of known instances and is able to authenticate unseen
instances.

In future work, we will use high-level features, feature
encoding and fusion techniques and it is planned to employ
deep learning techniques. Furthermore, causes for classifica-
tion errors need to be investigated in detail, e.g. in case of
a high false positive rate it can be that other drugs from the
same manufacturer have the same packaging material.
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ABSTRACT
Shortly, within themember states of the EuropeanUnion a serialization-
based anti-counterfeiting system for pharmaceutical products will
be introduced. This system requires a third party enabling to track
serialized and enrolled instances of each product from the manu-
facturer to the consumer.

An alternative to serialization is authentication of a product by
classifying it as being real or fake using intrinsic or extrinsic fea-
tures of the product. Thereby, one approach is packaging material
classification using images of the packaging textures. While the
basic feasibility has been proven recently, it is not clear if such an
authentication system works with images captured with mobile
devices. Thus, in this work mobile device drug packaging authenti-
cation is investigated. The experimental evaluation provides results
on single- and cross-sensor scenarios. Results indicate the principal
feasibility and acknowledge open issues for a mobile device drug
packaging authentication system.
ACM Reference Format:
Rudolf Schraml, Luca Debiasi, Andreas Uhl. 2018. Real or Fake: Mobile De-
vice Drug Packaging Authentication. In IH&MMSec ’18: 6th ACM Workshop
on Information Hiding and Multimedia Security, June 20–22, 2018, Innsbruck,
Austria. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3206004.
3206016

1 INTRODUCTION
As the global markets get flooded with counterfeited products reg-
ulations and technical solutions for product authentication get
implemented in various sectors of the economy. According to a
report by the European Intellectual Property Office 4.4% of the
sales and e 10 billion in the pharmaceutical sector correspond to
counterfeited medicines [2]. Moreover, counterfeit drugs pose a
significant risk to consumer or patient welfare. As a countermea-
sure against this problem the Falsified Medicines Directive (FMD)
2011/62/EU should be operational until 2019 within all member
states of the European Union. The main purpose is to protect pa-
tients by reducing the risk of counterfeits entering the supply chain.
Therefore, an anti-counterfeiting system based on product serial-
ization will be implemented. Each drug package will be assigned a
unique identifier (2D barcode) and secured by a tamper-proof seal.
This enables to track and verify each drug package along the supply
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chain from the manufacturer to the consumer. As a drawback, a
central database managed by the European Medicines Verification
Organisation (EMVO) is required. Manufacturers need to register
new packages at the EMVO and pharmacies have to check-out each
sold package. Actually, it is planned that additional costs are cov-
ered by the manufacturers but it is likely that those are passed to
the consumers. Finally, a centralized system is exposed to getting
compromised by forgers, e.g. by entering 2D barcodes from forged
packages.

An alternative to serialization is packaging authentication based
on classification which is inspired by physical object identifica-
tion approaches relying on the concept of physically unclonable
functions (PUFs). A PUF is a mapping between a challenge and
response function which depends on the physical nature of a object.
By definition a PUF is unique and cannot be reproduced. Related to
packaging authentication various works dealed with Paper PUFs.
Paper PUFs either rely on extrinsic or intrinsic PUFs, i.e. which
are attached to the product or can be derived from a part of the
product itself. However, PUFs are intended to identify an object. In
case of classification-based authentication, it is assumed that the
packaging of a product shows constant but discriminative intrinsic
features. Instead of identifying each single package instance, it can
be classified if the product is packaged with a specific packaging
material or not. The focus in our research is on drug pills which are
packaged in a blister and housed in a cardboard. Recently, in [3, 8]
we investigated the basic feasibility of drug packaging authentica-
tion. In [3] we showed that cardboard textures of 9 different drugs
from 3 manufacturers can be classified with 100% accuracy in a
closed multi-class scenario. The utilized dataset was fairly small
and packaging material authentication is in fact a simplistic binary
classification problem, i.e. a single class has to be distinguished
from all other classes. For the training stage only a limited sub-
space of known other classes is available which is referred to as
open-set recognition. Thus, in [8] we focused on the open-set recog-
nition problem and we investigated two basic pre-requirements
for classification-based drug packaging authentication: positional
invariance and instance generalisation of the packaging material
texture. Based on a substantial database, with images of 45 different
drugs from multiple instances (packages), both pre-requirements
were proved successfully. However, all images were taken with a
DSLR camera in an optimal setting and such imagery will not be
available in case of a mobile device based authentication system.
Thus, for this work in addition to a DSLR camera two smartphones
were used to acquire a substantial dataset.

Based on this dataset in this work mobile-sensor as well as cross-
sensor drug packaging authentication is investigated. Furthermore,
in [8] only the particular classification accuracies for different parts
of the packaging material were presented. For an authentication
system it is assumed that the fusion of the particular classification
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results will increase the overall accuracy. Based on a simple major-
ity voting approach, in this work the impact of fusion as well as
feature selection will be elaborated. Finally, a closer look on pos-
sible authentication error sources will be presented. For example,
it is assumed that parts of the packaging material from different
drugs which are from the same manufacturer can be the same.

First, in Section 2 a possible scheme for a mobile device based
drug packaging authentication system is introduced. Section 3 intro-
duces the acquired database. The classification pipeline is outlined
in Section 4. Experiments and results are presented in Section 5
and Section 6 concludes this paper.

2 MOBILE DEVICE DRUG PACKAGING
AUTHENTICATION SYSTEM

A schematic illustration for a mobile-device based drug package
authentication system is illustrated in Fig. 1. In order to proof the
authenticity of a given drug the consumer will be guided by a mo-
bile application. First, the user needs to disassemble the drug and
to capture the textures of the cardboard (CB) and the blister top
(BT) and blister bottom (BB) side. These three textures of the pack-
aging material are denoted as modalities. The captured images are
denoted as ICB , IBT and IBB . Additionally, the user is advised to
take a picture of the product code (IPC ), e.g. the European article
number or the barcode printed on the cardboard. However, the
product number can be entered manually or the respective drug
can be selected from a list too. These four images compose the au-
thentication vector ÂV = (ICB , IBT , IBB , IPC ) which is processed
by the authentication system. First, the textural images ICB , IBT
and IBB are preprocessed. Preprocessing includes segmentation of
the textural area and enhancement of the textural pattern. Subse-
quently, from each preprocessed image one patch is extracted for
which a feature descriptor is computed. The product code image
IPC is used to determine the product code. Based on the product
code, the system selects the corresponding precomputed classi-
fication models MCB ,MBT ,MBB from a model repository. If the
required models are not available on the mobile device they could
be requested from a remote repository. Based on the corresponding
modelsMCB ,MBT ,MBB for each feature vector FVCB , FVBT , FVBB
a probability score PCB , PBT , PBB between [0, 1] is computed. The
closer to 1 the more likely the given feature vector is from a real
sample, the closer to 0 the higher is the probability that the feature
vector was computed from fakematerial. Finally, a decision function
f (PCB , PBT , PBB ) = (v,p) needs to be defined, where v ∈ {1,−1}
gives the final authenticity vote of the authentication system and
p ∈ [0, 1] specifies a probability score for the final vote which is
then presented to the user.

3 DRUG PACKAGINGS TEXTURE DATABASE
For this study the same database as used in [8] and additional data
captured with two different smartphones was utilized. Therefore, a
Samsung S5 Mini & an IPhone 5 were utilized to capture images
for a set of selected drugs. Therefore, mainly drugs with more
than four instances from various manufacturers were selected. The
acquisition setup is illustrated in Fig. 2f. Same as for the DSLR
camera, the smartphones were mounted on a tripod and in addition
a macro lens was utilized. For illumination a light source was placed
laterally. An exemplary disassembled drug package is shown in

Figure 1: Mobile device drug packaging authentication

Fig. 2a. The initial dataset consists of images from 45 drugs from
28 different manufacturers which were captured with a Canon 70D.
For each drug between 1 and 15 package instances are available.
The Canon 70D was mounted on a tripod and a 100mm lens and a
flashlight were utilized (see Fig. 2e). From each drug instance images
from the corresponding CB,BT&BB modalities were captured. For
CB the inner side, showing the fibre structure was captured. For
BT,BB the corresponding blister textures were captured. Thereby,
it was ensured that the images were taken from different and non-
overlapping regions. Examples depicting the variety of the different
samples for each modality are shown in Fig. 2b-2d. All captured
images were manually cropped ensuring that just texture remains.
The images in the 1st row in Fig.3 illustrate exemplary images from
each modality captured with the different sensors.

4 CLASSIFICATION PIPELINE
Data selection is essential for the subsequent cross-validation proce-
dure. Due to the varying number of instances and the corresponding
CB,BT&BB images per drug, a keypoint selection strategy has been
employed. Therefore, a fixed number of data (k) to be sampled is
predefined. Data relates to image texture patches of CB,BT&BB. For
patch sampling, each CB,BT&BB image is subdivided into a grid
which is specified by the size of the feature descriptor. According to
the results presented in [8] 256×256 pixel patches are utilized. The
2nd row in Fig. 3 depicts sample images for CB,BT&BB for which
the image patch grids are shown. Basically, k patches are selected
from each instance of each drug and modality. However, k is only
an upper bound of patches which are selected. For example, in this
work k=1000 and especially for BT and BB there are drugs where
less patches are available.

Image Enhancement. Prior to feature extraction the images are
converted to grey-scale and Contrast Limited Adaptive Histogram
Equalization (CLAHE) [10] is applied to each patch (parameters:
block radius=50, bins=256, slope=40). Exemplary CLAHE enhanced
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(a) Drug sample (b) Cardboards (CB) (c) Blister top (BT) (d) Blister bottom (BB) (e) Digital camera (f) Mobile camera

Figure 2: Image Acquisition Overview
Canon D70 Samsung S5 Mini IPhone S5

CB BT BB CB BT BB CB BT BB

Figure 3: Preprocessing and data selection examples for Thrombo ASS produced by Lannacher Heilmittel (F1): 1st Row: Orig-
inal images, 2nd Row: Preprocessed images showing the keypoint grid, 3rd Row: Exemplary 256×256 pixel patches from the
top left keypoint in each image of the 2nd row.
images and selected patches for each modality and camera are
shown in the 2nd and 3rd row of Fig. 3, respectively.

4.1 Feature Extraction and Feature Encoding
For each selected patch a feature vector using each of the following
feature extraction approaches is computed: Local Binary Pattern
(LBP) [5], Local Ternary Pattern (LTP) [9], Li Local Binary Pattern
(LiLBP) [4], Speeded Up Robust Features (SURF) [1]. As noted in
[8] IO and memory constraints are crucial when it comes to high
dimensional features like SIFT and SURF. Furthermore, high dimen-
sional feature vectors are computationally problematic in case of
kernel-based SVM classifiers. As a first consequence the x,y step size
for dense SURF method was increased to 16 pixel and we decided
to compute both in a pyramid at three scales (1, 2, 4). Consequently,
for each patch #768 × SURF feature descriptors are computed. In
case of SURF this results in a feature vector dimension of 98304.
In preliminary tests it turned out that this feature vector size is
suited for the classification experiments if a linear SVM classifier is
utilized but not applicable in case of kernel SVMs.

