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Abstract—Various template protection schemes are providing
solutions to fulfil privacy preservation in biometric recognition
systems, among them Cancellable Biometrics (CB). In this paper
we propose two CB schemes, so called non-invertible many-to-one
transforms, that alter the image’s grey values in key-dependent
manner. The obtained recognition performance and unlinkability
results are compared to other signal domain cancellable transfor-
mation schemes proposed earlier in literature (block re-mapping
and warping). Experiments are conducted on a multi-biometrics
dataset including finger-vein, hand-vein and thermal face images.
In particular, for thermal face biometrics this represents the first
study concerning uni-modal template protection techniques and
their respective evaluation.

I. INTRODUCTION

Cancellable Biometrics (CB), also known as feature trans-

formations, have been introduced and evaluated in the image

(signal) domain by Ratha et al. in [1]. The two applied

transformations, block re-mapping and warping, have been

evaluated to protect iris [2], [3] and finger-vein [4] datasets.

However, since [1] no further signal domain CB techniques

have been proposed and most recent template protection meth-

ods, e.g. Bloom Filters [5] and Indexing-First-One hashing [3],

apply template protection in the feature domain.

The main advantage of applying template protection in the im-

age domain immediately after image acquisition as compared

to template protection operating in the feature domain is that

the original biometric template is never generated. Therefore,

the original template cannot be compromised in principle

which constitutes the highest level of privacy protection for the

capture subject. Only the transformed features (i.e. protected

template), which obviously differ from the original ones, are

extracted and further processed during template comparison

by the recognition systems’ authentication procedure. The

main disadvantage is that feature extraction based on the

transformed image might lead to incorrectly detected features

and thus results in a recognition performance decrease as

confirmed by [2], [4].

In this work we present and analyse a new class of image

domain CB schemes based on non-invertible many-to-one grey

value transformations with respect to the performance and

unlinkability properties defined in ISO/IEC Standard 24745

[6] (details given in Section V). As a particular instance of this

class, we investigate sine-based transformations. Thus, com-

pared to block re-mapping and warping no shape or structure

information of the biometric trait get geometrically changed,

disconnected or disrupted. In particular, this geometrical-

structure preserving property is expected to be beneficial if

the recognition process relies on the detection of landmarks

to identify regions-of-interest for feature extraction which get

distorted by the applied CB methods. Vascular and thermal

face biometrics have been selected as real-world applications

to prove this assumption because features from vascular bio-

metrics are mostly based on the extraction of geometrical-

structures while in thermal face recognition landmarks are of

importance for the feature extraction.

The remainder of this paper is organised as follows: A review

on template protection schemes in vascular and (thermal) face

biometrics is given in Section II. The proposed CB schemes

together with the earlier proposed counterparts are described in

Sections III and IV, respectively. The vascular and thermal face

biometric dataset utilised during the experimental evaluation,

the conducted biometrics’ specific recognition tool-chain, the

evaluation protocol, and experimental results are given and

discussed in Section V. Section VI concludes the study and

gives an outlook on future work.

II. TEMPLATE PROTECTION IN HAND-BASED VASCULAR

AND (THERMAL) FACE BIOMETRICS

Several proposed techniques are restricted to the feature

domain transformation setting. Spectral minutiae representa-

tions [7] are subjected to binarisation and subsequently fed

into Bloom filters to result in a CB scheme thereby avoiding

position correction during template comparison as required by

many techniques based on vascular structure representation

[8]. We find techniques, which apply both CB and biometric

crypto systems (BCS), the second important class of template

protection schemes: After applying a set of Gabor filters for

feature extraction and dimensionality reduction using PCA,

a CB schemes close to BioHashing is used employing ran-

dom projections. The obtained coefficients are binarised and

subjected to a fuzzy commitment scheme (FCS), which is a

particular CBS approach based on helper data. This approach

is used to secure medical data on a smart-card [9]. A second

approach combining CB and BCS is suggested in [10], where

bio-hashing is applied to features generated by applying Gabor
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filters, LDA and FCS as well as the fuzzy vault scheme.

