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Detection of Face Morphing Attacks
based on PRNU Analysis

Ulrich Scherhag, Luca Debiasi, Christian Rathgeb, Christoph Busch and Andreas Uhl

Abstract—Recent research found that attacks based on morphed face images, i.e. morphing attacks, pose a severe security risk to face recognition
systems. A reliable morphing attack detection from a single face image remains a research challenge since cameras and morphing techniques
used by an attacker are unknown at the time of classification. These issues are commonly overseen while many researchers report encouraging
detection performance for training and testing morphing attack detection schemes on images obtained from a single face database employing a
single morphing algorithm.
In this work, a morphing attack detection system based on the analysis of Photo Response Non-Uniformity (PRNU) is presented. More specifically,
spatial and spectral features extracted from PRNU patterns across image cells are analyzed. Differences of these features for bona fide and
morphed images are estimated during a threshold-selection stage using the Dresden image database which is specifically built for PRNU analysis
in digital image forensics. Cross-database evaluations are then conducted employing an ICAO compliant subset of the FRGCv2 database and
a Print-Scan database which is a printed and scanned verison of said FRGCv2 subset. Bona fide and morphed face images are automatically
generated employing four different morphing algorithms. The proposed PRNU-based morphing attack detector is shown to robustly distinguish bona
fide and morphed face images achieving an average D-EER of 11.2% in the best configuration. In scenerios where image sources and morphing
techniques are unknown, it is shown to significantly outperform other previously established morphing attack detectors. Finally, the limitations and
potential of the approach are demonstrated on a dataset of printed and scanned bona fide and morphed face images.

Index Terms—Biometrics, face recognition, face morphing, face morphing attack, morphing attack detection, photo response non-uniformity.

F

1 INTRODUCTION

FACE recognition systems have recently been exposed to
be vulnerable against attacks based on morphed face

images [1], [2]. Image morphing has been an active field
of image processing research since the 1980s [3], [4] with
a variety of application scenarios, especially in the film in-
dustry. Morphing techniques can be used to create artificial
biometric samples that resemble the biometric information
of two (or more) individuals in the image and feature
domain. An example of a morphed face image is shown
in Fig. 1. The morphed face image is successfully verified
against probe samples of both subjects involved using state-
of-the-art face recognition systems. This means that if a
morphed face image is somehow stored as a reference in
the database of a face recognition system, both individuals
involved are successfully verified against this manipulated
reference. Morphed face images thus pose a serious threat to
face recognition systems, as the basic principle of biometrics,
the unique link between the biometric reference data and the
subject, is violated.

In many countries, the face image used for the ePassport
application process is provided by the applicant either in
analogue or digital form. In the scenario of a face morphing
attack, a wanted criminal could morph his facial image with
one of a lookalike accomplice. If the accomplice applies for
an ePassport with the morphed face image, he will receive
a valid ePassport equipped with corresponding document
security features. It is important to note that morphed face

• U. Scherhag, C. Rathgeb and C. Busch are with the da/sec - Biometrics
and Internet Security Research Group, Hochschule Darmstadt, Germany.

• L. Debiasi and A. Uhl are with the WaveLab - The Multimedia Signal
Processing and Security Lab, Universität Salzburg, Austria.

(a) Subject 1 (b) Morph (c) Subject 2

Fig. 1. Example for a morphed face image (b) of subject 1 (a) and subject
2 (c) (images taken from [5]).

images can be realistic enough to fool human examiners
[6], [7] as well as commercial face recognition systems. Both
the criminal and the accomplice could then be successfully
verified against the morphed image stored in the ePass-
port. This means that the criminal can use the ePassport
issued to the accomplice to pass through Automated Border
Control (ABC) gates (or even human inspections at border
crossings). The risk of this attack, called face morphing attack,
is amplified by the fact that realistic face morphs can be
generated by non-experts using user-friendly face morphing
software that is either freely available or can be purchased
at a reasonable price.

In 2014 Ferrara et al. [1] were the first to thoroughly
investigate the vulnerability of commercial face recognition
systems to attacks based on morphed face images. So far,
a considerable amount of morphing attack detection ap-
proaches has been published, see Sect. 2. For a compre-
hensive survey the reader is referred to [2]. Proposed ap-
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proaches can be categorized with respect to the considered
morphing attack detection scenario:

• No-reference morphing attack detection: the detector pro-
cesses a single image, e.g. the analysis of a printed
image that is presented and scanned in a passport
application procedure and subsequently stored in an
electronic travel document or at any later point in
time an off-line authenticity check of said document
by police investigators (this scenario is also referred to
as single image morphing attack detection or forensic
morphing attack detection);

• Differential morphing attack detection: a trusted live cap-
ture from an authentication attempt serves as addi-
tional source of information for the morph detector, e.g.
during authentication at an ABC gate (this scenario is
also referred to as image pair-based morphing attack
detection). Note that all information extracted by no-
reference morph detectors might as well be leveraged
within this scenario [8].

Obviously, the no-reference scenario turns out to be
more challenging compared to the differential one. While
the majority of no-reference approaches reports practical
detection error rates, these are commonly evaluated on a
dataset of bona fide and morphed face images which are
extracted from a single (in-house) face database. In such
an experimental setup the use of machine learning-based
feature extractors or/and classifier increases the risk of over-
fitting, i.e. the robustness of morph detection algorithms
may not be retained with regard to images stemming from
other sources as shown in [9].

This work represents a significant extension of the pre-
liminary studies towards PRNU-based morphing attack
detection previously published in [5], [10]. The proposed
system has been complemented by a more thorough investi-
gation of different features and aggregation strategies, more
specifically spatial features have been investigated in addi-
tion to spectral ones from previous work. Complementary
to those efforts cross-database experiments on morphed face
images generated by four different morphing algorithms
have been conducted. The generalizability of the PRNU-
based morphing attack detection across a wide range of
distinct cameras of various makers is further investigated on
a database specifically built for PRNU analysis in digital im-
age forensics and it is shown that said database is suitable to
determine the decision threshold for the proposed system.
In addition, a database of printed and scanned face images
is employed in evaluations. Moreover, in experiments the
proposed system is benchmarked against state-of-the-art
morphing attack detectors. Also, vulnerability analysis of
the proposed concept with respect to potential attacks to
circumvent the detection system is given.

The remainder of this work is organized as follows:
related works are discussed in Sect. 2. Fundamentals of
PRNU extraction are explained in Sect. 3. The proposed
morph detection method is described in detail in Sect. 4.
Experimental results are reported in Sect. 5. Finally, conclu-
sions are summarized in Sect. 6.

2 RELATED WORK

In recent years, numerous no-reference face morphing attack
detection schemes have been proposed. Published methods
and their properties are summarized in Table 1 which has
been derived from [2]. In some papers more than one system
was presented, in such cases approaches that showed the
best performance in detecting morphing attacks are listed.
It is important to note that the generalizability/robustness
of the published approaches could not be demonstrated.
So far, there are no publicly accessible large databases of
bona fide and morphed facial images and hardly any pub-
licly available morph recognition algorithms which allow
comprehensive experimental evaluations. The vast majority
of published methods were trained and tested on various
sequestered databases, which hampers reproducibility of
results1. In addition, morph detection methods are usually
trained and tested on a single database with a single morph
generation algorithm. Based on these facts, a comparison
of published approaches with respect to reported detection
performance would be potentially misleading and is delib-
erately avoided in this work. However, it is expected that
planned benchmark tests, e.g. by the National Institute of
Standards and Technology (NIST) [40], will enable a mean-
ingful quantitative comparison of published approaches in
the near future.