Furthermore, image classification research showed that feature
vector encoding schemes are beneficial for the classification ac-
curacy. In case of SURF it was shown that the fisher vector (FV)
encoding scheme [6] combined with linear classifiers improves
the classification performance. The FV scheme encodes a set of
vectors into a single vector which is composed by the first and sec-
ond order residuals of the vectors from a Gaussian mixture model
(GMM). Basically, the dimensionality of the fisher vector output is
2 × K × D. K is the number of GMM components and D gives the
feature vector dimensionality. Commonly, the FV encoding scheme

is combined with a dimensionality reduction approach like Prin-
cipial Component Analysis (PCA). Thereby, PCA is used to reduce
the size of a feature vector to a predefined number of principal
components. For this work, the input feature vector is reduced to
80 components. For a reduced input feature vector dimensionality
of D = 80 and K = 256 Gaussian components a single FV with the
size of 2 × 80 × 256 = 40960 is produced. In case of SURF the FV
encoding reduces the dimension of the SVM input vector by more
than the half.

4.2 Data partitioning
In order to provide reliable results cross-validation (CV) based
classification is performed. For each drug a number of instances
(=packages) from each modality is available. Thus, a nested leave-
one-package-out (LOPO) CV procedure is well suited to avoid over-
fitting and to force the computation of unbiased evaluation results.

The acquired database is composed by a set of drugsD = {d1, ...,d45}
produced by different DM = {dm1, ...,dm28} drug manufacturers.
f dm(di ) : D → DM specifies the drug manufacturer for each
drug. M = {CB,BT ,BB} specifies the packaging modalities. Fur-
thermore the drugs and modalities were captured with different
sensors S = {CANON = S1, SAMSUNG = S2, IPHONE = S3}
and different feature extraction methods FE = { f e1, ..., f en } are
utilized in the experiments. The feature vector sets for a certain
drug d ∈ D and modalitym ∈ M , for the k-patches from sensor
s ∈ S computed with feature extraction method f e ∈ F , are given
by FV(d,m,s,f e ) = { f v1, ..., f vk }.

For binary classification it is required to specify a target class,
i.e. the drug and the corresponding modality which we want to
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authenticate. In the scope of this work various classification con-
figurations (CCs) are computed for each target drug d which are
given by the following tuple: CC = (d ∈ D,m ∈ M, s ∈ S, f e ∈
FE). The respective set of feature vector sets for a CC is given by
FVCC = {FV(d1,m,s,f e ) , ..., FV(d45,m,s,f e ) } which is composed by
the CC specific feature vector sets from each drug. The positive
training data PCC = FV(d,m,s,f e ) is specified by the target drug d
in CC. The negative training data NCC = {FVCC } \ {FV(d,m,s,f e ) }
is composed by all feature vector sets of all other drugs. The posi-
tive and negative training data PCC ,NCC are then used for nested
cross-validation using a SVM classifier.

4.3 Cross-validation strategy
The overall goal of the CV strategy is to avoid two different types of
over-fitting. The first ensures that no training data is used for eval-
uation as this leads to overestimation of the classification accuracy.
CV excludes this type of over-fitting. The second type of over-fitting
is crucial and concerns the training of the model. Thereby, hyper-
parameter selection plays a significant role in case of SVMs. The
overall goal is to find parameters for a model which generalizes to
the evaluation data, i.e. the ability of the model to classify unseen
data. However, in binary open-set classification and especially in
case of the considered drug authentication problem optimization
is a trade-off between over- and under-fitting. Unseen data is com-
posed by known data from the target drug and all other known
drugs as well as a large set of data from unknown drugs. If the model
is over-fitted to the training data it is likely that unseen evaluation
data from other packages of the target drug are not recognized. On
the other-hand under-fitting increases the risk that unseen as well
as unknown packages from other drugs are misclassified as being
the target drug.

Basically, for CV the positive and negative training data PCC
and NCC for a certain CC are provided as input. For the LOPO
CV strategy PCC is split into n-folds {P1, ..., Pn } where each fold
contains the feature vectors from a certain instance (=drug package
sample). Thus, the number of folds n is given by the number of
instances for the target drug d in CC which are available in the
database. Same as in [8] the negative training NCC data is split
into known negatives KNCC and unknown negatives UNCC =
NCC/KNCC . Therefore, for KNCC the feature vector sets from a
fixed number of drugs are selected, where the manufacturers are
different to the target drug manufacturer of d in CC. The aim of
this procedure is to simulate the real world, where only a limited
set of other known drugs (faked and original ones) are available to
train a classifier.

For the nested CV strategy in the outer loop we iterate over the
n positive training folds. The current loop index is given by the
variable i . In each iteration for KNCC the features are split into
two folds KN1,KN2 packagewise for each of the contained classes.
Hence, half of the packages and the corresponding feature vectors of
each class are contained in each fold. Subsequently, the ith positive
and 2nd negative fold is selected for evaluation. The evaluation set
is given by Ei,2 = Pi ∪ KN2 ∪UNCC . The unknown drugs UNCC
are only used for evaluation. The training set is composed byTi,1 =
{P1, ..., Pk }\{Pi } ∪ {KN1}. Preliminary, {KN1} is reduced to a fixed
number of feature vectors which are sampled equally distributed
from all contained drug classes (=6) and the respective instances.

In the inner CV loop for each Ti,1 the best hyperparameters are
determined using a grid search approach. Same as in the outer loop,
k-fold validation is performed repeatedly in order to test a set of
SVMparameters. For this purpose, the known negative training data
in Ti,1 is split classwise into two folds TKN1 and TKN2 (training
known negatives). One fold simulates known negatives (=3 classes)
and the other one unknown negatives (=3 classes) in the inner loop.
While the known negatives are further used for training as well as
for validation, the unknown negatives are just used for validation.
It is assumed that this strategy is beneficial for the generalisation of
the classifier. Hence, in the grid search procedure hyperparameters
delivering a good classification accuracy in terms of the target class
as well as known and unknwon classes accuracy are prioritized. As
a measure for the performance the F-Measure is utilized which is
well suited to balance between specialisation and generalisation
in binary classification tasks. The utilized SVM classifiers assign
each prediction a probability. In the inner loop, the probabilities are
used to determine a threshold which maximizes the F-Measure. The
SVM parameters and threshold delivering the highest F-Measure
are selected for the outer loop. Those are then used to train and
evaluate a classifier with the training and evaluation data from the
outer loop, respectively.

5 EXPERIMENTS
For data selection at maximum k=1000, 256× 256 pixel patches
were selected from each modality and sensor. For each patch fea-
ture vectors are computed with all features listed in Section 4.1. In
the experiments the LIBSVM linear SVM and kernel SVM with a
radial basis function are utilized as classification approaches. Both
are applied in combination with FISHER feature vector encoding
(FVE=FISHER) and without (FVE=NULL) to cross-validate all CC
combinations. Basically, the employed CV strategy requires that
only drugs with at least 5 instances can be selected as target drugs,
ie. the drug which should be authenticated by the classifier. An
overview on suited drugs is presented in Table 2. The table shows
that for each selected target drug various numbers of instances are
available and each was captured with a set of sensors (S1,S2,S3).
For each target drug and sensor all CCs are computed using the
outlined LOPO CV strategy. For each LOPO CV the positive data
is split into 2-folds, in the inner and outer CV loop. 6 drugs are
selected for the known negative training data KNCC . In order to
assess the cross-sensor scenario, for evaluation in the outer CV
loop data from all different sensors are utilized. For training data
from only one sensor are utilized. For example, in case of Mexalen
(A3) in the outer loop in each LOPO iteration the evaluation is
performed with #1.75k-2k features of the target drug and >#100m
features from all other drugs and cameras. For a fair evaluation of
the different classification approaches and features the data splits
are stored and reused.

5.1 Single-sensor evaluation
An overview on the particular results for the different sensors, all
modalities and classification approaches is presented in Table 1. For
each CC and modality the averaged results over all target drugs
(Table 2) are shown. Considering the results for different CCs, it can
be concluded that the F-Measure differences between the elaborated
classifiers are not significant. For L-SVM and FISHER encoding it
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CC Canon - S1 Samsung - S2 IPhone - S3
FVE CA CB BT BB CB BT BB CB BT BB

NULL

RBF-
SVM

LT P
0.87 +−6.9

LT P
0.94 +−3.5

LiLBP
0.84+−17.6

LT P
0.92 +−6.8

LT P
0.96 +−4.0

LiLBP
0.91 +−5.8

LBP
0.83 +−6.1

LT P
0.95 +−6.5

LT P

0.88 +−8.1
L-SVM LT P

0.87 +−7.4
LBP

0.92 +−4.7
LiLBP
0.83+−13.5

LT P
0.92 +−6.3

LT P
0.94 +−4.1

LiLBP
0.9 +−5.6

LBP
0.83 +−6.9

LT P
0.95 +−6.2

LT P

0.8 +−12.6
FISHER L-SVM LiLBP

0.84 +−7.4
SU RF
0.93 +−3.8

SU RF
0.89+−10.6

LBP
0.88 +−9.3

SU RF
0.97 +−4.8

SU RF
0.91 +−4.9

SU RF
0.82 +−6.3

SU RF
0.95 +−7.9

SU RF

0.84+−12.0
Table 1: Single-sensor performances: For each sensor and all CCs the mean F-Measure and the StDev[%] for the best features
of each modality are presented.

TPR F TNR

CB-LiLBP BT-SURF BB-SURF FUSION
0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

(a) S1 - Canon
CB-LBP BT-SURF BB-SURF FUSION

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

(b) S2 - Samsung
CB-SURF BT-SURF BB-SURF FUSION

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

(c) S3 - IPhone
Figure 4: Single-sensor results for FISHER L-SVM: For each sensor andmodality the performances for the best features as well
as for modality fusion are depicted. TPR = T P

T P+FN , TNR = T N
TN+F P [Y-Axis: Mean, min, max, standard deviation].

seems that SURF as high level feature does not improve the perfor-
mance as expected. Furthermore, the F-Measures are comparable to
the results presented in [8]. However, in [8] less data was selected
for training which shows that doubling the parameter k to 1000
does not improve the classification performance.

When comparing the F-Measures between the different sensors
the values are in the same range, surprisingly. Basically, for the
mobile sensors fewer drugs were available for evaluation, i.e. no
unknown drugs remain for evaluation. Thus, it would be assumed
that less variety (=closed-set) in the evaluation data improves the
classification performance. This new finding is interesting because
this increases the chance that the classification performances are
robust in a real world application.

