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Abstract

There is a growing need for mobile authentication solu-
tions. Biometric recognition systems provide several ad-
vantages over conventional knowledge and token based
solutions. Especially the use of vascular patterns as a bio-
metric trait gains more and more attention. We present a
near-infrared illumination add-on for smartphone devices
which allows to capture the vascular pattern of the hands
(hand-veins). This device is connected and controlled via
Bluetooth and customised for the Nexus 5 smartphone but
can be easily adopted to fit other models too. Due to the in-
herent risk of fraudulent authentication attempts on a non-
trusted platform like a smartphone, we propose a challenge-
response approach to ensure the authenticity of the cap-
tured hand-vein images. A hand-vein data set comprising
of 31 subjects and 920 images in total is acquired with the
presented device. A performance evaluation utilising dif-
ferent hand-vein recognition schemes is conducted to show
the applicability of our device and the proposed challenge-
response approach.

1. Introduction
Mobile authentication solutions enjoy a wide-spread

use nowadays. No matter if for payment transactions,
unlocking a mobile device or identity verification at border
control, there is a growing need for mobile authentication
solutions. Especially the application of biometric recogni-
tion technologies in the scope of mobile authentication is
gaining more and more attention. Biometrics provide sev-
eral advantages over traditional means of authentication in
terms of resistance against forgery and user’s convenience.
Fingerprint recognition systems have been integrated into
higher class smartphones (e.g. the Samsung Galaxy S6 and
onwards, the Apple iPhone and several more) for several
years now and also face as well as iris recognition systems
find their way to the newest generation of smartphones
(e.g. in the Samsung Galaxy S8/S8+). Beside these
traditional biometric traits, vascular pattern based ones

have become an emerging biometric trait during the last
years. Vascular pattern based recognition (commonly
denoted as vein recognition) can help to overcome some of
the problems existing biometric recognition systems have.
Vein based systems rely on the structure of the vascular
pattern formed by the blood vessels inside the human body
tissue. This pattern only becomes visible in near-infrared
(NIR) light. Thus, vein based biometrics provide a good
resistance to spoofing and are insensitive to abrasion
and skin surface conditions. They achieve a competitive
recognition performance while the user http://digital-
library.theiet.org/content/journals/10.1049/iet-
cvi.2010.0191convenience is at the same level as for
fingerprint systems as long as the scanner is designed in an
open manner. Moreover, a liveness detection can be per-
formed easily [11] and a contactless operation is possible,
which is especially important for mobile authentication
solutions. This makes vein pattern based systems a valuable
choice in the scope of mobile authentication.

The application of biometric recognition systems in mo-
bile scenarios rises some problems compared to the station-
ary use of these systems. First of all, the acquisition pro-
cess is more unconstrained (more degrees of freedom for
the placement of the biometric and varying environmental
conditions) compared to the stationary case, causing sev-
eral recognition performance issues [4, 5, 17]. Second, the
authentication process is unsupervised, enabling presenta-
tion attacks [1, 10]. Furthermore, the mobile system might
not be a trusted platform, especially if the authentication is
performed on the user’s smartphone. This opens the door
for all kinds of insertion and replay attacks to the biometric
system. Hence, there is the need for presentation attack de-
tection systems as well as methods to prove the authenticity
and integrity of the biometric sample that has been captured.

In this work we present a smartphone add-on to acquire
hand-vein images. In contrast to other mobile vein scan-
ner solutions in the literature, our add-on module is ba-
sically an illumination module only, lowering its produc-
tion costs compared to full-fledged scanner devices. It util-
ises the phones integrated camera to capture the vein im-
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ages and is controlled wirelessly via Bluetooth by our cus-
tom designed capturing Android app. Thus, together with
a suitable smartphone, this add-on resembles a full mobile
hand-vein scanner. Unlike most previously proposed mo-
bile scanners, our device operates fully contactless without
a specifically designed device to keep the hand in a pre-
defined position.