Several researchers have suggested the use of general-
purpose image descriptors, such as Local Binary Pat-
terns (LBP) [41] or Binarized Statistical Image Features
(BSIF) [42], which are widely used for biometric recognition.
Ramachandra et al. [11] proposed a system based on a Sup-
port Vector Machine (SVM) trained on extracted BSIF fea-
tures. For the training and evaluation of the SVMs, an inter-
nal database with morphed facial images was created. In a
derivative version of the same database, Scherhag et al. [12]
examined the accuracy of morphing detection on printed
and scanned images using the proposed algorithm. Fur-
thermore, Ramachandra et al. [13] proposed a Probabilis-
tic Collaborative Representation Classifier (Pro-CRC) [43]
trained on LBP features extracted from the color channels.
The database used was an internal database derived from
FRGCv2 [14]. The authors concentrate on the differences
between morphed and averaged images in the evaluation.

A more complex method for morphing attack detection
is proposed in [16], [17], where a Vietoris-Rips complex is
formed from the reactions of uniform LBP extractors on the
image. In [38] a high detection performance was shown by
Wandzik et al. for a linear SVM trained on high-dimensional
LBP features [44] extracted from the FEI database [45].
In [46] Ramachandra et al. proposed an LBP extraction
of Laplacian pyramids build on different color channels.
Agarwal et al. [15] suggest training an SVM with Weighted
Local Magnitude Pattern. Similar to LBP, the proposed
descriptor encodes the differences between a central pixel
and its neighbors. However, instead of binarizing them, it
assigns weights inversely proportional to the difference to

1. Also the morphed images used in this work can not be published
due to licensing conditions as these are generated based on subsets of
available image database collected by different institutions. However,
efforts are currently made by different research laboratories to acquire
new datasets of bona fide and morphed face images that shall serve
future open benchmarks.
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TABLE 1
Overview of most relevant no-reference face morphing attack detection algorithms.

Ref. Approach Morphing method Source face database Post-processing Remarks

[11] BSIF + SVM GIMP/GAP in-house - -
[12] BSIF + SVM GIMP/GAP in-house print and scan fixed database of [11]
[13] Multi-channel-LBP + Pro-CRC OpenCV FRGCv2 [14] print and scan -
[15] WLMP + SVM Snapchat in-house - -

[16], [17] ULBP + RIPS + KNN [18] Utrecht [19] - -

[20] Image degradation triangulation +
blending (+ swapping) in-house, Utrecht [19] - -

[8] BSIF + SVM triangulation +
blending FRGCv2 [14] - -

[21] Score-level fusion of general
purpose image descriptors

triangulation +
blending FRGCv2 [14] - -

[9] HOG + SVM triangulation +
blending

FRGCv2 [14],
FERET [22], ARface [23] - cross database

performance evaluation

[24] LBP + SVM triangulation +
blending FRGCv2 [14], FERET [22] - cross database

performance evaluation
[25] LBP + SVM MorGan [25] CelebA [26] - -

[5], [10] PRNU analysis triangulation +
blending FRGCv2 [14] hist. equalization

scaling, sharpening -

[27] SPN analysis
triangulation
+ blending

(+ swapping)
Utrecht [19], FEI [28] - -

[18] Double-compression
artefacts analysis

triangulation +
blending (+ swapping) Utrecht [19], FEI [28] - -

[29] Double-compression
artefacts analysis [18] Utrecht [19], FEI [28] - -

[30] Reflection analysis triangulation +
blending (+ swapping) in-house - -

[31] Luminance component +
steerable pyramid + ProCRC unclear [13] extended print and scan -

[32] VGG19 + AlexNet + ProCRC [12] in-house print and scan -

[33] VGG19 triangulation +
blending (+ swapping)

BU-4DFE [34], CFD [35],
FEI [28], FERET [22],
PUT [36], scFace [37],
Utrecht [19], in-house

motion blur,
Gaussian blur,

salt-and-pepper noise,
Gaussian noise

trained on all
combinations

(no unseen attack classes)

[38] High-Dim. LBP + SVM triangulation +
blending + swapping Multi-PIE [39] - -

the middle pixel. Depending on the feature representation
of texture descriptors, the input of classifiers has to be ad-
justed. E.g. for Scale-Invariant Feature Transform (SIFT) [47]
it has been shown that the number of extracted key points
is suitable for the task of morph recognition [8], [20]. A
score level fusion of several image descriptors could further
improve the recognition rate [21]. Therefore, LBP, BSIF, SIFT,
Speeded Up Robust Features (SURF) [48], Histogram of
Oriented Gradients (HOG) [49] and the deep features of
Openface [50] were merged and evaluated by Scherhag et
al. [21]. Damer et al. [25] tested the suitability of LBP fea-
tures for the detection of morphs generated by Generative
Adversarial Networks (GANs). In the no-reference scenario,
classifiers may rely on different microtexture properties.
These can be dataset-specific features that are changed or
can be introduced by the morphing process. Especially the
combination of features that reflect different information,
e.g. LBP and SIFT, leads to improvements. It has been shown
that the performance of morph detectors based on general-
purpose image descriptors may decrease significantly if
training and test images are taken from another image
source [9], [24].

During the morphing process, not only the texture but
the entire signal of the image is manipulated. A further
recognition approach is therefore the analysis of the changes
in the sensor noise pattern, e.g. PRNU [5]. Therefore, the
PRNU pattern, which originates from imperfections within
the camera’s sensor, not only differing for each model, but
also for each individual camera, is extracted from a facial
image and the discrete Fourier variables are calculated.

The mean value and variance are then derived from the
resulting histogram. Recently, Debiasi et al. [10] proposed an
improved version of this scheme based on PRNU variance
analysis across image blocks. A similar approach has been
proposed by Zhang et al. [27] confirming the usefulness of
morph detection based on sensor noise pattern analysis.

Both PRNU-based morph detection approaches analyse
the Fourier Spectrum of the PRNU and quantify spectral
differences between bona fide and morphed images using
statistical measures. The main difference between both ap-
proaches lies within the processing pipeline, block-based
analysis in the spatial [5], [10] vs. spectral domain [27],
and final classification. The morph detector proposed in [5]
and [10] does not need any training data, since it solely
relies on a simple thresholding for the final decision, while
the one in [27] utilises a linear SVM, which needs to be
trained with bona fide and morphed images and makes
the latter approach potentially more vulnerable against
unknown morphing attacks. Furthermore, different PRNU
extraction and enhancement techniques are used for both
approaches. In contrast to [5], [10], the authors of [27]
did not consider image post-processings. Also, no cross-
database performance evaluations were performed.