Modality fusion. In the experiments in [8] only the modality
performances were considered. As shown in the exemplary drug
packaging authentication scheme in Fig. 1 the three probability
scores from each modality (PCB , PBT , PBB ) should be combined to
a final decision. For this purpose, a simple majority voting approach
Manufacturer/Drug #Samples Camera

CB BT&BB Canon (S1) IPhone (S2) Samsung (S3)
(A) ratiopharm
(A1) Danselle 10 10 - -
(A2) Danseo 9 9 - -
(A3) Mexalen 8 8 -
(F) Lannacher
(F1) Thrombo ASS 5 5
(I) Kwizda Pharma
(I1) Liberel mite 15 15 - -
(I2) Delia 11 11
(J) Rotexmedia
(J1) Dexamethason 5 0 - -
(N) Gynial
(N1) Bilinda 6 6
(X) Pelpharma
(X1) Peliette 17 17

Table 2: List of drugs with at least 5 instances which were se-
lected as target drugs. Only drugs which were captured with
the corresponding sensors show a check-mark.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Z
A

Z
B

A1
A2
F1
I1
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J1
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X1

(a) CB - LiLBP

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Z
A

Z
B

A1
A2
F1
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I2
N1
X1

(b) BT - SURF

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Z
A

Z
B

A1
A2
F1
I1
I2
N1
X1

(c) BB - SURF

Figure 5: Single-sensor results for Canon (S1) FISHER L-
SVM: (FN+FP) Error matrix for each modality. [X-Axis: Pro-
ducers from the evaluation data, Y-Axis: Target Drugs]. The
darker the cell, the higher is the classification error.
is applied which still offers possibilities for optimization. Initially,
the modality specific classifier thresholds are used to determine a
decision vector D̂ = (DCB ,DBT ,DBB ) from the probability scores.
The decision values are either 1 or -1. In case that at least two
decision values are 1 the final decision is that the package material
is from a real package, i.e. it is not a fake sample. For the selection of
the features which achieve the highest F-Measure SFFS (Sequential
Floating Forward Selection) [7] is applied. For this purpose, the
particular modality decisions are randomly shuffled to to get a set of
decision vectors. The shuffling is repeated several times in order to
compute the averaged classification performances of the modality
fusion. For each sensor the particular modality performances as well
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(a) False positve rates: FPR= FP
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(b) False negative rates: FNR= FN
TN+FN

Figure 6: Cross-sensor performances for FISHER L-SVM: For all training and evaluation sensor combinations the FPR and
FNR for each modality are shown. For each combination and modality the results for the best feature were selected. [Y-Axis:
FPR/FNR mean, min, max and standard deviation].

as the fusion performance is illustrated in Fig. 4. It can be concluded
that modality fusion significantly improves the classification and
authentication accuracy.

Error sources. Basically, it is assumed that other drugs from the
same or different manufacturer might have the same packaging ma-
terial, e.g. if two different manufacturers have the same cardboard
or blister supplier. The error matrix plots in Fig. 5 visualize the num-
ber of false positive (FP) + false negative (FN) votes for each target
drug and the evaluated drugs which are grouped into manufactures.
The darker the higher the amount of misclassification’s. FP votes
are from samples which are incorrectly authenticated and FN votes
are from samples which were incorrectly not authenticated. When
considering the columns it can be observed how likely the drugs
of a certain manufacturer cause FP or FN votes. FN votes are only
possible when the target drug (e.g. A1) and the manufacturer (A)
in the columns are the same. For example, for all three modalities
the drugs of ratiopharm (A) cause FP votes for drugs from other
manufacturers as well as FN votes for A1 and A2. Furthermore,
each target drug and the corresponding row can be considered.
The darker the more FP and FN votes were observed in the CV
strategy. In case of CB, the drug A2 shows a high amount of errors.
Furthermore, in each error matrix there are some dark spots which
show up high error rates. For example, for BB a high amount of
samples from manufacturer H are incorrectly classified as drug F1
= FP votes. Comparing the error matrices for all three modalities it
is obvious that the most errors are visible in case of CB and BB and
there are less errors for the BT textures.
5.2 Cross-sensor evaluation
In order to assess the cross-sensor performances, all CCs were
evaluated with data from other sensors. Thereby, the classifier was
always trained with data from only one sensor. The two charts in
Fig.6 show the FP and FN rates which were achieved for different
training and evaluation sensor combinations. Actually, S1,S2&S3
show the single sensor FPR and FNR for each modality. All other
combinations show results where the classifier has been trained
with data from one sensor and has been evaluated with data from
another sensor, i.e. cross-sensor results. The single-sensor error
rates are in general lower than the cross-sensor results for almost all
modalities. Especially, the cross-sensor combinations where either
the DSLR or a mobile camera are used for training and the other
camera type is used for evaluation show inferior FNR values and
also worse FPR values. This could be attributed to the different
texture scales in case of images acquired with the DSLR camera
and images acquired with the mobile devices (see Fig. 3). Backing

for this argument is that the error rates for the mobile-device cross-
sensor combinations are better. Furthermore, the cross-sensor FNR
values are inferior to the FPR values compared to the single sensor
results. Thus, in the considered cross-sensor scenario it is easier
for the classifier to reject samples from other drugs than to detect
samples from the same drug captured with a different sensor.

6 CONCLUSION
In this work different aspects for a mobile device based drug pack-
aging authentication system were considered. Results showed that
data captured with mobile devices and low level features are princi-
pally suited for drug packaging authentication. Furthermore, modal-
ity fusion improves the performance significantly. However, if differ-
ent sensors are used and the imaging conditions get more realistic
the authentication performance degrades significantly.

Future work on a mobile device based application needs to deal
with all issues caused by unconstrained imaging conditions (scale,
rotation, tilt & illumination variations). Furthermore, more sophis-
ticated approaches for modality fusion, state-of-the art features and
a CNN-based solution should be employed.
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Abstract

There is a growing need for mobile authentication solu-
tions. Biometric recognition systems provide several ad-
vantages over conventional knowledge and token based
solutions. Especially the use of vascular patterns as a bio-
metric trait gains more and more attention. We present a
near-infrared illumination add-on for smartphone devices
which allows to capture the vascular pattern of the hands
(hand-veins). This device is connected and controlled via
Bluetooth and customised for the Nexus 5 smartphone but
can be easily adopted to fit other models too. Due to the in-
herent risk of fraudulent authentication attempts on a non-
trusted platform like a smartphone, we propose a challenge-
response approach to ensure the authenticity of the cap-
tured hand-vein images. A hand-vein data set comprising
of 31 subjects and 920 images in total is acquired with the
presented device. A performance evaluation utilising dif-
ferent hand-vein recognition schemes is conducted to show
the applicability of our device and the proposed challenge-
response approach.

1. Introduction
Mobile authentication solutions enjoy a wide-spread

use nowadays. No matter if for payment transactions,
unlocking a mobile device or identity verification at border
control, there is a growing need for mobile authentication
solutions. Especially the application of biometric recogni-
tion technologies in the scope of mobile authentication is
gaining more and more attention. Biometrics provide sev-
eral advantages over traditional means of authentication in
terms of resistance against forgery and user’s convenience.
Fingerprint recognition systems have been integrated into
higher class smartphones (e.g. the Samsung Galaxy S6 and
onwards, the Apple iPhone and several more) for several
years now and also face as well as iris recognition systems
find their way to the newest generation of smartphones
(e.g. in the Samsung Galaxy S8/S8+). Beside these
traditional biometric traits, vascular pattern based ones

have become an emerging biometric trait during the last
years. Vascular pattern based recognition (commonly
denoted as vein recognition) can help to overcome some of
the problems existing biometric recognition systems have.
Vein based systems rely on the structure of the vascular
pattern formed by the blood vessels inside the human body
tissue. This pattern only becomes visible in near-infrared
(NIR) light. Thus, vein based biometrics provide a good
resistance to spoofing and are insensitive to abrasion
and skin surface conditions. They achieve a competitive
recognition performance while the user http://digital-
library.theiet.org/content/journals/10.1049/iet-
cvi.2010.0191convenience is at the same level as for
fingerprint systems as long as the scanner is designed in an
open manner. Moreover, a liveness detection can be per-
formed easily [11] and a contactless operation is possible,
which is especially important for mobile authentication
solutions. This makes vein pattern based systems a valuable
choice in the scope of mobile authentication.

The application of biometric recognition systems in mo-
bile scenarios rises some problems compared to the station-
ary use of these systems. First of all, the acquisition pro-
cess is more unconstrained (more degrees of freedom for
the placement of the biometric and varying environmental
conditions) compared to the stationary case, causing sev-
eral recognition performance issues [4, 5, 17]. Second, the
authentication process is unsupervised, enabling presenta-
tion attacks [1, 10]. Furthermore, the mobile system might
not be a trusted platform, especially if the authentication is
performed on the user’s smartphone. This opens the door
for all kinds of insertion and replay attacks to the biometric
system. Hence, there is the need for presentation attack de-
tection systems as well as methods to prove the authenticity
and integrity of the biometric sample that has been captured.

In this work we present a smartphone add-on to acquire
hand-vein images. In contrast to other mobile vein scan-
ner solutions in the literature, our add-on module is ba-
sically an illumination module only, lowering its produc-
tion costs compared to full-fledged scanner devices. It util-
ises the phones integrated camera to capture the vein im-
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ages and is controlled wirelessly via Bluetooth by our cus-
tom designed capturing Android app. Thus, together with
a suitable smartphone, this add-on resembles a full mobile
hand-vein scanner. Unlike most previously proposed mo-
bile scanners, our device operates fully contactless without
a specifically designed device to keep the hand in a pre-
defined position.

To cope with the inherent risks of insertion attacks, the
capturing process features a challenge-response protocol
based on varying illumination intensities. In this way the
app is able to prove that an actual image of the vein patterns
has been captured and no previously captured sequence has
been inserted instead. We established a mobile hand-vein
data set captured with our mobile hand-vein add-on in com-
bination with a modified Nexus 5 smartphone that will be
made publicly available. It comprises 31 subjects and 920
images in total. Based on this data set a performance eval-
uation using several well-established hand-vein recognition
schemes is conducted in order to show the decent recog-
nition performance that can be achieved using our mobile
hand-vein scanner and to prove the effectiveness of the
challenge-response approach.

The rest of this work is organised as follows: Section 2
gives an overview of related work on mobile finger- and
hand-vein scanners. The details of our proposed mobile
hand-vein scanner add-on, including the challenge-response
protocol, and the differences to previous mobile vein scan-
ners are described in Section 3. Section 4 presents the pub-
licly available data set that has been captured with our hand-
vein scanner add-on. Section 5 deals with the performance
evaluation. At first the details of the employed hand-vein
recognition tool-chain are described, followed by the eval-
uation results and a results discussion. Section 6 concludes
this paper and gives an outlook on future work.