To cope with the inherent risks of insertion attacks, the
capturing process features a challenge-response protocol
based on varying illumination intensities. In this way the
app is able to prove that an actual image of the vein patterns
has been captured and no previously captured sequence has
been inserted instead. We established a mobile hand-vein
data set captured with our mobile hand-vein add-on in com-
bination with a modified Nexus 5 smartphone that will be
made publicly available. It comprises 31 subjects and 920
images in total. Based on this data set a performance eval-
uation using several well-established hand-vein recognition
schemes is conducted in order to show the decent recog-
nition performance that can be achieved using our mobile
hand-vein scanner and to prove the effectiveness of the
challenge-response approach.

The rest of this work is organised as follows: Section 2
gives an overview of related work on mobile finger- and
hand-vein scanners. The details of our proposed mobile
hand-vein scanner add-on, including the challenge-response
protocol, and the differences to previous mobile vein scan-
ners are described in Section 3. Section 4 presents the pub-
licly available data set that has been captured with our hand-
vein scanner add-on. Section 5 deals with the performance
evaluation. At first the details of the employed hand-vein
recognition tool-chain are described, followed by the eval-
uation results and a results discussion. Section 6 concludes
this paper and gives an outlook on future work.

2. Related Work
This section gives an overview on related work in mobile

and embedded finger- as well as hand-vein scanner devices.
Liu et al. [13] proposed a “a real-time embedded finger-vein
recognition system for authentication on mobile devices”.
Their scanner consists of an NIR sensitive monochrome
camera with an additional NIR pass-through filter, a white
acrylic plate where the finger is placed onto and a NIR laser
based illuminatior below this plate (light transmission prin-
ciple). They equipped the NIR lasers to cope with problems
due to shadows caused by the LED light source within their
scanner design. Their full-fledged recognition system is im-
plemented on a DSP (digital signal processor) and features
image acquisition, ROI (region of interest) extraction, fea-
ture extraction and comparison. The DSP integration en-
ables a mobile application. Sierro et al. presented three
prototype touch-less vein scanners, a finger- and two palm-
vein ones in [19]. The touch-less nature makes this system

more convenient for the user and less susceptible to spoof-
ing. All their proposed scanners are based on the reflec-
ted light principle (illumination source and camera on the
same side of the hand/finger). Their first palm-vein pro-
totype contains a Sony ICX618 659x494 CCD camera to-
gether with a 920 nm long-pass filter, 20 940 nm NIR LEDs
and an ultrasonic sensor to detect the distance between the
scanner and the hand. Their second palm-vein prototype
features multi-spectral acquisition to increase its robustness
against simple types of spoofing attacks by equipping blue
and far-red LEDs in addition to the NIR ones. The layout
of the LED positioning was changed too, but all other com-
ponents are the same as within their first prototype. The
finger-vein prototype consists of a OV7670 Color 640x480
pixel CMOS sensor in combination with a wide angle 2.1
mm lens and an infrared long-pass filter with a low cut-off
wavelength of 740 nm. The 12 NIR LEDs are arranged in
three groups of 4 LEDs each to enable an optimal illumin-
ation of the finger-veins. All three proposed scanners are
small in size. The finger-vein one is USB-host powered and
can be controlled by an Android app which facilitates its use
as mobile finger-vein scanner. The palm-vein ones can be
modified to be USB-host powered and work in combination
with a smartphone too.

Eng and Khalil-Hani proposed several versions of a
FPGA-based vein biometric authentication system. In [3]
they introduced an embedded hand vein scanner implemen-
ted on an Altera Nios II prototyping system running on
Nios2-Linux as real time operating system. Their sensor
consists of an reflected light source (NIR LED array), a
modified thermal webcam with a resolution of 320x240
pixels and an attached IR filter. They captured images from
the dorsal (back) side of the hand and utilised minutiae
based features extracted from the vein pattern for recogni-
tion. In [8] and [9] they proposed two versions of a finger
vein recognition system. Again, the system was implemen-
ted on an Altera prototyping system running Nios2-Linux
using a modified webcam. Contrary to the hand vein scan-
ner, they used the light transmission method to acquire im-
ages from the palmar side of the finger. For recognition they
use minutiae based methods again.

Lee et al. presented a mobile multimodal biometric cap-
ture device utilising finger-veins and fingerprints in [12].
Their scanner consists of two QuickCam USB cameras, a
visible light source for fingerprints and four 880 nm NIR
LEDs for finger-veins using the light transmission principle.
The captured images have a resolution of 640x480 pixels.
Their embedded system unit is a ultra mobile processing
computer manufactured by SONY Corp (VGN-UX17LP).
They used a minutiae based recognition method for both,
finger-veins and fingerprints.