Another approach to combine CB and BCS is proposed in

[11], where finger vein minutiae are extracted and random

projections are used to achieve revocability and dimension-

ality reduction while a so-called deep network architecture

ensures irreversible templates. In [12], features with low intra-

class scatter and high inter-class scatter (found by Fisher

discriminant analysis (FDA)) are generated from multiple

samples per subject. These features are finally subjected to

a quantisation-based key generation where the quantisation

parameters (helper data) depend in the distribution of the

generated stable features. Another quantisation-based BCS is

proposed in [13], where vein intersection points are located by

considering a neighbourhood connectivity criteria, after Gabor-

based enhancement with subsequent thresholding. However,

the generation of a stable key is not discussed as it is just

suggested to use a subset of the identified feature points as

key material.

(a) GM-R (b) GM-I

Fig. 1: Examples for GM-R and GM-I key-dependent trans-

formation functions.

With respect to hand vein template protection schemes, pre-

vious literature is sparse: Besides the proposal of a fuzzy

vault scheme using dorsal hand vein data [14], only a mul-

timodal template protection approach involving both hand

and palm vein data exists: It suggests to fuse feature sets

of both modalities [15] (where stable vein points extracted

from multiple enrolment samples act as feature sets) to create

a fuzzy vault where chaff-points are added as in the original

scheme. However, the use of dual encryption involving both

AES and DES in the second paper remains entirely unclear.

According to Jindal et al. [16] the existing approaches for

face template protection can also be divided into three major

types: BCS, CB, and hybrid approaches which combine CB

and BCS. The most prominent face BCS make use of a FCS

[17] or a fuzzy vault scheme [18]. They achieve a high level

of security, but their weakness lies in dealing with high intra-

class variations. Face recognition CB approaches are seen

less often [19]. Hybrid methods, representing a combination

of both previous approaches, also have limitations for data

with high intra-class variability and exhibit high performance

losses in such cases, but different CNN-based approaches

have been proposed to overcome these limitations e.g. [16].

A template protection scheme for multi-biometrics using a

FCS and chaotic system approach was applied on iris, thermal

face and visible face images in [20] - this work constitutes

the only template protection approach involving thermal face

data. A FCS is generated from the corporation of error

correcting codes (ECC) and binary features extracted from

the facial images. Further, iris feature vectors are extracted and

encrypted by the use of a chaotic system. Both parts are finally

used in a score level fusion based performance evaluation.

III. NON-INVERTIBLE GREY-SCALE TRANSFORMATION:

MANY-TO-ONE-MAPPING

In this work, we propose a novel template protection ap-

proach in the signal domain: grey value many-to-one (GM)

mappings. The basic principle of this approach is to transform

the grey values of an input image based on an underlying

non-injective surjective function, which maps multiple grey

values from the input image to one or multiple values in

the output image. Many functions are able to satisfy this

constraint, however we chose to use the sine function since

it offers smooth transitions between neighbouring grey values

and helps to better preserve areas of similar grey values in

the images. In the following, we project all grey values (0 to

255) to the range [0, 1], thus the adopted functions perform

the mapping [0, 1] → [0, 1].
Other applicable transformation based privacy protection

schemes are proposed by [21] or [22]. These methods have

in common that the performed projections prohibit the usage

of well-established and well-performing feature extraction

schemes in the transformed domain. Thus, the methods cannot

be applied in the signal domain and they would result in

higher computational costs as well. For these reasons they have

not been considered as alternative transformations. Instead,

we investigated two different sine-based functions: a regular

sine function (GM-R) and an irregular sine function based on

interpolation of sampled random points (GM-I).

For GM-R, the sine function sin has been adopted to allow

the adjustment of two parameters, frequency (f ) and phase

(p). The adopted sine function is defined as

GM-R(x) =
1

2
sin(f2πx+ p) +

1

2
(1)

where f is the frequency factor and p is the phase factor.