Morphing attack detection methods based on continu-
ous image degradation were proposed in [20], [51], [52].
The basic idea behind these methods is to continuously
deteriorate the image quality, e.g. by JPEG compression,
in order to generate several artificial self-references of a
facial image. The distances between these references and
the original image are then analyzed for morph detec-
tion. Ramachandra et al. [31] suggests the analysis of high



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBIOM.2019.2942395, IEEE
Transactions on Biometrics, Behavior, and Identity Science

IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE (T-BIOM) 4

frequencies. In their approach images are converted to
grayscale and a controllable pyramid is built and a Col-
laborative Representation Classifier (CRC) is trained on
the high frequencies. The database used was printed and
scanned. An alternative to handcrafted feature extractors
is the use of statistical machine learning on the unpro-
cessed image to distinguish between morphed and bona
fide images. Ramachandra et al. [32] suggested adapting
two convolutional neural networks (CNNs) (VGG19 [53]
and AlexNet [54]) by transfer learning and combining the
intermediate features to train a CRC. In [55] three CNNs,
namely VGG19, AlexNet and GoogLeNet [56], are assessed
as pre-trained and non-pre-trained models with respect to
their morph detection abilities. Also with these methods
there is a potential problem of over-fitting. In particular, the
resulting classifiers may prefer image sites where artefacts,
such as shadows around the iris region, may occur due to
an imperfect automated morphing process. In order to avoid
over-fitting, Seibold et al. [33] trained a VGG19 network on
a series of different images with two different databases,
morphing algorithms and postprocessings (motion blur,
Gaussian blur, salt and pepper noise, Gaussian noise). Since
the CNN has been trained on all types of databases, morph-
ing algorithms, and postprocessing, it is difficult to assess
the resulting robustness of the classifier. Wandzik et al. [38]
suggested to use pre-trained facial recognition networks,
e.g. VGG-Face [57] or FaceNet [58], to detect morphing
attacks. The high-level features generated by the networks
are classified with a linear SVM.

Different approaches based on media forensics were
presented, too. In several papers the detection of JPEG
double compression artefacts for the purpose of morph
detection was proposed [18], [29]. However, the presence
of such artefacts implies a strong assumption of the image
format of facial images used for morphing and the resulting
morphed facial image. ICAO proposes to store facial image
data in accordance with the specifications of the Interna-
tional Standard ISO/IEC 19794-5 [59]. More specifically,
ICAO requires facial images to be stored in electronic travel
documents with an average compressed size of 15kB to
20kB in JPEG or JPEG 2000 format [60], [61]. However, JPEG
2000 is the de-facto standard for electronic travel documents
as it maintains a higher quality when compressing facial
images to 15kB. Therefore, depending on the image size and
the compression algorithm used, JPEG double compression
artefacts may not be detected. A morph detection method
based on reflection analysis in facial images is introduced by
Seibold et al. [30]. The flash direction is estimated based on
reflections detected in the eyes of a potentially morphed im-
age. Reflections from the nose of the face are then analyzed.
However, the ISO/IEC standard requires the absence of
hot spots and reflections in facial images used in electronic
travel documents. In particular, diffuse lighting, multiple
symmetrical sources or other lighting methods should be
used, i.e. a single bright “point” light source such as a
camera-internal flash is not acceptable for imaging [59].

Apart from no-reference approaches differential morph-
ing attack detection schemes have been presented, too. Most
notably, face de-morphing [62], [63] and facial landmark-
based approaches have been introduced [64], [65]. Addi-
tionally, some no-reference approaches, e.g. general-purpose

(a) Original image (b) Extracted PRNU

Fig. 2. PRNU extraction example for a pre-processed face image.

image descriptors, can be extended to a differential scenario
by estimating differences between feature vectors extracted
from trusted live captures and potential morphs [8].

3 PRNU-BASED IMAGE FORENSICS

The photo response non-uniformity (PRNU), also known as
sensor noise, has previously been utilised as a reliable tool
to perform various forensic tasks such as device identifica-
tion, device linking, recovery of processing history and the
detection of digital forgeries. The PRNU origins from slight
variations among individual pixels during the photoelectric
conversion in digital image sensors. All digital image sen-
sors cast this weak noise-like signal into all acquired images.
Thus, the PRNU can be considered as an intrinsic property
of all digital imaging sensors and an inherent part of their
output.

3.1 PRNU extraction and analysis

In this work, we make use of the PRNU to detect morphed
face images. This systemic and individual pattern can be
seen as an unintentional stochastic spread-spectrum water-
mark that survives processing, such as lossy compression
or filtering. The extraction of the PRNU noise residual
from an image can be performed by applying Fridrich’s
approach [66]. For each image I the noise residual WI is
estimated as described in Eq. (1),

WI = I � F (I) (1)

where F is a denoising function which filters out the sensor
pattern noise. The extraction is performed using the denois-
ing filter proposed by Mihcak et al. [67]. For further details
on the denoising filter, we refer to [67]. Fig. 2 presents the
extracted PRNU for an exemplary image. Further visualiza-
tions of PRNU signals extracted from face images can be
found in [5], [10].

Since the PRNU extraction is relying on a denoising
of the image, the resulting pattern might be contaminated
with different signals, such as other high frequency image
components, e.g. edges, or different types of non-unique
artefacts (NUAs) [?]. Many alternative PRNU extraction
schemes [69], [70], [71], [72], [73], [74], [75] and PRNU
enhancements [76], [77], [78], [79], [80] have been proposed
in literature to attenuate different types of PRNU contami-
nations and improve the quality of the extracted PRNU in
source camera identification scenarios. However, to the best
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Fig. 3. PRNU values and histograms of the PRNU extracted from a
single bona fide image (a) and morphed face images (b). The PRNU
values have been averaged over 500 randomly selected images of the
FRGCv2 dataset.
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Fig. 4. DFT magnitude spectra and histograms of the PRNU extracted
from bona fide and morphed face images. The DFT spectra have been
averaged over 500 randomly selected images of the FRGCv2 dataset.

of our knowledge, their impact on the general properties of
the PRNU signal has not yet been extensively investigated.
Therefore, we decided to rely on Mihcak et al.’s [67] denois-
ing filter for the PRNU extraction.

The following essential properties, based on the charac-
teristics of the PRNU described by Fridrich et al. in [81],
make the PRNU well suited for a face morph detection
scenario:

1) Dimensionality: The sensor fingerprint is stochastic
in nature and has a large information content, which
makes it unique to each sensor.

2) Unavoidability: All imaging sensors exhibit PRNU.
3) Universality: The sensor fingerprint is present in every

picture independently of the camera optics, camera set-
tings, or scene content, with the exception of completely
dark images.

4) Permanence: It is stable in time and under a wide range
of environmental conditions (temperature, humidity,
etc.).

5) Robustness: it survives lossy compression, filtering,
gamma correction, and many other typical processing
procedures. It is even reported to survive high quality
printing and scanning [82].

Due to the criteria described above, the PRNU offers
significant advantages over analysing other high-frequency
image components to detect morphed face images.

According to Fridrich [66], the spectral characteristics
of the PRNU reveal whether an image has been subject
to further processing, e.g. non-geometrical operations have
an influence on the strength of the embedded PRNU sig-
nal. Since the face morphing process involves non-linear
warping and averaging operations, the distribution of the
PRNU values is expected to change after these processing
operations. Fig. 3 illustrates the PRNU and Fig. 4 the Dis-
crete Fourier Transform (DFT) magnitude spectra obtained

by averaging the extracted PRNU of 500 bona fide and 500
morphed face images from the FRGCv2 dataset, which is
described in more detail in Sect. 5.

These effects on the distribution of the PRNU values
in the spatial domain can be observed in Fig. 3(c), where
the distribution of morphed images is squashed compared
to bona fide ones, i.e. the values around the mean of the
distribution become more frequent and the values around
the tails of the distribution become less frequent which leads
to a steeper slope. Furthermore, some undesired compo-
nents of the PRNU, e.g. edges in the image content, are
emphasised in the morphed images, as it can be observed
in Fig. 3(b). These effects are caused by the averaging
operations applied during the morphing process.