Fletcher et al. proposed two mobile hand-vein scan-
ners in [4]. The first one uses an unmodified Sony Experia



Mini Pro Android smartphone as camera. The light source
consists of 16 NIR LEDs with an operation frequency of
850 nm. They used a Kodak Wratten filter (#87) with a
pass-through frequency range of 740-795 nm as optical fil-
ter. The second one uses a Gearhead Nightvision webcam
(WC1100BLU) which already contains six IR LEDs as light
source. For a better illumination they replaced the internal
LEDs with 940 nm NIR LEDs. Again, they used a Kodak
Wratten filter (#87c) with a pass-through frequency range
of 790-855 nm as optical filter. The webcam is attached to
a Nexus 7 Android tablet. Both scanners used especially
designed apparatuses to place the hand into a well defined
position. They acquired the vein structure from the palmar
side and used minutiae based features for biometric recog-
nition.

In contrast to existing mobile hand- and finger-vein scan-
ners, our proposed mobile hand-vein scanner is basically an
illumination add-on module for smartphones. Thus, it ex-
hibits lower production costs compared to a full featured
scanner device.

3. Mobile Hand-Vein Scanner Add-On
As mentioned in Section 2, the basic components of a

hand-vein scanner are an NIR light source and an NIR-
sensitive image sensor (camera). Every common smart-
phone nowadays has a built-in camera, which is sufficient
to capture high-resolution hand-vein images. However,
these cameras are usually equipped with NIR blocking fil-
ters in order to avoid unwanted colour effects in the cap-
tured images. Thus, it is necessary to either remove this
NIR blocking filter, like it has been done for the modified
Nexus 5 smartphone by EigenImaging (https://www.
eigenimaging.com/) we utilised, or a separate NIR-
sensitive camera has to be equipped in the smartphone. The
latter is done by some manufacturers already (e.g. Sam-
sung for iris recognition) and it is likely that others will fol-
low this trend. If the smartphone already contains an NIR-
sensitive camera, it can be utilised for hand-vein recognition
and the only additional component needed is the NIR light
source.

Our mobile hand-vein scanner add-on is essentially such
a light source in the form of an add-on module for smart-
phone devices, depicted in Fig. 1. It is the first mobile hand-
vein scanner device of its kind, exhibiting lower production
costs compared to previous mobile finger- and hand-vein
scanners as it does neither contain a separate image sensor
nor a complex control board. The whole device was de-
signed to be used in combination with our modified Nexus 5
smartphone utilising its integrated camera as image sensor
and has been constructed by ourselves. The housing part,
where the smartphone is slid in, consists of several, 3D
printed components. Hence, it can be easily modified for
other smartphone models. This control board is based on
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Figure 1: Left: mobile hand-vein scanner add-on, right:
typical acquisition set-up

an Arduino Nano Board (https://store.arduino.
cc/arduino-nano), a Bluetooth module and a 16 chan-
nel LED driver IC. The control board design was adopted
from our previous finger-vein scanner [6] and modified for
the mobile application. It does not require a physical cable
connection to the smartphone, the data transfer and control
is achieved via Bluetooth communication. The USB cable
on the prototype is only needed for power supply, but the
final version will have a built-in rechargeable battery. It has
16 NIR LEDs with a peak wavelength of 850 nm that are
arranged in a circle around the smartphone’s camera. Each
LED can be brightness controlled individually. This enables
a uniform and sufficient illumination for the hand-vein im-
ages on the one hand and provides the ability to use complex
illumination patterns for encoding information on the other
hand. Moreover, our add-on is equipped with an NIR pass-
through filter having a cut-off frequency of 780 nm to filter
out the ambient light and to improve the image contrast.

The LED brightness is automatically controlled by a cap-
turing app running on the smartphone, prior to the acquis-
ition of a single image. Currently, the app only supports
the capturing of single images as well as video sequences
of the hand-veins, no feature extraction and comparison is
done yet. This is why it is currently an add-on for the ac-
quisition of hand-vein images and not for performing a full
authentication.