2. Related Work
This section gives an overview on related work in mobile

and embedded finger- as well as hand-vein scanner devices.
Liu et al. [13] proposed a “a real-time embedded finger-vein
recognition system for authentication on mobile devices”.
Their scanner consists of an NIR sensitive monochrome
camera with an additional NIR pass-through filter, a white
acrylic plate where the finger is placed onto and a NIR laser
based illuminatior below this plate (light transmission prin-
ciple). They equipped the NIR lasers to cope with problems
due to shadows caused by the LED light source within their
scanner design. Their full-fledged recognition system is im-
plemented on a DSP (digital signal processor) and features
image acquisition, ROI (region of interest) extraction, fea-
ture extraction and comparison. The DSP integration en-
ables a mobile application. Sierro et al. presented three
prototype touch-less vein scanners, a finger- and two palm-
vein ones in [19]. The touch-less nature makes this system

more convenient for the user and less susceptible to spoof-
ing. All their proposed scanners are based on the reflec-
ted light principle (illumination source and camera on the
same side of the hand/finger). Their first palm-vein pro-
totype contains a Sony ICX618 659x494 CCD camera to-
gether with a 920 nm long-pass filter, 20 940 nm NIR LEDs
and an ultrasonic sensor to detect the distance between the
scanner and the hand. Their second palm-vein prototype
features multi-spectral acquisition to increase its robustness
against simple types of spoofing attacks by equipping blue
and far-red LEDs in addition to the NIR ones. The layout
of the LED positioning was changed too, but all other com-
ponents are the same as within their first prototype. The
finger-vein prototype consists of a OV7670 Color 640x480
pixel CMOS sensor in combination with a wide angle 2.1
mm lens and an infrared long-pass filter with a low cut-off
wavelength of 740 nm. The 12 NIR LEDs are arranged in
three groups of 4 LEDs each to enable an optimal illumin-
ation of the finger-veins. All three proposed scanners are
small in size. The finger-vein one is USB-host powered and
can be controlled by an Android app which facilitates its use
as mobile finger-vein scanner. The palm-vein ones can be
modified to be USB-host powered and work in combination
with a smartphone too.

Eng and Khalil-Hani proposed several versions of a
FPGA-based vein biometric authentication system. In [3]
they introduced an embedded hand vein scanner implemen-
ted on an Altera Nios II prototyping system running on
Nios2-Linux as real time operating system. Their sensor
consists of an reflected light source (NIR LED array), a
modified thermal webcam with a resolution of 320x240
pixels and an attached IR filter. They captured images from
the dorsal (back) side of the hand and utilised minutiae
based features extracted from the vein pattern for recogni-
tion. In [8] and [9] they proposed two versions of a finger
vein recognition system. Again, the system was implemen-
ted on an Altera prototyping system running Nios2-Linux
using a modified webcam. Contrary to the hand vein scan-
ner, they used the light transmission method to acquire im-
ages from the palmar side of the finger. For recognition they
use minutiae based methods again.

Lee et al. presented a mobile multimodal biometric cap-
ture device utilising finger-veins and fingerprints in [12].
Their scanner consists of two QuickCam USB cameras, a
visible light source for fingerprints and four 880 nm NIR
LEDs for finger-veins using the light transmission principle.
The captured images have a resolution of 640x480 pixels.
Their embedded system unit is a ultra mobile processing
computer manufactured by SONY Corp (VGN-UX17LP).
They used a minutiae based recognition method for both,
finger-veins and fingerprints.

Fletcher et al. proposed two mobile hand-vein scan-
ners in [4]. The first one uses an unmodified Sony Experia
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Mini Pro Android smartphone as camera. The light source
consists of 16 NIR LEDs with an operation frequency of
850 nm. They used a Kodak Wratten filter (#87) with a
pass-through frequency range of 740-795 nm as optical fil-
ter. The second one uses a Gearhead Nightvision webcam
(WC1100BLU) which already contains six IR LEDs as light
source. For a better illumination they replaced the internal
LEDs with 940 nm NIR LEDs. Again, they used a Kodak
Wratten filter (#87c) with a pass-through frequency range
of 790-855 nm as optical filter. The webcam is attached to
a Nexus 7 Android tablet. Both scanners used especially
designed apparatuses to place the hand into a well defined
position. They acquired the vein structure from the palmar
side and used minutiae based features for biometric recog-
nition.

In contrast to existing mobile hand- and finger-vein scan-
ners, our proposed mobile hand-vein scanner is basically an
illumination add-on module for smartphones. Thus, it ex-
hibits lower production costs compared to a full featured
scanner device.

3. Mobile Hand-Vein Scanner Add-On
As mentioned in Section 2, the basic components of a

hand-vein scanner are an NIR light source and an NIR-
sensitive image sensor (camera). Every common smart-
phone nowadays has a built-in camera, which is sufficient
to capture high-resolution hand-vein images. However,
these cameras are usually equipped with NIR blocking fil-
ters in order to avoid unwanted colour effects in the cap-
tured images. Thus, it is necessary to either remove this
NIR blocking filter, like it has been done for the modified
Nexus 5 smartphone by EigenImaging (https://www.
eigenimaging.com/) we utilised, or a separate NIR-
sensitive camera has to be equipped in the smartphone. The
latter is done by some manufacturers already (e.g. Sam-
sung for iris recognition) and it is likely that others will fol-
low this trend. If the smartphone already contains an NIR-
sensitive camera, it can be utilised for hand-vein recognition
and the only additional component needed is the NIR light
source.

Our mobile hand-vein scanner add-on is essentially such
a light source in the form of an add-on module for smart-
phone devices, depicted in Fig. 1. It is the first mobile hand-
vein scanner device of its kind, exhibiting lower production
costs compared to previous mobile finger- and hand-vein
scanners as it does neither contain a separate image sensor
nor a complex control board. The whole device was de-
signed to be used in combination with our modified Nexus 5
smartphone utilising its integrated camera as image sensor
and has been constructed by ourselves. The housing part,
where the smartphone is slid in, consists of several, 3D
printed components. Hence, it can be easily modified for
other smartphone models. This control board is based on
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Figure 1: Left: mobile hand-vein scanner add-on, right:
typical acquisition set-up

an Arduino Nano Board (https://store.arduino.
cc/arduino-nano), a Bluetooth module and a 16 chan-
nel LED driver IC. The control board design was adopted
from our previous finger-vein scanner [6] and modified for
the mobile application. It does not require a physical cable
connection to the smartphone, the data transfer and control
is achieved via Bluetooth communication. The USB cable
on the prototype is only needed for power supply, but the
final version will have a built-in rechargeable battery. It has
16 NIR LEDs with a peak wavelength of 850 nm that are
arranged in a circle around the smartphone’s camera. Each
LED can be brightness controlled individually. This enables
a uniform and sufficient illumination for the hand-vein im-
ages on the one hand and provides the ability to use complex
illumination patterns for encoding information on the other
hand. Moreover, our add-on is equipped with an NIR pass-
through filter having a cut-off frequency of 780 nm to filter
out the ambient light and to improve the image contrast.

The LED brightness is automatically controlled by a cap-
turing app running on the smartphone, prior to the acquis-
ition of a single image. Currently, the app only supports
the capturing of single images as well as video sequences
of the hand-veins, no feature extraction and comparison is
done yet. This is why it is currently an add-on for the ac-
quisition of hand-vein images and not for performing a full
authentication.

3.1. Challenge-Response Protocol

In order to prevent presentation and replay attacks, the
developed mobile hand-vein scanner add-on is capable of
performing challenge response (CR) authentication due to
its 16 fully controllable NIR LEDs.

Presentation attacks for finger veins have already been
successfully conducted in [21] by Tome et al., where
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a spoofing false accept rate of 85% has been achieved.
Their experiments have been conducted using an extensible
framework for spoofing finger veins, which might also be
successfully applied to hand veins.

CR authentication follows the simple principle that one
party presents a question, i.e. the challenge, to which an-
other party has to provide a valid answer, i.e. the response,
in order to pass the authentication. In [20] Stein et al.
proposed a video-based fingerprint recognition and anti-
spoofing solution for smartphones. They developed a CR
protocol, where the finger needs to be moved towards the
camera and the reflectance of the finger surface is measured.

In the scenario presented here, the first party (user) tries
to authenticate itself in a biometric system using his/her
smartphone. More precisely, the smartphone is used as a
mobile sensor to acquire the user’s biometric trait, i.e. the
vascular pattern of the hand, and the data is then submit-
ted to the biometric system wirelessly for the identification.
Since the smartphone cannot be trusted, as mentioned in
Section 1, the biometric system has to ensure the authen-
ticity and up-to-dateness of the acquired biometric data to
prevent a malicious insertion or spoofing of the submitted
data, i.e. presentation and replay attacks. Therefore, a video
of the hand is acquired for authentication, which contains a
blinking sequence generated based on a specific challenge
using the 16 fully controllable NIR LEDs. This blinking
sequence is an inherent part of the video, which is sent to
the biometric system after acquisition. This ensures that the
response is interwoven with the biometric data.

The proposed challenge response protocol consists of the
following steps:

1. The smartphone sends an authentication request to the
biometric system.

2. The biometric system generates a random number
which defines a fixed blinking sequence and sends it
to the smartphone (challenge).

3. The smartphones generates a blinking sequence based
on the random number and controls the 16 LEDs ac-
cordingly. In parallel, a video of the hand (dorsal or
palmar) is recorded.

4. The video containing the biometric data and blinking
sequence (response) is sent wirelessly to the biometric
system.

5. The biometric system detects the blinking sequence
and compares it to the previously generated random
number.

6. If the response matches the challenge, the hand vein
recognition is performed and the user is authenticated.
Otherwise, the whole process is repeated.

We implemented this challenge response protocol in
form of an Android application, which runs on the user’s

smartphone. The app consists of two major parts: The
video recording and the LED control. The video record-
ing part has been realised using CameraView (https://
github.com/natario1/CameraView), a high-level
library providing access to the smartphone’s camera in or-
der to capture photos and videos. The LED control is per-
formed via Bluetooth. The application is able to capture
both photos and videos and contains different settings to
configure the acquisition parameters for testing and devel-
opment. The GUI of the developed application is depicted
in Figure 2a.

(a) GUI (b) Grey values

Figure 2: Graphical user interface (a) of the developed An-
droid application for LED control and capturing of photos
and videos. Sequence of mean grey values (b) for an exem-
plary video with detected 0s (marked as blue stars around
a gray value of 45) and 1s (marked as green stars around a
gray value of 60).

In our first proof of concept, we generate a random num-
ber between 1 and 255, which is logged to a file for later
evaluation. This random number, which by concept would
be sent by the biometric system, is then transformed into an
8-bit binary sequence: For 0 the brightness of the LEDs is
reduced to half of its intensity, while for 1 the intensity is
kept at a predefined level. All LEDs are controlled equally
in the current version, but multiple illumination zones can
be realised in the future to enable more complex blinking
sequences. For this work, we acquired videos with a dur-
ation of 3 seconds containing the 8-bit sequence, leading
to a blinking interval duration of 375 ms. For synchron-
isation purposes, we added a padding with a duration of 1.5
seconds before and after the blinking sequence of the video.

The biometric system, which receives the video, has only
been simulated so far. Therefore, the blinking sequence is
first extracted from the recorded video and compared to the
previously logged random number for the specific video.
For the detection of the sequence, single frames are extrac-
ted from the video at a frame-rate of 5.33 fps using FFm-
peg (https://www.ffmpeg.org). The frame-rate has
been selected in correspondence to the blinking interval of
375 ms, leading to two frames being extracted for each
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blinking interval and a total of 32 frames for the whole
video: 8 images of padding before and after the blinking
sequence and 16 images for the sequence itself. Thereafter,
the mean grey value of each extracted image is determined.
Since the used camera library does not allow a manual ex-
posure, it is automatically regulated after each blinking to
obtain a certain mean grey value. Hence, we are only able to
detect changes in illumination. Afterwards, the local min-
ima and maxima, i.e. 0s and 1s, of the blinking sequence
are determined from the mean grey value curve, as shown in
Figure 2b. The intervals between these extrema, i.e. where
no illumination change has happened, are interpolated by
the preceding value. With this procedure, we obtain an 8-
bit binary sequence again which is matched against the 8-bit
binary sequence of the random number.