The magnitude spectra of bona fide and morphed face
images in Fig 4, representing the frequency domain of
the PRNU, show a clearly visible discrepancy among each
other, where the most obvious differences can be observed
in the reduction of high-frequency components within the
morphed images’ DFT magnitude spectrum as compared
to the bona fide ones. Furthermore, the DFT spectrum of
the morphed face images appears more compressed, i.e. the
area covered by the large magnitudes is smaller compared
to bona fide images.

These effects are caused by the previously mentioned
operations involved in the face morphing process, which
lead to changes in the distribution of the PRNU values. The
approach presented in this work aims at exploiting these
effects in order to perform a blind no-reference face morph
detection.

3.2 Potential attacks and PRNU robustness

PRNU-based forensics and counter forensics can be consid-
ered as a cat-and-mouse game, since attacks and counter
attacks are presented on a regular basis in the related
literature. While attackers try to bypass various forensic
approaches and conceal their counter-forensic approaches,
techniques are developed to reveal such attacks.

The counter-forensic techniques proposed to overcome
PRNU-based forensics can be divided into the following
categories:

• Destroying the image identity: This class of counter
forensic techniques tries to conceal the identity of an
image and therefore prevents an identification of the
image source or camera, respectively. Some examples
are: removing the PRNU [83], [84], [85], [86], seam carv-
ing [87], [88], adaptive PRNU denoising [89]. Applying
these techniques to morphed face images poses a lower
threat to a PRNU-based morph detection system, since
the aim is not to detect the image source, but to analyse
the general properties of the PRNU signal. When the
PRNU is destroyed, it can be assumed that its general
properties are also not preserved.

• Forging the image identity: The goal of this class of
counter forensic techniques is to fake the identity of
an image, i.e. changing the identity of the image or
concealing traces of its modification. Some examples
for this are: Insertion of a differing PRNU signal [84],
[86], fingerprint copy attacks [90], [91], [92], hiding
of post-processing operations [84]. When applied to
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morphed face images, these type of counter forensic
techniques can most likely be considered as a threat
for a PRNU-based morph detection system, because
their aim is to spoof an authentic image source, which
usually contains similar characteristics to the PRNU
of unaltered images. A potential attack on the PRNU-
based morph detection system could involve extracting
the PRNU from an authentic image and inserting it
into a morphed image. This would restore the original
properties of the PRNU when it is extracted again
for the detection and therefore conceal the morphing
operations.

Different approaches are proposed in literature to detect
such intentional counter forensic attacks, e.g. the “Triangle
Test” [93] and more recently Sameer et al. [94] proposed a
deep learning based CNN model for the detection of counter
forensic images. In biometrics, forging of the image identity
has only been investigated for iris sensor data by Banerjee,
Mirjalili and Ross in [95] and Uhl and Höller in [96], where
the detection of such attacks is furthermore evaluated in the
latter.

Another type of attacks on the PRNU are unintentional
ones, such as recompression, geometric transformations
(cropping, scaling, rotation), photometric transformations
and post-processing of the images. These attacks might oc-
cur unintentionally, i.e. when images are simply processed
to enhance the appearance of a subject within the image,
like it is often done for portrait photos. The PRNU has
been shown to be resilient to photometric transformations
[97] to a certain degree. While geometric transformations
heavily affect the image source identification because they
destroy the alignment of the PRNU signal, they are expected
to not affect the general properties of the PRNU. However,
post-processing of images, such as sharpening, blurring or
contrast enhancement, can severely affect the PRNU. In
previous work we showed that different post-processing
techniques might even completely prevent a PRNU-based
detection of morphed face images [5], [10]. Furthermore,
recompression [98] is reported to alter the PRNU pattern
after several passes in a way that source identification per-
formance is affected. However, its influence on the general
properties of the PRNU has not been investigated.

We consider intentional attacks on the PRNU to be less
likely compared to unintentional ones, because the former
require profound knowledge about the PRNU and its prop-
erties as well as an attacker with experience in the field.
As the robustness of PRNU-based morph detection against
simple post-processings has been already investigated in
previous works [5], [10], an evaluation of four morphing
algorithms has been included in order to provide a more
comprehensive performance analysis in Sect. 5.2. The four
morphing algorithms picture a more realistic attack sce-
nario, since they use different combinations of the simple
post-processings. To address the question whether a PRNU-
based approach can be applied for a wide range of distinct
cameras, in Sect. 5.3 we evaluated the generalizability of the
proposed morph detection approach on the Dresden Image
Database [99] containing images from 63 different cameras
from multiple manufacturers.

4 PROPOSED SYSTEM

Based on the observed effects of the face warping procedure
on the spatial and spectral characteristics of the PRNU,
in this work we propose a PRNU-based morph detection
system which is able to discriminate between bona fide
and morphed images. Therefore, we analyse the spatial and
spectral characteristics of the PRNU in a no-reference manner,
thus there is no need for a trusted bona fide reference image
of one of the morphed subjects.

The proposed system relies on a divide and conquer
principle and its processing steps are illustrated in Fig. 5.
In the remainder of this section, we will discuss the various
processing steps in more detail.

4.1 Preprocessing and PRNU extraction

The first step of the system consists in extracting the facial
region from a face image, which is normalised and then
cropped to the facial area (320⇥320 pixels) before being
converted to grayscale. This process is described in more
detail in Sec. 5.1.

Following, the PRNU is extracted from the preprocessed
image, as described in Sect. 3, using the wavelet-based
denoising filter by Mihcak et al. [67] in conjunction with the
filtering distortion removal (FDR) enhancement proposed in
[80]. The extracted PRNU is then split into multiple equally
sized cells. The proposed system is able to work with
arbitrary splits from 1 cell (whole image) to N cells. In this
work, only a cell size of 10⇥10 cells is investigated, because
it yields the best performance according to previous work
[5], [10]. In general, a larger number of cells is expected to
further expose the non-linear transformations of the PRNU
during the morphing process by putting stronger emphasis
on local variations within an image. Eventually, we obtain N

different cells C1, . . . , CN . Fig. 5 shows an example of how
the face image is preprocessed and the PRNU is extracted
and split into 10⇥10 equisized cells.

4.2 Feature extraction

The feature extraction is performed individually for each
cell. In previous work [5], [10], only spectral features based
on the DFT magnitude histogram and magnitude energy
have been investigated. In this work, two different fea-
ture types are investigated: spectral features based on the
PRNU’s DFT magnitudes and new spatial features based
on the PRNU values, since the PRNU values are affected by
the morphing procedures and post-processings in the spatial
domain as well the spectral one.

Both feature types are described in more detail in the
following.

4.2.1 Spatial Features
The newly proposed spatial features aim at analysing the
distribution of the PRNU values, which is observed to
differ between bona fide and morphed images according
to Fig. 3(a) and Fig. 3(b).

For the first spatial feature, Pvar , the histogram of the
PRNU values is computed, which is constrained to a range
of [�5, 5] and divided into 100 bins. These values have been
selected by analysing the DFT spectra of extracted PRNUs of
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Fig. 5. Processing steps of the proposed PRNU-based morph detection system and different feature types: spatial features (upper path) and spectral
features (lower path).

bona fide and morphed images. Due to the different slope of
bona fide and morphed image’s PRNU value distributions
that can be observed in Fig. 3(c), we decided to compute the
variance of the histogram bin frequencies Pvar , which we
defined as

Pvar =
1

B

BX

n=1

(HP (n)� H̄P )
2 (2)

where B is the number of bins in the PRNU cell’s histogram
HP . H̄P represents the mean frequency of the histogram
bins.