3.1. Challenge-Response Protocol

In order to prevent presentation and replay attacks, the
developed mobile hand-vein scanner add-on is capable of
performing challenge response (CR) authentication due to
its 16 fully controllable NIR LEDs.

Presentation attacks for finger veins have already been
successfully conducted in [21] by Tome et al., where



a spoofing false accept rate of 85% has been achieved.
Their experiments have been conducted using an extensible
framework for spoofing finger veins, which might also be
successfully applied to hand veins.

CR authentication follows the simple principle that one
party presents a question, i.e. the challenge, to which an-
other party has to provide a valid answer, i.e. the response,
in order to pass the authentication. In [20] Stein et al.
proposed a video-based fingerprint recognition and anti-
spoofing solution for smartphones. They developed a CR
protocol, where the finger needs to be moved towards the
camera and the reflectance of the finger surface is measured.

In the scenario presented here, the first party (user) tries
to authenticate itself in a biometric system using his/her
smartphone. More precisely, the smartphone is used as a
mobile sensor to acquire the user’s biometric trait, i.e. the
vascular pattern of the hand, and the data is then submit-
ted to the biometric system wirelessly for the identification.
Since the smartphone cannot be trusted, as mentioned in
Section 1, the biometric system has to ensure the authen-
ticity and up-to-dateness of the acquired biometric data to
prevent a malicious insertion or spoofing of the submitted
data, i.e. presentation and replay attacks. Therefore, a video
of the hand is acquired for authentication, which contains a
blinking sequence generated based on a specific challenge
using the 16 fully controllable NIR LEDs. This blinking
sequence is an inherent part of the video, which is sent to
the biometric system after acquisition. This ensures that the
response is interwoven with the biometric data.

The proposed challenge response protocol consists of the
following steps:

1. The smartphone sends an authentication request to the
biometric system.

2. The biometric system generates a random number
which defines a fixed blinking sequence and sends it
to the smartphone (challenge).

3. The smartphones generates a blinking sequence based
on the random number and controls the 16 LEDs ac-
cordingly. In parallel, a video of the hand (dorsal or
palmar) is recorded.

4. The video containing the biometric data and blinking
sequence (response) is sent wirelessly to the biometric
system.

5. The biometric system detects the blinking sequence
and compares it to the previously generated random
number.

6. If the response matches the challenge, the hand vein
recognition is performed and the user is authenticated.
Otherwise, the whole process is repeated.

We implemented this challenge response protocol in
form of an Android application, which runs on the user’s

smartphone. The app consists of two major parts: The
video recording and the LED control. The video record-
ing part has been realised using CameraView (https://
github.com/natario1/CameraView), a high-level
library providing access to the smartphone’s camera in or-
der to capture photos and videos. The LED control is per-
formed via Bluetooth. The application is able to capture
both photos and videos and contains different settings to
configure the acquisition parameters for testing and devel-
opment. The GUI of the developed application is depicted
in Figure 2a.

(a) GUI (b) Grey values

Figure 2: Graphical user interface (a) of the developed An-
droid application for LED control and capturing of photos
and videos. Sequence of mean grey values (b) for an exem-
plary video with detected 0s (marked as blue stars around
a gray value of 45) and 1s (marked as green stars around a
gray value of 60).

In our first proof of concept, we generate a random num-
ber between 1 and 255, which is logged to a file for later
evaluation. This random number, which by concept would
be sent by the biometric system, is then transformed into an
8-bit binary sequence: For 0 the brightness of the LEDs is
reduced to half of its intensity, while for 1 the intensity is
kept at a predefined level. All LEDs are controlled equally
in the current version, but multiple illumination zones can
be realised in the future to enable more complex blinking
sequences. For this work, we acquired videos with a dur-
ation of 3 seconds containing the 8-bit sequence, leading
to a blinking interval duration of 375 ms. For synchron-
isation purposes, we added a padding with a duration of 1.5
seconds before and after the blinking sequence of the video.