4. Mobile Hand-Vein Data Set
The mobile hand-vein data set was acquired using our

mobile hand-vein scanner add-on in combination with the
modified Nexus 5 smartphone. It includes dorsal as well
as palmar hand-vein images of 31 individual subjects. No
supporting apparatuses to place the hand in a predefined
positional were used. As a result, the captured images re-
semble a realistic real-live scenario with all possible types
of distortions like rotation, tilting in all possible directions
and scaling (different distances of the hand and the smart-
phone). The data acquisition was split into two separated
sessions, the first one outdoor inside a car and the second
one indoors. Throughout the first session 28 subjects have
been acquired, during the indoor session 18. 15 subjects
participated in both sessions. Five images per hand and per
view have been acquired, summing up to a total of 920 im-
ages. The acquisition outside was done to simulate a real-
istic application scenario of our mobile hand-vein add-on in
a border control environment, the inside session was con-
ducted to have reference images in a more controlled envir-
onment. The acquired colour JPEG images have a resolu-
tion of 2448x3264 pixels. We extracted square ROI patches
of the hand-vein images manually, which have a resolution
of 512x512 pixels. Figure 3 shows some example images.
This data set will be publicly available as part of the PRO-
TECT Multimodal DB Dataset [22] database and can be
downloaded at http://projectprotect.eu/.

5. Experimental Evaluation
In the following the finger-vein processing tool-chain

and the evaluation protocol are described. Then the experi-
mental results are given and discussed.

5.1. Processing Tool-Chain

The finger-vein processing tool-chain consists of ROI
extraction, preprocessing, feature extraction and compar-

Figure 3: Example images of the mobile hand-vein data set,
left: dorsal, right: palmar

ison. We opted for simple binarisation type feature extrac-
tion methods as well as two key-point based methods (one
SIFT based and an adopted version of an algorithm pro-
posed by Matsuda et al. in [15]) to have a complimentary
feature type too.

ROI Extraction The ROI extraction is done manually by
fitting a rectangular ROI is fit inside the hand area. The ROI
images have a size of 512× 512 pixels.

Preprocessing To improve the image contrast and the vis-
ibility of the vein pattern CLAHE [25], which is the most
prevalent and simple technique, in combination with High
Frequency Emphasis Filtering (HFE) [24] and filtering
with a Circular Gabor Filter (CGF) as proposed by Zhang
and Yang [23] are applied. Furthermore, the images are res-
ized to half of its original size, which not only speeds up the
comparison process but further improves the results due to
intrinsic denoising. For more details on the preprocessing
methods the interested reader is referred to the authors’ ori-
ginal publications.

Feature Extraction and Comparison The first three of
the following techniques aim to extract the vein pattern from
the background resulting in a binary template image fol-
lowed by a comparison of these binary templates using a
correlation measure.

Maximum Curvature (MC [16]) aims to emphasise
only the centre lines of the veins, making it insensitive to
varying vein widths. The first step is the extraction of the
centre positions of the veins. Afterwards a score according
to the width and curvature of the vein region is assigned to
each centre position and recorded in a matrix called locus
space. Due to noise or other distortions some pixels may
not have been classified correctly at the first step, thus the
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centre positions of the veins are connected using a filtering
operation. Finally binarisation is done by thresholding us-
ing the median of the locus space.

Principal Curvature (PC [2]): At first the gradient field
of the image is calculated. Hard thresholding is done to fil-
ter out small noise components and then the gradient at each
pixel is normalised to 1 to get a normalised gradient field.
This is smoothed by applying a Gaussian filter. The next
step is the actual principal curvature calculation, obtained
from the Eigenvalues of the Hessian matrix at each pixel.
Only the bigger Eigenvalue, corresponding to the maximum
curvature, is used. The last step is a binarisation of the prin-
cipal curvature values to get the binary vein output image.

Gabor Filter (GF [11]): The image is filtered using a
filter bank consisting of several 2D even symmetric Gabor
filters with different orientations, resulting in several feature
images. The final vein feature image is obtained by fusing
all these single images, which is then post-processed using
morphological operations to remove noise.

For comparing the binary feature images we adopted the
approach of Miura et al. [16]. As the input images are
neither registered to each other nor aligned vertically, the
correlation between the input image and x- and y-direction
shifted versions of the reference image is calculated. The
maximum of these correlation values is normalised and then
used as final comparison score.

In addition to the techniques described above, the fourth
technique is a key-point based one. Key-point based tech-
niques try to use information from the most discriminative
points as well as considering the neighbourhood and con-
text information of these points by extracting key-points
and assigning a descriptor to each key-point. We used a
SIFT [14] based technique with additional key-point filter-
ing along the finger boundaries as proposed by Kauba et
al. [7] and a modified version of Deformation-Tolerant
Feature-Point Matching (DTFPM) proposed by Matsuda
et al. [15]. DTFPM was designed for finger-vein recogni-
tion. Its feature extraction assumes a circular shape of the
finger. This does not apply for hand-vein recognition, thus
we modified the feature extraction step.

5.2. Evaluation Protocol

The experiments are split into two main parts: in the first
part we analyse the recognition performance of the data-
base. For evaluation purposes, dorsal and palmar images
are regarded as two independent data sets. In addition to the
analysis of the two acquired sessions, we performed a com-
parison of session 1 against session 2 as well. To quantify
the performance, the EER as well as the FMR100 (the low-
est FNMR for FMR <= 1%), the FMR1000 (the lowest
FNMR for FMR <= 0.1%) and the ZeroFMR (the low-
est FNMR for FMR = 0%) are used. We applied the
following test protocol: For calculating the genuine scores,

all possible genuine comparisons are performed. For cal-
culating the impostor scores, only the first image of a fin-
ger is compared against the first image of all other fin-
gers. Table 1 states the number of comparisons for each
evaluation. As our recognition scheme does not require a
training step, no separate training and test set is needed.
All result values are given in percentage terms, e.g. 1.43
means 1.43%. In the second part of our experiments, we
evaluated the captured videos with respect to the challenge-
response protocol described in Section 3.1. A public im-
plementation of the complete processing tool-chain as well
as the scores and detailed results are available at: http:
//www.wavelab.at/sources/Debiasi18b.

Session 1 Session 2 Session 1 vs 2
Genuine 560 360 750
Impostor 1540 630 855

Total 2100 990 1650

Table 1: Number of matches per data set/session evaluation

5.3. Recognition Performance Results

The performance evaluation has been conducted for
both, the palmar and dorsal sub-set. Figure 4 shows some
sample images including te extracted MC features. In the
dorsal ROI image, the vein structure is visible. In the im-
ages acquired from the palmar side (bottom row), the vein
structure is not visible as prominently. The ROI image on
the left side is dominated by the texture of the palm. This
fact is also reflected in the extracted MC features (right
side): most of the extracted lines do not result from the vein
structure but from the creases and wrinkles of the skin.

Table 2 lists the results for the dorsal subset. For ses-
sion 1 (outdoor) MC achieves the best result with an EER
of 4.13% followed by DTFPM (7.33%), SIFT (10.63%) and
PC (10.71%). With an EER of 28.08%, GF perform signi-
ficantly worse than all other feature types. For session 2
(indoor, controlled ambient light) all feature types except
PC perform worse. MC still shows the best performance
with and EER of 5.69%. PC (8.97%) now achieves a better
result than DTFPM (12.00%) and SIFT (14.17%). Again,
the recognition performance of GF (36.37%) is not compet-
itive to the other methods. For the inter-session comparison,
the performance drops dramatically. MC achieves an EER
of only 24.30% which is six times worse than the result for
session 1. PC and DTFPM exhibit EERs around 30%, SIFT
and GF of greater than 40%. The DET plots for session 1
and 2 are depicted in Figure 5 left and right, respectively.

Table 3 states the results for the palmar sub-set. The res-
ults follow the same trend as for the dorsal sub-set: MC
performs best for all 3 experiments followed by DTFPM,
SIFT and PC. The outdoor session exhibits a better perform-
ance than the indoor session and the inter-session compar-
ison performs significantly worse than the single sessions.
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(a) ROI dorsal (b) Features (MC) dorsal

(c) ROI palmar (d) Features (MC) palmar

Figure 4: Sample images of both data sets: dorsal images
on the top, palmar at the bottom. The left column shows the
extracted ROI, the right column the extracted MC features

Session 1
EER FMR100 FMR1000 ZeroFMR

MC 4.13 (±1.11) 6.79 10.54 12.50
PC 10.71 (±1.72) 15.54 18.39 18.75
GF 28.08 (±2.50) 68.39 74.64 75.89

SIFT 10.63 (±1.72) 17.50 27.68 28.57
DTFPM 7.33 (±1.45) 13.04 16.61 17.32

Session 2
EER FMR100 FMR1000 ZeroFMR

MC 5.69 (±1.77) 9.44 23.06 23.06
PC 8.97 (±2.17) 13.61 16.94 16.94
GF 36.37 (±3.66) 81.39 85.83 85.83

SIFT 14.17 (±2.65) 31.11 37.22 37.22
DTFPM 12.00 (±2.47) 23.33 28.33 28.33

Session 1 vs Session 2
EER FMR100 FMR1000 ZeroFMR

MC 24.30 (±2.49) 56.13 69.87 69.87
PC 28.48 (±2.62) 54.13 68.00 68.00
GF 42.24 (±2.87) 96.67 99.20 99.20

SIFT 41.12 (±2.86) 88.80 94.40 94.40
DTFPM 30.22 (±2.67) 65.87 74.53 74.53

Table 2: Recognition performance results in terms of
EER/FMR100/FMR1000/ZeroFMR for the dorsal sub-set
for the single sessions and cross session

GF cannot compete with the other methods. The DET plots
for session 1 and 2 are depicted in Figure 6.