The values of these two parameters are then set based on the

selected template protection key. An example transformation

of a thermal face image is shown in Figure 1. For GM-I, the

cardinal sine function sinc is used to interpolate N points

randomly sampled in the interval [0, 1]. The sinc function is

defined as sinc(x) = sin(πx)
πx

. We can then reconstruct the

randomly sampled points S by the countably infinite set of

shifted sinc functions, which spans the space of functions

limited in the frequency range ω = (−π, π]. For our function

GM-I, we define 1000 integer shifts N in the range [0, 1].
Thus, GM-I can be defined as:

GM-I(x) =
1

1000

∑

n=N

S(n) sinc(x− n) (2)

where the function GM-I can be reconstructed from the sample

points S at integer spacings. The only parameter for GM-I is

the seed for the random number generator, which is used to

generate the randomly sampled points S. This leads to a highly

aperiodic function, as illustrated in Figure 1, which illustrates

an exemplary transformation using 4 sample points. Compared



to block re-mapping and block warping no shape or structure

information of the biometric trait is distorted. This can be

beneficial when the recognition process relies on geometrical

features, e.g. landmark based face recognition. Furthermore,

these techniques can be applied to every biometric modality

if images of the biometric trait are acquired.

(a) Original. (b) GM-R - Key 1 (c) GM-R - Key 2 (d) GM-R - Key 3

(e) Original. (f) GM-I - Key 1 (g) GM-I - Key 2 (h) GM-I - Key 3

Fig. 2: Example of using different template protection keys

for GM-R (top row) and GM-I (bottom row).

It is difficult to estimate from a theoretical point of view how

the proposed grey value one-to-many mappings will behave in

terms of irreversibility, performance and unlinkability aspects.

The irreversibility of the proposed approaches is given by

design, since multiple grey values are mapped to the same

one in the transformed image. However, the irreversibility

is highly dependent on the frequency of the underlying sine

functions: the higher the frequency, the more grey values are

mapped to the same one in the transformed image and thus

it is more difficult to fully reconstruct the original image.

The performance impact is even harder to assess and is

also dependent on the frequency of the underlying function.

Especially for GM-I this is highly dependent on the selected

template protection key, since the function is highly aperiodic.

Therefore, we will focus on an experimental evaluation of

these aspects later on in the paper. Figure 2 depicts an example

of applying the GM-R and GM-I functions using different

template protection keys on the same image.

IV. BLOCK RE-MAPPING AND WARPING

In block re-mapping [1], a number of pre-defined blocks

is randomly placed at different positions as they have been

located in the original sample. Some blocks that are present

in the original sample are dismissed and do not appear in

the transformed output. This aspect ensures the irreversibility

property of the block re-mapping scheme. To enable compa-

rable results, we fixed the number of blocks that remain in the

transformed templates to be at 75% of the original blocks.

Another non-invertible transformation in the context of can-

cellable biometrics is the so called "warping" (originally

named "mesh warping" [23]). Using this transformation, a

function is applied to each pixel in the image which maps the

pixel of the input at a given position to a certain position in the

output (can also be the same position as in the input again).

Thus, this mapping defines a new image or template containing

the same information as the original input but in a distorted

representation, introduced by a piece-wise linear interpolation.

For more information about other warping methods the in-

terested reader is referred to [24], where a review of several

different possible solutions including the use of parametric and

non-parametric functions can be found.

V. EXPERIMENTS

Dataset: In this work, biometric template protection on

hand- and finger veins as well as thermal face is analysed. The

data used in the experiments is part of the PROTECT Mul-

timodal DB Dataset (PMMDB) [25]. The PMMDB includes

different biometric modalities, namely iris, face (visual light,

NIR, 3D and thermal), periocular, anthropometrics and hand-

and finger veins of 69 different subjects. It was acquired in

two data acquisition events with one year between the two. In

the experiments only data acquired in the 2nd event is utilised.

Figure 3 visualises some samples of the captured images from

all datasets under investigation. The database is available for

download at http://projectprotect.eu/.

Fig. 3: Dataset samples - Top (from left to right): FV-LED-

Dorsal, FV-Laser-Dorsal, Thermal-Face; bottom: HV-RL850-

Palmar and HV-RL850-Dorsal.