As second spatial feature, we consider the energy of the
PRNU values, Pen, which is defined as

Pen =
X

x2V

|x|2 (3)

where x is a value within all PRNU values V of a cell.
As the Eqs. 2 and 3 show, both spatial features yield a

simple scalar value SV for each PRNU cell.

4.2.2 Spectral Features
In order to compute the spectral features, the first step
consists in obtaining the frequency spectrum of the PRNU in
each cell, which is done by means of the DFT. The resulting
magnitude spectrum, which is illustrated in Fig. 4(a) and
4(b) respectively, reveals the alterations of the PRNU signal
caused by the morphing process.

These effects are quantified, on one hand, by calculating
the DFT magnitude histogram to represent the magnitude
distribution within the spectrum. As described in Sect. 3,
a shift of the magnitude distribution can be observed for
morphed images. The DFT magnitude histograms are con-
strained to the same universal range of [0, 8] and are divided
into 100 bins. These values have again been estimated by
analysing the DFT spectra of extracted PRNUs of bona
fide and morphed images. Based on the observations in
Sect. 3, we select the variance of the histogram Dvar as
being suited for the discrimination between bona fide and
morphed images. We obtain Dvar in a similar manner as the
previously described Pvar :

Dvar =
1

B

BX

n=1

(HM (n)� H̄M )2 (4)

where B is the number of bins in a cell’s DFT magnitude
histogram HM , with H̄M being the mean frequency of the
histogram bins.

On the other hand, we propose to compute the energy
of the PRNU’s DFT magnitudes Den, as defined in Eq. 5,
where M are the DFT magnitudes within a cell and x their
respective values.

Den =
X

x2M

|x|2 (5)

As for the spatial features, both spectral features yield a
simple scalar value SV for each PRNU cell when consider-
ing Eqs. 4 and 5.

4.3 Feature aggregation

After obtaining the scalar values SV for all cells Cn, the
values are aggregated to obtain a global aggregation score A
for the image. We investigated various strategies, where
we present the two best performing ones. The aggregation
strategies used in this work are:

Amin = min
8n21...N

SVn (6)

Amax = max
8n21...N

SVn (7)

where N is the number of total cells and SVn is the feature
(scalar value) obtained for the cell Cn, as described in the
previous processing step.

Amin yields the minimum score among the individual
cells, while Amax characterizes maximum score among all
cells. As already mentioned, we obtain a single scalar value
A for each image using one of the Eqs. 6 or 7.

4.4 Decision

The final decision, whether a face image has been created
through morphing of multiple images or not, is taken by a
simple thresholding.

Previous work [5] showed that a one dimensional de-
cision was not able to reliably detect some of the post-
processed morphed images for some spectral features.
Hence, we introduce an additional decision step and derive
a mean value B̄ from bona fide images, where the charac-
teristics of the PRNU are well known. With this property,
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we can calculate the distance D of an investigated image to
bona fide images as

D = |A� B̄| (8)

B̄ =
1

NB

NBX

n=1

A (9)

where A is the cell aggregation result, B̄ is the mean
variation of the NB bona fide images.

It has to be noted, that this distance calculation is
only applied for the two spatial and spectral energy-
based features Pen and Den, while it is not calculated for
the histogram-based features Pvar and Dvar , due to the
histogram-based features yielding more consistent scores
among different post-processings which can be classified
with a one dimensional threshold.

If the distance calculation is applied, the final decision
for a presented face image is taken by thresholding the
calculated distance D. Otherwise, the final decision simply
relies on thresholding of the value A, which is obtained
directly from the cell aggregation.

5 EXPERIMENTS

In the following subsection the experimental setup, i.e. used
databases, morphing algorithms, baseline systems and per-
formance metrics, are described. Subsequently, the detection
performance of the proposed systems and the baseline sys-
tems is reported and discussed. Further, the generalizability
of the proposed PRNU-based morph detection approach
with respect to utilized cameras and printed and scanned
face images is investigated.

5.1 Experimental setup

Performance evaluations are conducted based on a subset
of 1,948 images selected from the FRGCv2 [14] face image
database. Face images have been manually filtered to meet
ICAO requirements for electronic travel documents [60],
e.g. frontal pose, neutral expression, homogeneous back-
ground and sufficient resolution (at least 90 pixels between
left and right eye center). Images of this database have
been developed using a Fujifilm Frontier 5700R Minlab
and scanned using a Epson DS-50000 Scanner at 300dpi to
obtain the Print-Scan database of equal size. In addition,
a subset of 1,058 images from the FERET [22] face image
database which exhibit the same properties are used for
training purposes of baseline morph detection algorithms.
Note that the latter database is not used for evaluation of
the proposed PRNU-based morph detection scheme since
it has been acquired using an analog camera. PRNU is
primary caused by Pixel Uniformity Noise related to the
sensor which are non-existent if images are acquired with a
film camera, i.e. only the PRNU signal of the sensor inside
the scanner used to digitize the images might be present in
this case. Instead, the Dresden Image Database [99] is used
for training the PRNU-based morph detection schemes to
underline the claim that the proposed PRNU-based morph
detector is not dependent of a specific camera unit, since
it contains images from 63 distinct cameras from various
models and manufacturers. More details on how the bona

fide and morphed images have been generated using the
Dresden Image Database are given in Sect. 5.3.

In a pre-processing step the face of a subject is segmented
and normalized according to eye coordinates detected by
the dlib landmark detector [100]. Subsequently, the normal-
ized region is cropped to 320⇥320 pixels to ensure that
the morph detection algorithm is only applied to the facial
region. Finally, the cropped face part is converted to a
grayscale image. Examples of original face images (cropped
to portrait format) and pre-processed face images of the
FRGCv2 and Print-Scan database are depicted in Fig. 6.

The subsets are split into images used for morph creation
and images used as bona fide references. The resulting
database constellation is listed in Table 2. In order to gener-
ate a great variation of morphs, four morphing algorithms
were employed:

1) OpenCV/dlib, a self-scripted morphing algorithm
based on th ”Face Morph Using OpenCV” tutorial2

using the dlib landmark detector [100].
2) FaceMorpher

3, an open-source implementation using
python.

3) FaceFusion
4, a proprietary morphing algorithm.

4) UBO, the morphing tool developed by the University
of Bologna, as used e.g. in [62].

In order to be able to conduct comparable experiments,
the same combination of morphed face images was created
for each of the listed algorithms. All algorithms detect
corresponding landmarks in two face images to be morphed
which are averaged. Subsequently, both face images are
warped accordingly. Finally, alpha-blending is performed to
create the morphed face image. All morphs were created
in a way such that both used images tend to contribute
equally to the inner facial region. Note that FaceFusion
and UBO morphing algorithms are closed-source and might
apply certain image post-processing methods to enhance the
quality of resulting morphs. Examples of cropped facial re-
gions of morphed face images generated all four morphing
algorithms are shown in Fig. 7.

The vulnerability of a COTS facial recognition system
to attacks based on the generated morphed face images is
assessed by using the metrics specified in [101], in particu-
lar the Mated Morph Presentation Match Rate (MMPMR).
This measure is an adaptation of the general Impostor
Attack Presentation Match Rate (IAPMR) introduced in
ISO/IEC 30107-3 [102] and is defined as the proportion of
attack presentations using the same type of presentation
attack instruments in which the target reference matches. In
the adaptation, however, the MMPMR covers the fact that
not one target subject (contained in the morphed reference)
is matched - but for a successful face morphing attack, both
data subjects that previously contributed to the morphed
image are expected to match.