Considering that the images have been acquired fully
contactless in an nearly unconstrained environment, the re-
cognition rate of the system for the single individual ses-

Figure 5: DET plot for session 1 (left) and session 2 (right)
of the dorsal view

Session 1
EER FMR100 FMR1000 ZeroFMR

MC 7.52 (±1.47) 10.54 13.04 13.39
PC 13.88 (±1.93) 23.75 31.07 34.64
GF 32.52 (±2.61) 85.71 90.71 93.93

SIFT 11.90 (±1.80) 21.43 34.11 39.82
DTFPM 7.67 (±1.48) 12.14 16.79 21.96

Session 2
EER FMR100 FMR1000 ZeroFMR

MC 7.78 (±2.04) 15.28 22.78 22.78
PC 14.52 (±2.68) 21.94 24.17 24.17
GF 33.93 (±3.60) 82.22 89.17 89.17

SIFT 14.21 (±2.66) 30.28 43.61 43.61
DTFPM 12.14 (±2.49) 22.50 26.67 26.67

Session 1 vs Session 2
EER FMR100 FMR1000 ZeroFMR

MC 27.73 (±2.60) 56.00 65.47 65.47
PC 34.27 (±2.76) 62.80 75.33 75.33
GF 42.24 (±2.87) 98.53 99.87 99.87

SIFT 41.38 (±2.86) 86.00 95.87 95.87
DTFPM 34.07 (±2.76) 76.67 85.07 85.07

Table 3: Recognition performance results in terms of
EER/FMR100/FMR1000/ZeroFMR for the palmar sub-set
for the single sessions and cross session

Figure 6: DET plot for session 1 (left) and session 2 (right)
of the palmar view

sions is acceptably good. The inferior performance of ses-
sion 2 (indoor with more controlled artificial ambient light)
might be due to the proposed illumination add-on which
does not provide enough NIR light to sufficiently highlight
the "deeper" veins. The additional NIR light present in sun-
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light might help to render the veins more visible in the out-
door session and therefore increase its recognition perform-
ance. The palmar images are dominated by the creases of
the hand. The veins on the palmar side are deeper inside the
skin as on the dorsal side. Our illumination does not penet-
rate deep enough into the tissue. Therefore, the vein struc-
ture is only partially visible. This explains the performance
decrease of the palmar sub-set compared to the dorsal one.

The significant performance drop of the inter-session
comparison might result from the unconstrained environ-
ment. Vein structure based methods rely on the correlation
of the images. During comparison we shifted the images in
x- and y-direction and rotated them in order to maximise the
correlation and correct small displacements. This correc-
tions might have not been enough as they do not consider
non-planar rotations (tilt). Considering our previous work
[18], one could expect that key-point based algorithms, es-
pecially DTFPM, are better suited for an unconstrained ac-
quisition environment. The performance of these methods
needs to be further investigated.

5.4. Challenge-Response Evaluation Results

The challenge-response evaluation has been conducted
on a total of 65 videos for 13 different users with random
blinking sequences. For this purpose, the expected binary
sequences determined by the random number generated for
each video have been compared to the detected binary se-
quences, which have been extracted by the procedure de-
scribed in Section 3.1, by means of Hamming Distance
(HD). A sequence has been defined as a match (M), only
with a HD equal to 0. Otherwise, the detected sequence
has been defined as a non-match (NM). Table 4 shows the
matching accuracy and mean hamming distance for non-
matches for each user. A mean detection accuracy of 0.82
has been achieved for all CR-videos with a mean HD of 3.04
for failed detection attempts. Compared to a related bio-
metric recognition and CR solution proposed in [20], where
a detection accuracy of 0.40 has been achieved in one CR
authentication attempt (80 out of 201), we obtain a compet-
itive result.

The failed detection is mainly caused by synchronisa-
tion problems, e.g. for users 3 and 10. This synchronisation
problems arise from two different factors: a software factor
in form of the used camera library and a hardware problem
with the timing of the LEDs. The camera library causes
some delay with the video acquisition, which causes a de-
synchronisation of the blinking intervals, while the current
implementation of the embedded LED control can cause in-
consistent timer intervals with a deviation of up to 200 ms.
Furthermore, due to the missing manual exposure setting
in the camera library, some longer consecutive sequences
of 0s or 1s are not interpolated correctly. All of these issues
will be addressed in future versions of the mobile hand-vein

scanner add-on, by choosing another library to access the
camera and changing the embedded LED control to an in-
terrupt based control.

User ACC Mean HD NM
1 0.60 2
2 1.00 -
3 0.80 4
4 0.80 2
5 0.60 2.50
6 0.20 2.75
7 1.00 -
8 0.80 2
9 1.00 -
10 0.80 6
11 1.00 -
12 1.00 -
13 1.00 -

Mean 0.82 3.04

Table 4: Detection accuracy (ACC) and mean Hamming
Distance for non-matches (Mean HD NM) for CR sequence
detection. If ACC = 1 there are no non-matches, so no
distance can be calculated, thus there is − in the Mean HD
MM column.

6. Conclusion and Future Work
We proposed an illumination add-on for smartphones

which turns a smartphone with an NIR-sensitive camera
into a mobile hand vein scanner device. Using such a scan-
ner, we established a publicly available data set acquired
in two time-span separated and environmental different (in-
door, outdoor) sessions and analysed the recognition per-
formance of the new data set utilising some well-established
vein recognition schemes. We further proposed a challenge-
response protocol in order to prevent replay and presenta-
tion attacks and evaluated its applicability.

In our future work we will further develop our illumina-
tion add-on to enhance the acquisition quality. We will look
into a multi-sample fusion of the different video frames cap-
tured from the hand-veins in order to improve the recogni-
tion performance. Moreover, we aim to evolve DTFPM as a
hand vein recognition scheme which is tolerant against non-
planar rotations. In addition, we will continue to develop
our challenge-response protocol, improve the Android app
and LED controller. Furthermore, we plan to utilise the
smartphone’s built-in sensors to deal with some of the im-
posed challenges caused by the unrestricted positioning of
the phone relative to the hand. After all of the mentioned
improvements have been implemented, we will further ex-
tend our mobile hand-vein data set by acquiring additional
subjects.
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Abstract

We have evaluated face recognition software to be used
with hand held devices (smartphones). While we can not
go into specifics of the systems under test (due to NDAs),
we can present the results of our evaluation of liveness de-
tection (or presentation attack detection), matching perfor-
mance, and success with different complexity levels of at-
tacks. We will contrast the robustness against presentation
attacks with the systems usability during regular use, and
highlight where currently state of commercial of the shelf
systems (COTS) stand in that regard. We will look at the
results specifically under the tradeoff between acceptance,
linked with usability, and security, which usually negatively
impacts usability.

1. Introduction
We were tasked by a company with evaluating the us-

ability and security of face recognition systems which work
by recording a selfie (self-portrait) on a smartphone. The
matching was done on the server side, but liveness detection
was done on the smartphone. The company ran the servers,
provided the hardware and software. The whole project was
on a rather tight time schedule (due to license lease time),
so we could only conduct a limited number of experiments
with a limited number of people. Nonetheless, the results
were rather interesting and we wanted to share them.

That said, this is not a very technical paper. It
is more a recording of our experience with the soft-
ware/devices/processes. The main incentive to share this
information is to showcase certain problems which do not
happen in a typical “lab setup”. Shortcomings in algorithms
or implementation can be detrimental to the adoption by in-
dustry or acceptance by users and it can occasionally lead
to interesting research questions too. In this paper we will
present our experiments and findings and comment on how
research might help.

978-1-7281-3640-0/19/$31.00 c©2019 IEEE

We fill focus more on the what is of interest to us as re-
searchers and less on implementation details, except where
the used protocol might impact the research side. That
said, we would like to point out that software implemen-
tations, even only research software for reproducible re-
search, should be built with corner cases in mind to allow
for testing on more difficult test sets∗.

Limited Tests: Due to time constraints, only a short li-
cense lease time during which to test the systems was
granted, we could only afford a very limited number of tests.
Specifically, most test were only performed by a single user.
The number of attempts was also rather low, usually 10 to
20 repeats per test. Yet, even with such a limited number of
tests we could find counterevidence regarding the security
of the systems.

The goal in all these tests is to have a method to unlock
the device or otherwise verify the user of the device when
the user cooperates. What is important to companies is that
this process is secure on the one hand, but also fast and
annoyance free for the user. If this latter part is not given,
an adoption of the system by users is less likely.

As such we will look at the security of the two systems
under test, PassiveSys and ActiveSys, with the goal of un-
locking the device with minimal fuss on the part of the user.

The paper is structured as follows, Section 2 gives an
overview of presentation attacks and their detection as it re-
lates to the matter at hand. Section 3 establishes a baseline
when genuine traits are presented to the systems under test.
Section 4 will attack the test with replay type attacks and
Section 5 will use more sophisticated replicas of the bio-
metric traits to circumvent the system. Finally, Section 6
will summarize our findings and conclude the paper.

∗While we will delve no deeper into this we just would like to note
that we managed to crash the server because of the floral pattern design on
a user’s shirt worn during testing
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2. Related Work

Smartphones are ubiquitous and so is the widespread
adoption of biometric traits to unlock the device by verify-
ing the identify of the user. In recent years, a certain trend
from using fingerprints towards face detection can be ob-
served. This trend has renewed the interest in attacks, and
the prevention thereof, against such biometric systems.

A specific attack is the presentation, also known as di-
rect or spoofing, attack. It can be separated into two cate-
gories [1]: (1) active imposter presentation attacks, where
the attacker tries to claim a foreign identity; and (2) con-
cealer presentation attacks, where an attacker tries to not be
recognized by a system. Presentation attacks can be used
against identification as well as verification modes.

Presentation attacks (PA) can also be differentiated by
the source of the presentations attack instrument (PAI): (1)
artificial, which is a non-human material sourced from hu-
mans, e.g., masks, printouts, images; (2) human traits, parts
of dead bodies, modified faces, forced presentation by un-
conscious persons and so on.

To prevent such attacks, a presentation attack detection
(PAD) system, also referred to as liveness detection, is em-
ployed. The primary focus of research is artificial presenta-
tion but, as is evident in the term liveness detection, overlaps
with parts of the human trait PAI categorization.

There are different kinds of (face detection) PADs, some
are hardware reliant while others are not, some use still im-
ages and others video. The number of different PAD meth-
ods is long, thus we will only give a brief list of methods
without going into them too much: blink detection ([2, 3]),
challenge response ([4–6]), texture based ([7–9]), dynamic
texture based (video) ([10, 11]) or movement based ([12–
14]). For more details, the reader is referred to the respec-
tive papers.

The target application of our tests was to unlock the de-
vice with the presented biometric trait (face). The operation
mode, in terms of biometry, is always verification since the
identify is implied (the owner of the cell phone). Presen-
tation attacks also try to unlock the device and are conse-
quently also done in verification mode. The presentation
attack instrument is artificial only. While there are more
types of PAIs, and a lot of further differentiation by subtype,
we only gave related literature to the modes suspected to be
employed in the devices we test. Specifically, ActiveSys
certainly uses blink detection and challenge response meth-
ods. PassiveSys’s modes are all passive, i.e., no cue based
user interaction is required, using image, and we strongly
suspect video, and thus has to rely on texture based image
and video as well as movement features for PAD.

Please note: In the following sections we will present ta-
bles with results. These results are in the form of success

rate of the liveness detection (LD) and the match rate (MR),
which relate to the reporting as specified in ISO/IEC 30107-
3 [15] as follows: In case the presented trait was genuine,
the bona fide presentation classification error (BPCER) can
be calculated as BPCER := 1 − LD. In case of presenta-
tion attacks the attack presentation classification error rate
(APCER) can be calculated as APCER := 1 − LD. Like-
wise, the false non match rate (FNMR) for genuine pre-
sentation is FNMR := 1 − MR and the impostor attack
presentation match rate (IAPMR) for presentation attacks is
IAPMR := MR.

3. Usability
For usability, we look at the basic modes provided by the

software. With these modes we get a baseline for further
tests and presentation attacks. We evaluated two software
systems, denoted PassiveSys and ActiveSys, both have a
separate step for detecting liveness and matching the probe
and gallery image.