Vascular Based Recognition Tool-Chain: There are several

studies about finger vein [26] and hand vein [27] recognition

systems that present and discuss different designs, but they

all include a few common parts or modules. As the focus

of this paper is on template protection applied in the signal

domain, the system used during the experiments contains

the template protection as part of the pre-processing. For

feature extraction one of the best performing methods has

been selected: Maximum Curvature (MC) [28]. The final

comparison scores are obtained by an image correlation based

comparison scheme as introduced by Miura et al. in [29]

is applied to the baseline (unprotected) templates (features)

as well as to the templates protected by the proposed non-

invertible grey value transformations, block re-mapping and

warping. An implementation of the complete tool-chain as

well as the used configuration files and results are available

for download at: http://www.wavelab.at/sources/Debiasi19d.

Thermal Face Based Recognition Tool-Chain: A thermal

infrared system seems to be a promising way to complement

facial recognition systems in visible range [30]. For example,

thermal imaging does not need illumination and relies on pas-

sive detection of infrared emissions, but is sensitive to changes

of emotional, physical, health condition of the subject and

several others. The deployed face detection method, Faster-

RCNN deep learning, is based on ResNet-50. The architecture



computes candidate regions while a separate sub-network is

used to predict the region proposals. After a reshaping, using

a RoI pooling layer a Difference of Gaussians filtering has

been applied to reduce the fluctuations of temperature of the

subject’s face and environment visible in the acquired images.

Finally, the detected face must be translated into specific

patterns which allow to compare one to another. Local features

provided higher recognition accuracy, LBP has been selected

as the best performing one according to [30]. During the

subsequent matching process, the extracted features of two

facial samples are compared using the Euclidean distance

metric against a threshold calculated on the entire dataset.

A. Evaluation Protocol

In order to evaluate the effects of applying the proposed

signal domain template protection approach(es), we evaluate

the impact on the recognition performance as well as the

unlinkability of the templates generated with distinct keys. The

parameters for the different template protection approaches

have been selected as follows: GM-R: Frequency factor f

between 3 and 6, Phase factor p between 0 and 1; GM-I:

4 randomly sampled points; Block Re-Mapping (R): Block

sizes of 16/32/64 pixels; Warping (W): Block sizes of 16/32/64

pixels with warping offsets of 6/12/24 pixels, respectively. The

values for each parameter are determined by a random selec-

tion within the value boundaries above, where the selection is

based on the template protection key.

(a) Original 1 (b) Original 2 (c) Original 3

(d) Protected 1 (e) Protected 2 (f) Protected 3

Fig. 4: Applying the GM-R template protection scheme to

images of the same subject with different illumination.

Performance: The baseline recognition performance is estab-

lished by using the original - unprotected data. We calculate

the Equal Error Rate (EER) for all comparisons within each

dataset for all modalities, i.e. the full range of images is

used to compute the genuine and impostor comparison scores.

With this baseline numbers the impact of the various template

protection approaches on the recognition performance can be

assessed by first applying the template protection scheme to

the whole dataset (system key) using a fixed but arbitrary

key and afterwards computing all genuine and impostor com-

parison scores. This process is repeated for 10 random keys,

where we report the minimum, mean and maximum EER and

standard deviation (σ) of all keys.

Unlinkability: This property guarantees that stored and pro-

tected biometric information can not be linked across various

different applications or databases [6]. Gomez et al. [31]

present a universal framework to evaluate the unlinkability of a

biometric template protection system based on the comparison

scores. They proposed the so called Dsys measurement as a

(a) Orignial 1 (b) Original 2 (c) Original 3

(d) Protected 1 (e) Protected 2 (f) Protected 3

Fig. 5: Applying the GM-R template protection scheme to

images of the same subject with consistent illumination.

global measure to evaluate a given biometric recognition and

template protection system. The Dsys ranges normally from 0
to 1, where 0 represents the best achievable unlinkability score.

We shifted the range from [0, 1] to values in [0, 100] to improve

the readability of the results. Furthermore, the authors of [31]

stipulated that 10 different keys should be considered and thus,

we have also selected 10 different keys for our performance

and unlinkability analysis.