Using the default decision threshold of the COTS facial
recognition system, an MMPMR of 1 is obtained across all
used face image databases and morphing techniques. This
means that all facial images of individuals contributing to

2. http://www.learnopencv.com/face-morph-using-opencv-cpp-python/
3. https://github.com/alyssaq/face morpher
4. http://www.wearemoment.com/FaceFusion/
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(a) Portrait face images: FRGCv2 (left) and Print-Scan (right)

(b) Pre-processed face images: FRGCv2 (left) and Print-Scan (right)

Fig. 6. Examples of bona fide portrait and pre-processed face images of the used datasets. Due to the printing and scanning face images from the
Print-Scan dataset exhibit slightly lower resolution.

(a) Subject 1 (b) OpenCV/dlib (c) FaceMorpher (d) FaceFusion (e) UBO (f) Subject 2

Fig. 7. Used morphing algorithms applied to a female (top) and a male (bottom) image pair. Note that the FaceFusion algorithm uses the inner eye
regions and nostrils of subject 1 in order to avoid artefacts in these regions.

TABLE 2
Number of subjects, bona fide and morphed face images of used

datasets. “F” and “M” indicate female and male subjects, respectively.

Database Subjects
Face images

bona fide morphed

FRGCv2 533 (231 F, 302 M) 984 964⇤

Print-Scan 533 (231 F, 302 M) 984 964⇤

FERET 529 (200 F, 329 M) 529 529⇤

⇤per morphing algorithm

a morphed facial image are successfully compared to it, so
that the attacks have a 100% chance of success.

As baseline face morphing attack detection systems Lo-
cal Binary Patterns (LBP) [103], Binarized Statistical Image
Features (BSIF) [42], FaceNet features [58] and the FS-SPN
analysis of [27] are applied. At feature extraction for LBP
and BSIF the pre-processed face image is optionally divided
into 4⇥4 cells to retain local information. That is, feature
extractors are applied pixel-wise storing feature value in
histograms for each texture cell. The final feature vector

is formed as a concatenation of histograms extracted from
each cell. While LBP simply processes neighboring pixel
values of each pixel, BSIF utilizes specific filters learned
from a set of images. For details on these texture de-
scriptors the reader is referred to [42], [103]. The use of
these well-established general purpose texture descriptors
has shown to be successful in diverse texture classification
problems. As the process of image morphing is expected
to cause changes in textual properties between bona fide
and morphed face images said texture descriptors have
been shown to reveal competitive morphing attack detection
performance [8], [11], [12], [21]. Minimum filter sizes of 3⇥3
pixels which have been reported to reveal best detection
performance in [8] are used for both texture descriptors.
In the training stage feature vectors are extracted for each
baseline system and SVMs with Radial Basis Function (RBF)
kernels are trained to distinguish between bona fide and
morphed face images. Similarly, an SVM is trained with
deep facial features extracted from cropped face image using
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TABLE 3
Performance results in terms of D-EER (in %) for different

configurations of the baseline morphing attack detection systems. Best
performing systems are marked bold. µ is the mean error and �2 the

variance over all morphing methods.

System
Morphing method

µ �2

OpenCV/dlib FaceMorpher FaceFusion UBO

LBP1⇥1 [8] 35.5% 15.3% 28.1% 26.1% 26.5% ±5.82
LBP4⇥4 [8] 20.5% 4.2% 14.7% 12.7% 13.0% ±4.66
BSIF1⇥1 [8] 27.6% 26.0% 16.7% 17.6% 22.0% ±4.87
BSIF4⇥4 [8] 27.4% 29.0% 7.9% 16.6% 20.2% ±8.57
FaceNet [58] 30.1% 29.8% 32.0% 33.2% 31.3% ±1.33
FS-SPN [27] 17.5% 4.9% 30.8% 19.5% 18.2% ±7.0

the FaceNet recognition system. This approach resembles
the schemes proposed in [31], [33]. The SVM-based clas-
sifiers of these morph detection schemes are trained on
the subset of the FERET image database. Eventually, the
pre-trained open-source implementation5 of [27] is directly
applied for morph detection. The major advantage of the
proposed PRNU-based morph detection over the baseline
algorithms is that it does not need any training. Only for
some of the proposed features, a pre-computed decision
threshold has to be computed. In such cases, the threshold
has been estimated on the Dresden image database [99].

The performance of the detection algorithms is reported
according to metrics defined in ISO/IEC 30107-3 [102].
The Attack Presentation Classification Error Rate (APCER)
is defined as the proportion of attack presentations us-
ing the same presentation attack instrument species incor-
rectly classified as bona fide presentations in a specific
scenario. The Bona Fide Presentation Classification Error
Rate (BPCER) is defined as the proportion of bona fide
presentations incorrectly classified as presentation attacks
in a specific scenario. The D-EER, i.e. the operation point
where APCER = BPCER, is used as general operation point
and reported for the different morphing methods.

5.2 Performance evaluation

Table 3 lists the D-EERs for different configurations of the
baseline systems. It can be observed that morphs created
using OpenCV with dlib are generally harder to detect,
in contrast to the images created by other morphing algo-
rithms. However, FS-SPN performs best detecting morphs
created with OpenCV and dlib, but the detection rate drops
when detecting morphs created by FaceFusion or the UBO
algorithm. In contrast, BSIF4⇥4 shows improved perfor-
mance for detecting FaceFusion morphs, but lacks detecting
morphs created by OpenCV. The DET curves for the baseline
systems in presence of all morphing attacks are shown in
Fig. 8. In summary, it appears that a heterogeneous training
and test database as well as the utilization of different
morphing algorithms significantly deteriorate the detection
performance of the baseline systems leading to significantly
worse results to what has been reported in previous works.

Performance results for the proposed PRNU-based mor-
phing attack detection scheme for best performing feature
extractors and cell aggregation techniques are summarized
in Table 4. DET plots for the best performing proposed
approaches across all post-processings are shown in Fig. 9.

5. https://github.com/Le-BingZhang/FS-SPN

1 2 5 10 20 40

1

2

5

10

20

40

APCER (in %)

B
P
C
E
R
(i
n
%
)

LBP1⇥1 LBP4⇥4 BPCER-10

BSIF1⇥1 BSIF4⇥4 BPCER-20

FaceNet SPN

Fig. 8. DET curves for different configurations of the baseline morphing
attack detection systems in the presence of all morphing attacks on
FRGCv2.

In addition, Fig. 10 compares the average D-EERs and
their variances of all proposed morphing attack detection
schemes to the baseline systems. In contrast to the base-
line systems, the PRNU-based approaches yield low error
rates detecting morphs created using OpenCV and dlib,
but struggle detecting FaceFusion morphs. However, com-
pared to the baseline systems average D-EER are observably
lower and exhibit smaller standard deviations. Additionally,
smaller variance in detection performance across different
datasets and morphing algorithms are obtained, which is
vital for an application of any morphing attack detection
algorithm in real world scenarios where said parameters are
unknown.

Compared to the baseline systems, significantly im-
proved results are achieved for the newly proposed spa-
tial features, i.e. Pvar followed by Pen, which significantly
outperform the baseline systems. The spectral Den feature,
proposed in previous work, also obtains very competitive
results on this new dataset. Another aspect to note is that
the energy-based features Den and Pen, whose mean bona
fide threshold B̄ has been determined on the Dresden image
database, underlines the generalisability of the approach in
regard to cameras from different models and manufacturers.