The biometric system, which receives the video, has only
been simulated so far. Therefore, the blinking sequence is
first extracted from the recorded video and compared to the
previously logged random number for the specific video.
For the detection of the sequence, single frames are extrac-
ted from the video at a frame-rate of 5.33 fps using FFm-
peg (https://www.ffmpeg.org). The frame-rate has
been selected in correspondence to the blinking interval of
375 ms, leading to two frames being extracted for each



blinking interval and a total of 32 frames for the whole
video: 8 images of padding before and after the blinking
sequence and 16 images for the sequence itself. Thereafter,
the mean grey value of each extracted image is determined.
Since the used camera library does not allow a manual ex-
posure, it is automatically regulated after each blinking to
obtain a certain mean grey value. Hence, we are only able to
detect changes in illumination. Afterwards, the local min-
ima and maxima, i.e. 0s and 1s, of the blinking sequence
are determined from the mean grey value curve, as shown in
Figure 2b. The intervals between these extrema, i.e. where
no illumination change has happened, are interpolated by
the preceding value. With this procedure, we obtain an 8-
bit binary sequence again which is matched against the 8-bit
binary sequence of the random number.

4. Mobile Hand-Vein Data Set
The mobile hand-vein data set was acquired using our

mobile hand-vein scanner add-on in combination with the
modified Nexus 5 smartphone. It includes dorsal as well
as palmar hand-vein images of 31 individual subjects. No
supporting apparatuses to place the hand in a predefined
positional were used. As a result, the captured images re-
semble a realistic real-live scenario with all possible types
of distortions like rotation, tilting in all possible directions
and scaling (different distances of the hand and the smart-
phone). The data acquisition was split into two separated
sessions, the first one outdoor inside a car and the second
one indoors. Throughout the first session 28 subjects have
been acquired, during the indoor session 18. 15 subjects
participated in both sessions. Five images per hand and per
view have been acquired, summing up to a total of 920 im-
ages. The acquisition outside was done to simulate a real-
istic application scenario of our mobile hand-vein add-on in
a border control environment, the inside session was con-
ducted to have reference images in a more controlled envir-
onment. The acquired colour JPEG images have a resolu-
tion of 2448x3264 pixels. We extracted square ROI patches
of the hand-vein images manually, which have a resolution
of 512x512 pixels. Figure 3 shows some example images.
This data set will be publicly available as part of the PRO-
TECT Multimodal DB Dataset [22] database and can be
downloaded at http://projectprotect.eu/.

5. Experimental Evaluation
In the following the finger-vein processing tool-chain

and the evaluation protocol are described. Then the experi-
mental results are given and discussed.

5.1. Processing Tool-Chain
The finger-vein processing tool-chain consists of ROI

extraction, preprocessing, feature extraction and compar-

Figure 3: Example images of the mobile hand-vein data set,
left: dorsal, right: palmar

ison. We opted for simple binarisation type feature extrac-
tion methods as well as two key-point based methods (one
SIFT based and an adopted version of an algorithm pro-
posed by Matsuda et al. in [15]) to have a complimentary
feature type too.

ROI Extraction The ROI extraction is done manually by
fitting a rectangular ROI is fit inside the hand area. The ROI
images have a size of 512⇥ 512 pixels.

Preprocessing To improve the image contrast and the vis-
ibility of the vein pattern CLAHE [25], which is the most
prevalent and simple technique, in combination with High
Frequency Emphasis Filtering (HFE) [24] and filtering
with a Circular Gabor Filter (CGF) as proposed by Zhang
and Yang [23] are applied. Furthermore, the images are res-
ized to half of its original size, which not only speeds up the
comparison process but further improves the results due to
intrinsic denoising. For more details on the preprocessing
methods the interested reader is referred to the authors’ ori-
ginal publications.

Feature Extraction and Comparison The first three of
the following techniques aim to extract the vein pattern from
the background resulting in a binary template image fol-
lowed by a comparison of these binary templates using a
correlation measure.

Maximum Curvature (MC [16]) aims to emphasise
only the centre lines of the veins, making it insensitive to
varying vein widths. The first step is the extraction of the
centre positions of the veins. Afterwards a score according
to the width and curvature of the vein region is assigned to
each centre position and recorded in a matrix called locus
space. Due to noise or other distortions some pixels may
not have been classified correctly at the first step, thus the



centre positions of the veins are connected using a filtering
operation. Finally binarisation is done by thresholding us-
ing the median of the locus space.