B. Results

The recognition performance results and the unlinkability

evaluation of the conducted experiments are presented in Table

I. The first column contains the dataset name and the baseline

EER performance computed using the unprotected (original)

images. These values are used as reference for the mean

recognition performance employing template protected data,

which is presented in column three. The table contains only

the most interesting results.

It can be observed, that the obtained performance differences

vary among the biometric modalities: a) The proposed GM

schemes perform worse than the other two template pro-

tection schemes (warping and block re-mapping) for finger

vein data (FV-LED-Dorsaland FV-Laser-Dorsal). However, all

investigated template protection schemes show a very high

performance degradation for these finger vein datasets. b) For

hand vein data (HV-RL850-Dorsaland HV-RL850-Palmar) and

thermal face data (Thermal-Face), the lowest performance loss

is achieved by warping, though the proposed GM schemes

exhibit a very similar performance to warping and a much

better performance when compared to block re-mapping. The

performance variation among different keys shows a similar

behaviour to the other two template protection schemes, thus

it is quite low in general.

In general, the proposed GM schemes lead to only a slight per-

formance loss for hand vein and thermal face data (comparable

to warping), but come with severe performance penalties for

finger vein data. This trend can be explained by the differing

illumination properties of the finger vein data compared to the

hand vein and thermal face data. During the acquisition of the

finger vein data, the illumination is adjusted for each image,

which leads to inconsistent illumination conditions among the

images of a subject and therefore different grey values in the



Method
Recog. Perf. Unlinkability

EER [%] Dsys [%]
Mean σ Mean σ

F
V

-L
E

D
-D

o
rs

a
l

O
ri

g
.

E
E

R
:

0
.1

3
%

GM-R 7.49 1.91 48.53 18.77
GM-I 10.74 1.58 61.88 28.92
R 16 6.47 0.48 3.84 0.65
R 32 6.87 0.65 4.79 1.14
R 64 9.81 1.18 6.00 3.04
W 16 2.67 0.87 92.22 1.55
W 32 7.07 1.21 52.20 10.73
W 64 6.12 2.55 33.84 15.19

F
V

-L
a

se
r-

D
o

rs
a

l
O

ri
g

.
E

E
R

:
1

.6
7

%

GM-R 11.66 1.58 44.53 18.17
GM-I 13.86 1.51 59.48 25.11
R 16 7.12 0.41 4.01 0.72
R 32 7.78 0.74 5.18 1.18
R 64 11.37 1.35 6.77 2.96
W 16 5.48 0.90 88.85 1.71
W 32 8.37 0.96 47.50 10.29
W 64 7.06 1.54 30.71 14.44

H
V

-R
L

8
5

0
-D

o
rs

a
l

O
ri

g
.

E
E

R
:

6
.6

7
%

GM-R 6.77 0.57 52.64 21.63
GM-I 7.53 0.83 61.06 23.36
R 16 18.95 1.04 6.96 0.84
R 32 20.17 1.31 7.25 1.22
R 64 23.94 2.08 8.61 1.94
W 16 6.68 0.43 92.20 0.40
W 32 10.07 0.94 76.66 3.29
W 64 12.18 2.41 47.92 10.72

H
V

-R
L

8
5

0
-P

a
lm

a
r

O
ri

g
.

E
E

R
:

5
.6

5
%

GM-R 10.44 2.12 49.03 21.77
GM-I 11.65 1.75 63.35 22.03
R 16 15.81 1.02 6.47 0.93
R 32 19.03 1.27 7.52 1.51
R 64 22.84 2.00 8.12 2.45
W 16 8.07 0.61 88.97 0.38
W 32 9.70 0.58 81.00 1.83
W 64 11.09 1.64 63.96 7.29

T
h

er
m

a
l-

F
a

ce
O

ri
g

.
E

E
R

:
1

1
.5

2
% GM-R 13.36 1.41 51.48 11.88

GM-I 11.59 0.54 63.13 11.86
R 16 15.22 2.36 24.00 2.20
R 32 15.60 1.72 27.68 3.94
R 64 15.15 2.33 29.95 8.68
W 16 12.69 1.22 68.52 2.40
W 32 10.97 2.11 68.26 3.61
W 64 11.36 1.15 65.06 4.02