At this point, it is important to note that morphing attack
detection algorithms analyze cropped faces only. Thereby
higher generalizability is achieved since outer facial parts
can be created in different ways during morph creation.
Many morph generators copy the outer facial image part
of one subject contributing to the morph, e.g. in [29], [62].
In such cases, the PRNU signal of the outer part of the
morph is expected to remain almost unaltered. That is, if the
proposed PRNU-based morphing attack detection schemes
are extended to analyze the entire face image, a variance-
based cell aggregation is expected to reveal improved results
for detecting morphs created in the aforementioned way.

Overall, some of the proposed PRNU-based morphing
attack detection configurations reveal promising results con-
sidering the challenging experimental setup. In contrast to
trained morphing attack detection schemes, e.g. [32], [55],
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TABLE 4
Performance results in terms of D-EER (in %) for different configurations of the proposed PRNU-based morphing attack detection systems. Best

performing systems are marked bold. µ is the mean error and �2 the variance over all morphing methods.

Feature Extraction Cell aggregation
Morphing method

µ �2

OpenCV/dlib FaceMorpher FaceFusion UBO

Dvar
Amin 1.7% 7.9% 40.3% 15.8% 18.3% ± 2.86
Amax 13.1% 20.2% 50.0% 29.6% 32.3% ± 2.56

Pvar
Amin 15.8% 7.5% 45.9% 26.2% 26.3% ± 2.76
Amax 0.2% 0.5% 28.2% 8.9% 11.2% ± 1.73

Den
Amin 0.6% 1.0% 29.5% 11.0% 12.4% ± 1.84
Amax 7.5% 5.3% 47.9% 21.7% 24.1% ± 3.84

Pen
Amin 0.2% 0.6% 28.7% 9.6% 11.3% ± 1.79
Amax 11.8% 4.8% 44.0% 22.6% 23.3% ± 2.92
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Fig. 9. DET curves for different configurations of the baseline morphing
attack detection system in the presence of all morphing attacks.
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Fig. 10. Error bars of D-EERs for different configuration of the proposed
PRNU-based morphing attack detection system and the baseline mor-
phing attack detection systems in presence of all morphing attacks.

the proposed schemes do not rely on the presence of distinct
artefacts, e.g. ghost artefacts, which might occur due to
imperfect morph creation. Hence, similar results are to be
expected if advanced morphing algorithms are developed
which allow for an automated creation of morphs compris-
ing less or no artefacts.

5.3 Generalizability across cameras

As mentioned in Sect. 3, the proposed PRNU-based morph
detection system relies on changes in the distribution of
the PRNU values. Since the PRNU differs for each camera,
it might contain camera (model) specific contaminations
(non-unique artefacts) that might affect the PRNU values’
distribution.

In order to investigate the generalizability of the pro-
posed morph detection approach and due to a lack of suit-
able face image datasets acquired with different cameras,
we decided to fall back to the Dresden image database [99],

which offers images from multiple cameras and even mul-
tiple instances of the same camera model. More specifically,
we selected the flatfield dataset, since it contains images
beneficial for PRNU extraction, i.e. bright images of an
evenly illuminated surface, which do not contain any con-
taminations from the image content like edges or other high-
frequency patterns. The flatfield dataset contains images
from 63 distinct digital cameras from 20 different camera
models across many camera manufacturers. For some cam-
era models, images from up to 5 instances are available in
the dataset.

To generate the bona fide and morphed images, we first
selected 315 images from the Dresden image database [99],
consisting of 5 random images for every one of the 63 cam-
eras. For the generation of the morphed image samples, we
used the same morphing parameters as they would occur
in a face morphing attack. In this experiment, they were
obtained from applying the OpenCV with dlib approach on
the FRGCv2 database, as described in Sect 5.1. With these
parameters, we generated a total of 53,362 morphed images
from bona fide image pairs of different cameras. Finally, a
patch of 320⇥320 pixels is cropped from the center of all
bona fide and morphed images.

The results of applying the proposed PRNU-based face
morphing system on these bona fide and morphed images
are presented in Table 5. Looking at the overall results for
all cameras at the bottom of the table, we obtain a D-EER
of 13.65% with Pvar|Amin aggregation. For most cameras
the detection error rate is very low. However, some cameras
exhibit higher error rates of around 15-20% and cameras of
a specific model (Practica DCZ59) even of up to 41.56%. We
assume that this degradation might be caused by camera-
specific non-unique artefacts, since the degradation mostly
occurs for all cameras of the same model, as the mentioned
Practica DCZ59 or FujiFilm FinePixJ50 and Panasonic DM-
CFZ50. Though, it has to be noted that the degradation does
not persist among all investigated features, where a fusion
of multiple features might yield improved performance and
more consistent results. The other proposed features Den,
Pvar and Pen also achieve respectable overall results be-
tween 14.5 and 28.6% D-EER. The histogram-based feature
Pvar , which is independent of any training data, show a
better generalizability over the various cameras compared
to the energy-based features Den and Pen.

These results demonstrate that PRNU-based features in
general are able to generalize well over a large number of
different cameras and show promising results for a face
morph detection scenario.
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TABLE 5
Performance results in terms of D-EER (in %) for different configurations of the proposed PRNU-based morphing attack detection systems (cell

size of 10⇥10) and 63 different cameras from the Dresden image database. “All” indicates the result for all camera instances.

Camera ID
Dvar Pvar Den Pen

Amin Amax Amin Amax Amin Amax Amin Amax

Canon Ixus55 0 48.04 42.69 0.00 0.00 1.12 0.56 0.00 0.00
Canon Ixus70 0 30.00 15.61 0.00 0.00 6.94 14.82 0.00 0.00
Canon Ixus70 1 23.94 18.19 0.00 0.00 5.15 10.59 0.00 0.00
Canon Ixus70 2 20.32 13.58 0.00 0.00 11.28 13.97 0.00 0.00
Casio EXZ150 0 9.49 6.54 0.02 0.01 2.12 1.43 0.00 0.00
Casio EXZ150 1 16.33 10.58 0.05 0.01 1.27 2.35 0.00 0.00
Casio EXZ150 2 17.61 12.67 0.00 0.00 5.70 4.49 0.00 0.00
Casio EXZ150 3 14.96 9.04 0.02 0.00 2.55 2.35 0.00 0.00
Casio EXZ150 4 18.43 8.43 0.00 0.00 4.46 2.84 0.00 0.00

FujiFilm FinePixJ50 0 33.53 27.97 20.97 40.24 37.86 22.84 38.68 21.54
FujiFilm FinePixJ50 1 30.31 34.57 17.98 31.86 29.07 20.06 31.21 17.11
FujiFilm FinePixJ50 2 31.86 30.86 19.03 30.93 25.59 15.85 26.67 17.16
Nikon CoolPixS710 0 6.92 10.99 0.01 16.67 17.01 1.34 16.67 0.00
Nikon CoolPixS710 1 8.54 4.32 0.02 0.00 1.27 1.33 0.00 0.00
Nikon CoolPixS710 2 8.91 9.86 0.04 0.00 0.42 0.39 0.00 0.00
Nikon CoolPixS710 3 15.97 18.17 0.07 0.00 0.31 1.06 0.00 0.00
Nikon CoolPixS710 4 18.40 9.54 0.05 0.00 16.78 16.83 16.67 16.67

Nikon D200 0 22.62 25.77 1.91 0.21 0.41 3.53 1.06 7.03
Nikon D200 1 16.31 11.35 11.69 7.09 1.18 5.88 3.67 14.24
Nikon D70 0 43.25 44.70 0.66 1.35 0.96 2.04 1.57 1.92
Nikon D70 1 47.11 45.54 0.07 0.16 0.20 1.61 0.77 0.96
Nikon D70s 0 45.68 43.98 0.44 1.84 1.39 1.88 1.80 2.60
Nikon D70s 1 45.73 46.01 0.03 0.01 0.12 0.45 0.21 0.23