Principal Curvature (PC [2]): At first the gradient field
of the image is calculated. Hard thresholding is done to fil-
ter out small noise components and then the gradient at each
pixel is normalised to 1 to get a normalised gradient field.
This is smoothed by applying a Gaussian filter. The next
step is the actual principal curvature calculation, obtained
from the Eigenvalues of the Hessian matrix at each pixel.
Only the bigger Eigenvalue, corresponding to the maximum
curvature, is used. The last step is a binarisation of the prin-
cipal curvature values to get the binary vein output image.

Gabor Filter (GF [11]): The image is filtered using a
filter bank consisting of several 2D even symmetric Gabor
filters with different orientations, resulting in several feature
images. The final vein feature image is obtained by fusing
all these single images, which is then post-processed using
morphological operations to remove noise.

For comparing the binary feature images we adopted the
approach of Miura et al. [16]. As the input images are
neither registered to each other nor aligned vertically, the
correlation between the input image and x- and y-direction
shifted versions of the reference image is calculated. The
maximum of these correlation values is normalised and then
used as final comparison score.

In addition to the techniques described above, the fourth
technique is a key-point based one. Key-point based tech-
niques try to use information from the most discriminative
points as well as considering the neighbourhood and con-
text information of these points by extracting key-points
and assigning a descriptor to each key-point. We used a
SIFT [14] based technique with additional key-point filter-
ing along the finger boundaries as proposed by Kauba et
al. [7] and a modified version of Deformation-Tolerant
Feature-Point Matching (DTFPM) proposed by Matsuda
et al. [15]. DTFPM was designed for finger-vein recogni-
tion. Its feature extraction assumes a circular shape of the
finger. This does not apply for hand-vein recognition, thus
we modified the feature extraction step.

5.2. Evaluation Protocol
The experiments are split into two main parts: in the first

part we analyse the recognition performance of the data-
base. For evaluation purposes, dorsal and palmar images
are regarded as two independent data sets. In addition to the
analysis of the two acquired sessions, we performed a com-
parison of session 1 against session 2 as well. To quantify
the performance, the EER as well as the FMR100 (the low-
est FNMR for FMR <= 1%), the FMR1000 (the lowest
FNMR for FMR <= 0.1%) and the ZeroFMR (the low-
est FNMR for FMR = 0%) are used. We applied the
following test protocol: For calculating the genuine scores,

all possible genuine comparisons are performed. For cal-
culating the impostor scores, only the first image of a fin-
ger is compared against the first image of all other fin-
gers. Table 1 states the number of comparisons for each
evaluation. As our recognition scheme does not require a
training step, no separate training and test set is needed.
All result values are given in percentage terms, e.g. 1.43
means 1.43%. In the second part of our experiments, we
evaluated the captured videos with respect to the challenge-
response protocol described in Section 3.1. A public im-
plementation of the complete processing tool-chain as well
as the scores and detailed results are available at: http:
//www.wavelab.at/sources/Debiasi18b.

Session 1 Session 2 Session 1 vs 2
Genuine 560 360 750
Impostor 1540 630 855

Total 2100 990 1650

Table 1: Number of matches per data set/session evaluation

5.3. Recognition Performance Results
The performance evaluation has been conducted for

both, the palmar and dorsal sub-set. Figure 4 shows some
sample images including te extracted MC features. In the
dorsal ROI image, the vein structure is visible. In the im-
ages acquired from the palmar side (bottom row), the vein
structure is not visible as prominently. The ROI image on
the left side is dominated by the texture of the palm. This
fact is also reflected in the extracted MC features (right
side): most of the extracted lines do not result from the vein
structure but from the creases and wrinkles of the skin.

Table 2 lists the results for the dorsal subset. For ses-
sion 1 (outdoor) MC achieves the best result with an EER
of 4.13% followed by DTFPM (7.33%), SIFT (10.63%) and
PC (10.71%). With an EER of 28.08%, GF perform signi-
ficantly worse than all other feature types. For session 2
(indoor, controlled ambient light) all feature types except
PC perform worse. MC still shows the best performance
with and EER of 5.69%. PC (8.97%) now achieves a better
result than DTFPM (12.00%) and SIFT (14.17%). Again,
the recognition performance of GF (36.37%) is not compet-
itive to the other methods. For the inter-session comparison,
the performance drops dramatically. MC achieves an EER
of only 24.30% which is six times worse than the result for
session 1. PC and DTFPM exhibit EERs around 30%, SIFT
and GF of greater than 40%. The DET plots for session 1
and 2 are depicted in Figure 5 left and right, respectively.