TABLE I: Recognition performance and unlinkability analysis.

same areas of the images. Since the GM schemes transform

the grey values, this leads to dissimilar transformed images for

a subject, which further leads to failed genuine matches. An

example can be seen in Figure 4, which shows three different

images of the same subject and the effects of applying the

GM-R scheme: the first two with very similar illumination and

the third one with different illumination. If the illumination

is consistent among the various images of the same subject,

as in the hand vein and thermal face datasets where the

illumination is fixed for all acquisitions, applying the GM-R

scheme also leads to very similar results as presented in Figure

5. Therefore, a consistent illumination plays an important

role when the GM schemes are applied in conjunction with

geometry or shape based recognition systems, e.g. vascular

recognition.

As reported above, warping yields the lowest EER perfor-

mance degradation, followed by the GM schemes and lastly

block re-mapping. Contrary to the performance, the unlinka-

bility evaluation, presented in the last two columns of Table

I, reveals a different trend: Block re-mapping yields the best

(lowest) Dsys scores, followed by the GM schemes and the

worst scores are obtained by warping. It is observable that the

mean Dsys scores of the GM schemes are right in between

of warping and block-remapping. The fluctuation of the Dsys

values of GM, however, is very high compared to the other two

template protection schemes, which means that the unlinkabil-

ity for the GM is highly key dependent. Some examples for

this variability are illustrated in Figure 6, where the blue curve

represents the process of Dsys for all threshold selections, the

green curve shows the intra-subject (mated) scores and the

inter-subject (non-mated) scores computed between different

keys. According to [31], a fully unlinkable scenario can be

observed if both green and red distributions are identical (low

Dsys value). A detailed analysis of the key dependency for the

various template protection schemes is left for future work.

(a) HV: GM-R Key 1 vs 2 (b) HV: GM-R Key 1 vs 9

(c) TF: GM-I Key 1 vs 7 (d) TF: GM-I Key 2 vs 4

Fig. 6: Examples for Dsys variation between different key

pairs for HV-RL850-Dorsal (HV, top) and Thermal-Face (TF,

bottom) data sets and GM-R and GM-I transforms.

Summarising, we can report that a low recognition perfor-

mance loss usually leads to bad unlinkability. The proposed

GM schemes show comparable performance to warping, but

exhibit a much better unlinkability. They offer a trade-off

between performance loss and unlinkability in most cases,

while the other two investigated template protection schemes

either have a low performance loss but bad unlinkability

(warping), or have a relatively high performance loss but good

unlinkability (block re-mapping). However, the provided level

of privacy protection, especially if it comes to unlinkability is

clearly not sufficient for a practical application of warping

based cancellable schemes. Furthermore, the severe perfor-

mance drop restricts the use of block re-mapping schemes

for real world biometric systems in the most cases as well.

Finally, a potential combination of warping and a GM scheme

could i) still maintain the recognition performance, while ii)



Dsys might be reduced to an acceptable amount. This would

probably enable the usage of a combined warping and non-

invertible grey-scale transform template protection scheme in

practical applications.

VI. CONCLUSION

In this study two well-established (block re-mapping,

warping) and a newly proposed non-invertible grey-value

based template protection schemes are evaluated on a multi-

biometrics datasets including finger-vein, hand-vein and ther-

mal face images in the signal domain. The evaluation process

regarding performance and unlinkability aspects revealed that

the proposed grey-value based techniques, GM-R and GM-I,

show comparable recognition performance to warping, but ex-

hibit a much better unlinkability. The proposed scheme offers

a trade-off between recognition performance loss and unlinka-

bility in most cases, while block re-mapping and warping are

not able to perform well in terms of recognition performance

and unlinkability at the same time. Future work will include

combining warping and the proposed non-invertible grey-scale

transform template protection scheme to possibly maintain the

recognition performance, while reducing the unlinkability to

an acceptable level. Furthermore, a detailed key dependency,

irreversibility and security analysis is planed as well as the

evaluation of the proposed method on other image based

biometric modalities.
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