Olympus mju 1050SW 0 33.07 34.13 0.00 0.00 1.38 0.01 0.00 0.01
Olympus mju 1050SW 1 24.48 21.08 0.00 0.00 0.59 0.02 0.00 0.01
Olympus mju 1050SW 2 31.95 29.91 0.00 0.00 0.74 0.02 0.00 0.01
Olympus mju 1050SW 3 32.56 22.17 0.00 0.00 1.09 0.03 0.00 0.01
Olympus mju 1050SW 4 27.07 32.65 0.00 0.00 0.89 0.02 0.00 0.01
Panasonic DMCFZ50 0 23.07 16.60 19.24 37.37 29.59 20.76 34.51 19.29
Panasonic DMCFZ50 1 22.35 16.81 15.43 34.88 24.46 15.09 31.91 17.26
Panasonic DMCFZ50 2 18.50 17.86 19.06 34.75 32.00 19.37 33.98 19.26

Pentax OptioA40 0 38.86 38.45 0.87 12.58 17.15 1.53 14.19 2.80
Pentax OptioA40 1 44.65 41.29 2.36 11.13 8.40 8.60 8.28 6.74
Pentax OptioA40 2 47.85 41.52 0.20 2.91 4.73 0.81 2.78 0.70
Pentax OptioA40 3 47.75 44.23 0.00 0.01 0.04 1.05 0.00 0.01
Pentax OptioW60 0 38.69 27.98 0.00 0.00 34.42 20.41 0.00 0.00
Praktica DCZ59 0 1.02 0.24 40.17 48.61 13.32 19.56 33.23 34.97
Praktica DCZ59 1 0.27 0.56 40.27 49.07 16.38 19.07 34.91 34.34
Praktica DCZ59 2 0.89 0.57 41.56 49.43 15.49 16.54 36.56 32.43
Praktica DCZ59 3 0.64 0.30 41.19 48.01 12.17 19.87 31.85 35.41
Praktica DCZ59 4 1.19 0.67 40.87 48.01 14.85 18.78 35.05 34.87

Ricoh GX100 0 12.09 11.54 0.00 0.00 15.74 5.12 0.00 0.00
Ricoh GX100 1 16.12 13.53 0.00 0.00 9.28 1.96 0.00 0.00
Ricoh GX100 2 16.12 13.27 0.00 0.00 16.82 5.64 0.00 0.00
Ricoh GX100 3 13.34 12.14 0.00 0.00 14.83 5.62 0.00 0.00
Ricoh GX100 4 9.93 8.95 0.00 0.00 17.61 10.04 0.00 0.00

Rollei RCP7325XS 0 33.14 29.70 8.50 12.68 14.42 21.98 14.41 14.98
Rollei RCP7325XS 1 43.21 35.58 6.71 8.02 13.14 16.86 11.91 10.83
Rollei RCP7325XS 2 30.54 32.78 9.30 15.85 17.40 19.60 18.81 15.16
Samsung L74wide 0 4.71 3.58 3.53 2.83 0.00 0.05 0.48 1.03
Samsung L74wide 1 2.53 1.50 3.97 2.06 0.00 0.01 0.32 1.63
Samsung L74wide 2 4.35 2.00 3.55 3.05 0.00 0.02 0.62 1.40

Samsung NV15 0 26.59 13.21 0.35 0.67 0.00 0.58 0.13 0.01
Samsung NV15 1 15.59 14.08 0.23 0.11 0.97 0.82 0.07 0.00
Samsung NV15 2 21.48 11.80 0.29 0.40 0.08 0.37 0.00 0.01
Sony DSCH50 0 11.51 14.21 0.00 0.00 9.54 13.00 0.00 0.00
Sony DSCH50 1 8.30 5.31 0.00 0.01 1.09 4.57 0.00 0.00
Sony DSCT77 0 15.89 8.83 0.00 0.00 19.45 15.80 0.00 0.00
Sony DSCT77 1 9.79 11.90 0.00 0.00 26.03 17.94 0.00 0.00
Sony DSCT77 2 12.25 5.37 0.00 0.00 25.01 23.85 0.00 0.00
Sony DSCT77 3 32.13 24.66 0.00 2.01 1.56 6.83 0.00 0.00

Sony DSCW170 0 1.82 1.48 0.10 1.97 1.09 5.10 0.15 0.00
Sony DSCW170 1 3.17 1.49 0.07 4.19 0.12 3.05 0.06 0.00

All 28.60 25.80 13.65 16.65 17.17 16.42 17.28 14.50
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TABLE 6
Performance results in terms of D-EER (in %) for different

configurations of the proposed PRNU-based morphing attack detection
systems (cell size of 10⇥10) for the Print-Scan dataset.

Feature Extraction Cell aggregation D-EER

Dvar
Amin 46.87
Amax 41.07

Pvar
Amin 30.52

Amax 36.81

Den
Amin 38.63
Amax 49.97

Pen
Amin 36.51
Amax 49.92
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Fig. 11. DET curves for different configurations of the proposed morph-
ing attack detection on the printed and scanned images for all morphing
algorithms (OpenCV/dlib, FaceMorpher, FaceFusion, UBO).

5.4 Printed and scanned images

In this last experiment, we look at the performance of
the PRNU-based morph detection approach when applied
to the Print-Scan dataset described in Sect. 5.1. This sce-
nario is very challenging for a PRNU-based approach, since
the scanning process of the images embeds the scanner’s
PRNU within all scanned images, which might prevent the
detection of the morphed images. The D-EER results are
presented in Table 6.

We can observe, that the detection performance signif-
icantly drops for all proposed feature-aggregation combi-
nations, where the best result is obtained with Pvar|Amin

with a D-EER of 30.52%. Fig. 11 illustrates the DET plots
for all proposed morph detection algorithms on the printed
and scanned images, where all morphing algorithms, i.e.
OpenCV/dlib, FaceMorpher, FaceFusion and UBO, have
been included. These results show that the scanners PRNU
leads to a detection performance degradation for the pro-
posed PRNU-based approach, however Pvar|Amin is still
able to discriminate bona fide and morphed images to some
degree in this print and scan scenario.

6 CONCLUSIONS

Face morphing attacks pose a serious security risk to face
recognition systems. In this work, the potential PRNU anal-
ysis has been thoroughly analyzed for the challenging task
of no-reference face morph detection. In comprehensive cross-
database experiments for which different face morphing
and image post-processing techniques have been applied,
the proposed PRNU-based morphing attack detection sys-
tem has been shown to outperform other state-of-the-art
methods. Moreover, the feasibility of detecting morphed
face images from printed and scanned image data has been

investigated. Since the proposed system is based on a sim-
ple and minimal approach, further detection performance
improvements can be expected by fusing multiple PRNU
features and by a more sophisticated classification approach
based on machine learning techniques.

In contrast to differential morphing attack detection
schemes, e.g. [62], which additionally process a trusted
live capture of a subject’s face the proposed approach is
particularly useful in cases where only a single potentially
morphed face image is presented, e.g. digital transmission
of a face image for issuance of an electronic travel document
which turns out to be relevant in some countries. In other
scenarios, e.g. facial recognition at ABC gates, the presented
PRNU-based morphing attack detection scheme could be
fused with other (differential) approaches to further im-
prove the detection performance.
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