PassiveSys could operate with five different modes,
which only impact liveness detection. No further detail on
what is different was provided to us, but on-screen notes
gave clues on what is required for the liveness detection.
Modes are: video, unclear conditions but seems to take a
video; lessvid, seems to be a less stringent version of video;
image, simply takes a picture. One mode was not used
because we could never pass liveness detection. Another
mode was designed to use the rear camera and an operator
to identify a second person, this was not used because the
goal is to unlock the device (single user operation).

ActiveSys allows four liveness detection modes: None;
blink, user has to keep still and blink on cue; arrow, re-
quires turning the head to steer an arrow along a line to a
target, when the arrow and target align the user has to blink;
blink+arrow, a combination of both modes. We will not
give separate results for None and the blink+arrow combi-
nation since the modes are simply executed one after the
other.

3.1. Usability and Baseline

To get a baseline for the systems, we created two test
sets, one where the gallery images is from a user with
glasses and one where the user does not wear glasses.

The results are given in Table 1, split for system and
liveness detection type. It can be seen that the presence
of glasses in the image increases the error rate of the live-
ness detection. It is also interesting to see that the matching
always worked when liveness detection was passed. How-
ever, even for probe images without glasses certain modes
did reject a lot of attempts, video overall rejected almost
72% of all attempts. Also interesting is that arrow seems
to reject less attempts than blink, even though the task is
more complicated. The modes of PassiveSys on the other
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Table 1: Baseline for the ActiveSys and PassiveSys. Re-
sults are split between liveness detection test (LD) and ver-
ification results (Match). The presence of glasses in the
probe (Pr.) and gallery (Gal.) images is given as well.

(a) Baseline for PassiveSys for
modes video, lessvid, image.

video

Pr. Gal. LD Match

yes yes 0/20 0/20
no no 13/20 13/20
no yes 10/20 10/20
yes no 0/20 0/20

lessvid

Pr. Gal. LD Match

yes yes 4/20 4/20
no no 18/20 18/20
no yes 12/20 12/20
yes no 9/20 9/20

image

Pr. Gal. LD Match

yes yes 6/20 6/20
no no 20/20 20/20
no yes 18/20 18/20
yes no 19/20 19/20

(b) Baseline for ActiveSys for
modes blink and arrow.

blink

Pr. Gal. LD Match

yes yes 20/20 20/20
no no 16/20 16/20
no yes 12/20 12/20
yes no 12/20 12/20

arrow

Pr. Gal. LD Match

yes yes 18/20 18/20
no no 20/20 20/20
no yes 20/20 20/20
yes no 20/20 20/20

hand behave as expected, the more complicated method re-
ject more attempts, i.e., video based reject more than image
base liveness detection modes.

What also resulted from these experiments, which is not
reflected in the table, is the insight that failure of longer
modes, like the arrow or blink+arrow modes for ActiveSys
which took several seconds per attempt, became frustrating
very fast.

3.2. Usability and Baseline Outdoors

We suspected that the failure to detect images with
glasses as alive was due to reflection of light on the glasses.
The results in Table 1 were obtained from experiments in
a well lit room. To further test the impact of light on the
liveness detection and to expand the baseline to the out-
doors, we performed another test in natural sunlight, during
a bright day.

This experiment was conducted without glasses and the
results are given in Table 2. The clear impact of light-
ing conditions on the liveness detection is quite drastic,
video and lessvid failed to detect anything as alive and im-
age, blink and arrow all had reduced number successful at-
tempts. However, it should also be noted that the actual
verification always worked when the liveness detection was

Table 2: Performance during bright sunlight outdoors. Re-
sults are split between liveness detection test (LD) and ver-
ification results (Match). Facing was either towards the sun
or away from the sun.

(a) PassiveSys split for modes.

video and lessvid

Facing LD Match

towards 0/20 0/20
away 0/20 0/20

image

Facing LD Match

towards 10/20 10/20
away 20/20 20/20

(b) ActiveSys split for modes.

blink

Facing LD Match

towards 14/20 14/20
away 9/20 9/20

arrow

Facing LD Match

towards 10/20 10/20
away 19/20 19/20

Table 3: Liveness Detection under studio light for different
light positions (Dir.) and intensities. Light was diffused
or un-diffused as a spot light. Entries are the number of
success based on 10 attempts per setting.

LD under Intensities

spot diffuse

System Mode Dir. 1.0 3.0 6.0 1.0 3.0 6.0

PassiveSys video front 0 0 0 0 0 0
PassiveSys lessvid front 4 2 3 10 5 5
PassiveSys image front 8 8 9 10 9 10
ActiveSys blink front 8 8 6 2 5 3
ActiveSys arrow front 9 9 10 10 7 8

PassiveSys video side 0 0 0 0 0 0
PassiveSys lessvid side 3 4 2 7 5 0
PassiveSys image side 9 8 9 10 7 8
ActiveSys blink side 3 4 4 4 4 6
ActiveSys arrow side 3 5 1 10 5 3

PassiveSys video back 0 0 0 0 0 0
PassiveSys lessvid back 5 3 1 4 3 1
PassiveSys image back 5 9 6 2 0 1
ActiveSys blink back 6 7 5 7 5 3
ActiveSys arrow back 9 10 10 10 9 10

passed. This might be a benefit of the aggressive screen-
ing during liveness detection, which is not necessarily a bad
thing since early failure is less costly in terms of time to
failure.

To get a more reproducible, and finer grained, version of
the light test we set up a dimmed room with a studio light
(Helios 300p) shining at the user from the front, side or back
at a distance of roughly 1m. The light levels were adjustable
and were set to 1, 3 and 6 (from a maximum setting of 6)
and we investigated spot and diffuse (diffused with bleached
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(a) Evaluation of the impact of frontal studio light. (b) Replay attacks for still images, same setup was also used for
degraded images.

Figure 1: Different test setups.

80g/m2 paper) light to simulate a clear or cloudy day, one
such experiment is depicted in Figure 1a. The results are
given in Table 3, verification is not given separately since
every time liveness was detected the user was also correctly
verified. Results given are the successful unlock attempts
from a set of 10 attempts per parameter set.

The results from the controlled tests show quite nicely
the influence of light on the different modes. All modes
are affected to some degree and for the most part how they
are affected makes sense, e.g., higher effect the stronger the
light is, spot light has a higher effect than diffuse light and
so on. The one difference is the direction, frontal light il-
luminates the subject unlocking the device so has the least
influence, but the higher reduction of side illumination over
backlight is somewhat surprising. The sidelight usually re-
sults in a very uneven illumination, one face side in shadow
the other illuminated. Backlight should mess up the ex-
posure settings of the camera and leave the whole face in
shadow. The expectation therefore would be that the back-
light exhibits worse performance than sidelight, which is
not backed by experimental results.

3.3. Discussion

Time to failure and repeats can heavily impact the user
experience. The overall time taken to unlock has to be
acceptable to the user. Failures do not matter so much, so if
failure and retry is fast and painless then the resulting user
experience can still be good. However, if a long process
fails and has to be retried, user satisfaction quickly fades.
On a related note users try to help the system by doing the
“right” thing to speed up the process. We can use this by
making explicit what is required rather than letting the user
guess. The user is a willing participant and will try to help
as much as possible to speed up the unlocking process.

Light and the outdoors environment. The impact of di-
rectional light on the liveness detection system is quite dras-
tic and will make many of the modes under test unfeasible
in practice. And while the matching worked well for all
cases it is not clear if this is due to the aggressive liveness
screening or robust matching algorithms.

4. Presentation Attack: Replay Attacks
The next logical step to test the security of the system

was to perform a replay attack. That is, record an image or
video and present that to the device instead of the genuine
face. In a perfect world the liveness detection should reject
every attempt.

To reduce the amount of data to display in tables, the
video mode will no longer be used. Given its problems of
rejecting images with glasses and strong light, it will likely
never be used in practice either.

For the simple replay attack, we used a printed version
of the image, the image displayed on a computer screen
and a short video also displayed on the screen. The latter
was used since both modes from ActiveSys require at least
blinking and a bit of interaction in the case of arrow, sim-
ulated by turning the smartphone. The setup for the static
image replay attacks and test of degradation types (see be-
low) is shown in Figure 1b.

The results from this test can be seen in Table 4, again
only liveness detection is given since verification was al-
ways successful when liveness was detected.

It is interesting to compare these results to the lighting
results in Table 2. The same stringency which allows the
detection of replay attacks adversely affects the usability in
environments with bright lights. Overall, the expected result
is present, higher quality/effort reproductions have a higher
success chance, i.e., video is better than screen is better than
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Table 4: Result of a replay attack. The number of successful
attacks out of 20 attempts is given.

Successes with Replay

System Mode print screen video

PassiveSys lessvid 0 1 0
PassiveSys image 12 17 20

ActiveSys blink — — 0
ActiveSys arrow — — 5

Table 5: Result of a controlled degraded image replay at-
tack. The number of successful attacks out of 10 attempts
is given.

Strength of Degradation

System Mode Degradation low medium high

PassiveSys image Noise 10 10 10
PassiveSys image Blur 10 10 6
PassiveSys image Resolution 10 10 6/0*

*liveness was detected 6 times, but verification was passed 0 times

print. And again the arrow mode is easier to pass than the
blink mode, even though more ‘user’ interaction is required.

Assuming that usability is a prime factor for a
widespread adoption of such unlock systems, we will take
a closer look at just how bad a recording still allows an un-
lock. From a practical perspective we will only look at the
image mode. While lessvid would also be an interesting
candidate, the mounting of such a replay attack is harder
since a video has to be acquired, while image only requires
a still image, i.e., a simple photograph. To simulate bad
recording conditions we will add noise, blur the image and
pixelate it to simulate a low resolution. The results are given
in Table 5 for the image mode, Figure 2 illustrates the range
of noise, blur and pixelation applied.

The clear result of these tests is that even a strongly de-
graded version of the image can penetrate the liveness de-
tection of the image mode.

4.1. Discussion

An interesting tradeoff between usability and security
can be observed in these experiments. Since usability is
paramount for applicability, the security has the be reduced
somewhat. However, this can be counteracted by user par-
ticipation in activity assisted unlock modes like arrow. The
drawback of such methods is that they take longer and re-
quire more attention from the user making a failure to un-
lock more annoying. This annoyance could hinder adoption
of such schemes, which in turn would require a reduction in
security and thus brings us full circle again. There is clearly
a need for fast and reliable liveness detection methods.

low medium strong

(a) RGB Noise

low medium strong

(b) Gaussian Blur

low medium strong

(c) Resolution

Figure 2: Illustration of Degradation types and strength for
the replay attacks in Table 5.

5. Presentation Attack: Masks

For these presentation attacks, we used a mask or mask-
like presentation of the stolen biometric trait, created via
photographs of the target’s face. This was done to increase
the chance of breaking interactive systems and give the im-
pression of depth a 2D image might not convey.

We used two attack types: (1) a handcrafted 3D latex
based mask by CREA FX∗; and (2) a 3D-printed hard resin
composite mask by ThatsMyFace†. Figure 3 show exam-
ples of the different masks.