Table 3 states the results for the palmar sub-set. The res-
ults follow the same trend as for the dorsal sub-set: MC
performs best for all 3 experiments followed by DTFPM,
SIFT and PC. The outdoor session exhibits a better perform-
ance than the indoor session and the inter-session compar-
ison performs significantly worse than the single sessions.



(a) ROI dorsal (b) Features (MC) dorsal

(c) ROI palmar (d) Features (MC) palmar

Figure 4: Sample images of both data sets: dorsal images
on the top, palmar at the bottom. The left column shows the
extracted ROI, the right column the extracted MC features

Session 1
EER FMR100 FMR1000 ZeroFMR

MC 4.13 (±1.11) 6.79 10.54 12.50
PC 10.71 (±1.72) 15.54 18.39 18.75
GF 28.08 (±2.50) 68.39 74.64 75.89

SIFT 10.63 (±1.72) 17.50 27.68 28.57
DTFPM 7.33 (±1.45) 13.04 16.61 17.32

Session 2
EER FMR100 FMR1000 ZeroFMR

MC 5.69 (±1.77) 9.44 23.06 23.06
PC 8.97 (±2.17) 13.61 16.94 16.94
GF 36.37 (±3.66) 81.39 85.83 85.83

SIFT 14.17 (±2.65) 31.11 37.22 37.22
DTFPM 12.00 (±2.47) 23.33 28.33 28.33

Session 1 vs Session 2
EER FMR100 FMR1000 ZeroFMR

MC 24.30 (±2.49) 56.13 69.87 69.87
PC 28.48 (±2.62) 54.13 68.00 68.00
GF 42.24 (±2.87) 96.67 99.20 99.20

SIFT 41.12 (±2.86) 88.80 94.40 94.40
DTFPM 30.22 (±2.67) 65.87 74.53 74.53

Table 2: Recognition performance results in terms of
EER/FMR100/FMR1000/ZeroFMR for the dorsal sub-set
for the single sessions and cross session

GF cannot compete with the other methods. The DET plots
for session 1 and 2 are depicted in Figure 6.

Considering that the images have been acquired fully
contactless in an nearly unconstrained environment, the re-
cognition rate of the system for the single individual ses-

Figure 5: DET plot for session 1 (left) and session 2 (right)
of the dorsal view

Session 1
EER FMR100 FMR1000 ZeroFMR

MC 7.52 (±1.47) 10.54 13.04 13.39
PC 13.88 (±1.93) 23.75 31.07 34.64
GF 32.52 (±2.61) 85.71 90.71 93.93

SIFT 11.90 (±1.80) 21.43 34.11 39.82
DTFPM 7.67 (±1.48) 12.14 16.79 21.96

Session 2
EER FMR100 FMR1000 ZeroFMR

MC 7.78 (±2.04) 15.28 22.78 22.78
PC 14.52 (±2.68) 21.94 24.17 24.17
GF 33.93 (±3.60) 82.22 89.17 89.17

SIFT 14.21 (±2.66) 30.28 43.61 43.61
DTFPM 12.14 (±2.49) 22.50 26.67 26.67

Session 1 vs Session 2
EER FMR100 FMR1000 ZeroFMR

MC 27.73 (±2.60) 56.00 65.47 65.47
PC 34.27 (±2.76) 62.80 75.33 75.33
GF 42.24 (±2.87) 98.53 99.87 99.87

SIFT 41.38 (±2.86) 86.00 95.87 95.87
DTFPM 34.07 (±2.76) 76.67 85.07 85.07

Table 3: Recognition performance results in terms of
EER/FMR100/FMR1000/ZeroFMR for the palmar sub-set
for the single sessions and cross session