Since the masks allow some interaction, we will again
use both modes from ActiveSys as well as image and lessvid

∗https://www.creafx.com/en/
†http://thatsmyface.com/custom-wearable-masks/
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Resin composite Latex

Figure 3: Masks used for presentation attacks. The sources of the biometric traits hold their replicas and imposter wearing
the replicas during an attack attempt.

Table 6: Presentation attack results for both mask types and
the given modes and systems.

Latex Mask Resin Mask

System Mode LD M LD M

PassiveSys lessvid 5 0 10 0
PassiveSys image 10 0 20 0
ActiveSys blink 0 0 10 0
ActiveSys arrow 0 0 16 0

from PassiveSys. The results are given in Table 6 out of 20
attempts.

The obtained results are very interesting, especially in
comparison to prior experiments. Where until now the live-
ness detection was relatively stringent and the verification
always worked when the liveness detection was passed, the
table has turned here. The liveness detection, which really
should catch these cases fails and lets them pass, while the
verification rejects the masks.

There is also quite the difference in mask quality, while
the latex mask was handcrafted, took about three times as
long to acquire and was four times as expensive as the 3d-
printed resin mask, it performed worse.

5.1. Discussion

What is interesting here is that the relatively high cost
only marginally increases the success rate. To illustrate this,
let us have a look at the threat level model laid out in [16],
briefly given in table 7.

Table 8 compares this to the results from our test, where
success rate is the percentage of presentation which passed
the liveness detection and verification. Usability is the
chance of unlock by a genuine user under different con-
ditions. What is most interesting is that Level C attacks,
which are much more expensive and have a much higher
preparation time, do not improve in success rate over Level

Table 7: Spoof presentation attacks separated by levels
based on time, expertise, and equipment.

Threat Level A Level B Level C

Time short >3 days >10 days

Expertise anyone
practice
needed

extensive skill
required

Equipment
readily
available

requires
planning

specialized

Biometric
source

readily
available

difficult to
obtain

difficult to
obtain

Example
paper print of
image

paper mask or
video

3D face
reconstruction

Table 8: Comparison of threat level and success rate per
mode and system. Usability, the chance of unlock by a gen-
uine user is a combination of results from Table 1 and 2.

System Mode Attack Threat Success
Rate

Usability

PassiveSys lessvid Image Level A 5%
44.2%PassiveSys lessvid Video Level B 0%

PassiveSys lessvid Mask Level C 0%

PassiveSys image Image Level A 85%
77.5%PassiveSys image Video Level B 100%

PassiveSys image Mask Level C 0%

ActiveSys blink Video Level B 0%
69.2%

ActiveSys blink Mask Level C 0%

ActiveSys arrow Video Level B 25%
89.2%

ActiveSys arrow Mask Level C 0%

B and Level A attacks.
From this table it also becomes clear that the PassiveSys

system is basically unusable, either the usability of a given
mode is low (lessvid) or the success rate of attack is high
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(image). The ActiveSys system is far better designed in this
regard. A tradeoff between reduced usability and higher
security (blink) and higher usability at the cost of a potential
Level B attack (arrow) can be observed.

6. Conclusion
What we have seen is that biometric verification for the

systems under test seems to work well. However, it is un-
clear if this is in part due to the strict liveness detection.
While this may seem an odd differentiation, we have also
seen that a strict liveness detection can reduce usability. At
times this reduction can be quite drastic and based on plain
and simple factors, like wearing glasses or trying to unlock
the device during a bright day. As such, a step towards a
higher usability and consequently user satisfaction and ac-
ceptance, would be to tweak the liveness detection to be less
strict in such cases. However, if this has a negative effect on
the matching performance, nothing is gained in terms of us-
ability at the cost of security.

That said, the liveness detection of both tested systems
does a relatively good job of screening attacks. Again, this
success in screening attacks is at the cost of usability. While
this tradeoff is fine in theory, the practical impact is quite
high,i.e., PassiveSys reduced the chance of success for gen-
uine presentations to less than 50% and could still be suc-
cessfully attacked. While ActiveSys fared better, it also had
to reduce the usability to around 70% to prevent attacks.
There is clearly ample room for improvement.

Regarding the attacks, it was interesting to see that the
most expensive and time consuming attacks, specially cre-
ated facial masks, fared worse than relatively simple printed
image or video presentation attacks.
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4. Conclusion

The main contributions of the work conducted during my thesis focus on three main areas:
biometric sensor forensics, face morph detection and mobile applications.

Biometric sensors acquiring image data are deployed in many biometric systems in order
to capture biometric samples. Identifying the source sensor from the acquired image samples
can offer advantages to the overall system in terms of improved security and interoperability.
Therefore, we investigated the differentiability of iris and fingerprint sensors, which is essential
for reliable source sensor authentication. Previous work found strong variations in the differen-
tiability of sensors in certain datasets. First, we evaluated these challenging datasets by apply-
ing and extending established clustering techniques using the photo response non-uniformity
(PRNU) to detect the number of sensors used to acquire the data. We assumed that the varia-
tions might originate from multiple sensors of the same model being used during data acquisi-
tion. In addition, a broad range of PRNU enhancement techniques and their effectiveness has
been assessed in the context of biometric data. We identified that in general the cohesion and
separation of the obtained clusters is improved, but in a highly situational manner. Continuing
these efforts, we investigated a real world criminal case dataset containing still images found on
a suspect’s computer with the goal to cluster the images by source camera. In this context, we
performed an evaluation of various cluster validity indices (CVIs) and source sensor clustering
techniques, revealing appropriate clustering algorithms and CVIs for such a scenario. We also
proposed an alternative image origin identification technique for iris images and compared it to
the classical PRNU-based approach, where we identified the strengths and weaknesses of both
approaches in different applications.

The second area focused on the detection of morphing attacks on face recognition systems.
We proposed a novel PRNU-based morph detection algorithm that analyses alterations of the
PRNU caused by the morphing process. We investigated different spectral and spatial features
and extended the approach to detect image region specific variations. The proposed morph de-
tector has proven to be robust against a wide range of image post-processings, morphing tech-
niques (landmark and neural network based) as well its generalisability regarding the camera
used to acquire the images. The proposed detector was able to significantly outperform other
state-of-the-art morph detectors in scenarios where the image source or morphing technique is
unknown.

The remainder of my thesis focused on mobile devices (smartphones) and covered diverse ap-
plications in this context. We evaluated multiple face recognition solutions for mobile devices
with focus on their usability and security in terms of matching performance and their ability
to detect presentation attacks with different complexity. We observed that the systems are able
to achieve high levels of security, but only by compromising the usability. We also explored
an alternative to classical biometric authentication such as fingerprints and face by designing
and constructing a prototype NIR-illumination add-on for smartphones which enables the ac-
quisition of vascular patterns. We acquired a hand-vein dataset and evaluated the recognition
performance with well established vein recognition algorithms. In addition, we also proposed
a challenge response protocol to ensure the authenticity of the acquired data based on variation
of the NIR illumination. Finally, we explored an alternative and innovative application for mo-
bile devices: counterfeit drug detection. We developed an authentication system that analyses
the intrinsic texture features of the drug’s packaging materials (packaging and blister) without

152



4.1. Issues and open challenges

the use of any external markers. We observed from our experiments that these intrinsic features
are highly discriminative and constant across multiple packages of the same drug manufac-
turer. Therefore, we demonstrated the feasibility of using smartphones for this application and
similar ones.

4.1. Issues and open challenges

While analysing biometric sensors based on their PRNU, iris and fingerprint sensors in par-
ticular featured strong variations in regard to their differentiability. Applying different PRNU
enhancement techniques helped in attenuating several artefacts in the extracted PRNU, which
lead to an increased differentiability improving the device identification and clustering perfor-
mance. However, some of the investigated datasets still showed unclear results. We assume
that they could either originate in non-unique artefacts (NUAs) within the extracted PRNU or
might also be caused by a misalignment of the PRNU signatures. These two assumptions are
made on the basis of investigating existing datasets with unknown acquisition conditions and
experiences gathered from using various biometric sensors. Analysing NUAs might be very
challenging in this scenario because of the highly correlated image content of iris and fingerprint
samples. Misalignment issues might be caused by the way some sensors process the acquired
image data, e.g. the sensor could track an eye across the image area and only crop a specific
region, which can therefore hardly be corrected or attenuated. This highlights the need for a
dataset with images from a large number of biometric sensors, as already exist for benchmark-
ing forensic schemes in the context of consumer cameras [35] and smartphone cameras [66],
with known ground truth and controlled acquisition conditions, in order to address the open
issue of differentiability of biometric sensors. Furthermore, images with uncorrelated content,
such as acquired in [23] would enable an examination of potential NUAs and thus help in shed-
ding light on these issues. Unfortunately, existing biometric datasets have been acquired with
focus on investigating the biometric samples and not the sensors. In contrast, the differentia-
bility of consumer cameras based on their PRNU has been extensively demonstrated and many
device identification and clustering techniques have been proposed in literature. However, real
world applications as performed in [19] illustrate the limitations of these approaches. Datasets
in literature usually contain images from different cameras, which are evenly distributed among
them and have been acquired under controlled conditions using the base ISO sensitivity of the
cameras. In real world datasets, though, acquisition conditions are usually unknown. These
might include post-processings, such as cropping, scaling, rotation, contrast enhancement and
other transformations as well as a wide range of different ISO sensitivities. To the best of the
authors knowledge, the robustness of the PRNU has not been studied extensively in this regard,
but clearly needs further investigation.

The proposed PRNU-based face morph detection system is shown to outperform other detec-
tors in terms of generalisablity and robustness to different attacks. These two aspects are often
neglected in current literature. As discussed in [59], the robustness of the system in regard
to intentional and unintentional attacks on the PRNU has not yet been investigated. Another
issue in the field is the lack of a publicly available benchmarking dataset and evaluation proto-
cols to facilitate comparing different detection approaches and their performance. Some efforts
are already being made in this regard by NIST with the FRVT MORPH project1. It also in-
cludes print-scan morphing attacks, which are inherently more challenging to detect compared
to purely digital morphs due to additional artefacts being introduced by the printing and scan-
ning process. The ability to detect print-scan morphing attacks plays a vital role in the detection

1https://pages.nist.gov/frvt/html/frvt_morph.html
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scheme’s real-world applicability for ePassports, since morphed face images might not only be
included into the chip portion of the passport, but the photo printed on the passport might also
be attacked with morphed images.

As previously mentioned, smartphones enable a wide range of applications. Because of their
important role in authenticating ones identity, the employed biometric systems, i.e. mainly fin-
gerprint and face recognition, need to withstand different types of attacks. We demonstrated
that many mobile face recognition systems are vulnerable to presentation attacks in [41], de-
spite claiming robustness against such attacks. Clearly, more sophisticated presentation attack
detection approaches need to be developed without compromising the usability of the overall
system. In order to achieve these goals, including dedicated hardware into the mobile devices
might be inevitable. Alternatively, other biometric traits, such as vascular patterns, need to be
investigated in the context of mobile devices. However, the capturing of alternative biometric
traits might require additional hardware to be integrated as well. Nonetheless, mobile devices
in their current state already offer and endless variety of applications and have become an inte-
gral part of this world, which is going to increase even further.
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