Figure 6: DET plot for session 1 (left) and session 2 (right)
of the palmar view

sions is acceptably good. The inferior performance of ses-
sion 2 (indoor with more controlled artificial ambient light)
might be due to the proposed illumination add-on which
does not provide enough NIR light to sufficiently highlight
the "deeper" veins. The additional NIR light present in sun-



light might help to render the veins more visible in the out-
door session and therefore increase its recognition perform-
ance. The palmar images are dominated by the creases of
the hand. The veins on the palmar side are deeper inside the
skin as on the dorsal side. Our illumination does not penet-
rate deep enough into the tissue. Therefore, the vein struc-
ture is only partially visible. This explains the performance
decrease of the palmar sub-set compared to the dorsal one.

The significant performance drop of the inter-session
comparison might result from the unconstrained environ-
ment. Vein structure based methods rely on the correlation
of the images. During comparison we shifted the images in
x- and y-direction and rotated them in order to maximise the
correlation and correct small displacements. This correc-
tions might have not been enough as they do not consider
non-planar rotations (tilt). Considering our previous work
[18], one could expect that key-point based algorithms, es-
pecially DTFPM, are better suited for an unconstrained ac-
quisition environment. The performance of these methods
needs to be further investigated.

5.4. Challenge-Response Evaluation Results

The challenge-response evaluation has been conducted
on a total of 65 videos for 13 different users with random
blinking sequences. For this purpose, the expected binary
sequences determined by the random number generated for
each video have been compared to the detected binary se-
quences, which have been extracted by the procedure de-
scribed in Section 3.1, by means of Hamming Distance
(HD). A sequence has been defined as a match (M), only
with a HD equal to 0. Otherwise, the detected sequence
has been defined as a non-match (NM). Table 4 shows the
matching accuracy and mean hamming distance for non-
matches for each user. A mean detection accuracy of 0.82
has been achieved for all CR-videos with a mean HD of 3.04
for failed detection attempts. Compared to a related bio-
metric recognition and CR solution proposed in [20], where
a detection accuracy of 0.40 has been achieved in one CR
authentication attempt (80 out of 201), we obtain a compet-
itive result.

The failed detection is mainly caused by synchronisa-
tion problems, e.g. for users 3 and 10. This synchronisation
problems arise from two different factors: a software factor
in form of the used camera library and a hardware problem
with the timing of the LEDs. The camera library causes
some delay with the video acquisition, which causes a de-
synchronisation of the blinking intervals, while the current
implementation of the embedded LED control can cause in-
consistent timer intervals with a deviation of up to 200 ms.
Furthermore, due to the missing manual exposure setting
in the camera library, some longer consecutive sequences
of 0s or 1s are not interpolated correctly. All of these issues
will be addressed in future versions of the mobile hand-vein

scanner add-on, by choosing another library to access the
camera and changing the embedded LED control to an in-
terrupt based control.

User ACC Mean HD NM
1 0.60 2
2 1.00 -
3 0.80 4
4 0.80 2
5 0.60 2.50
6 0.20 2.75
7 1.00 -
8 0.80 2
9 1.00 -
10 0.80 6
11 1.00 -
12 1.00 -
13 1.00 -

Mean 0.82 3.04

Table 4: Detection accuracy (ACC) and mean Hamming
Distance for non-matches (Mean HD NM) for CR sequence
detection. If ACC = 1 there are no non-matches, so no
distance can be calculated, thus there is � in the Mean HD
MM column.

6. Conclusion and Future Work
We proposed an illumination add-on for smartphones

which turns a smartphone with an NIR-sensitive camera
into a mobile hand vein scanner device. Using such a scan-
ner, we established a publicly available data set acquired
in two time-span separated and environmental different (in-
door, outdoor) sessions and analysed the recognition per-
formance of the new data set utilising some well-established
vein recognition schemes. We further proposed a challenge-
response protocol in order to prevent replay and presenta-
tion attacks and evaluated its applicability.

In our future work we will further develop our illumina-
tion add-on to enhance the acquisition quality. We will look
into a multi-sample fusion of the different video frames cap-
tured from the hand-veins in order to improve the recogni-
tion performance. Moreover, we aim to evolve DTFPM as a
hand vein recognition scheme which is tolerant against non-
planar rotations. In addition, we will continue to develop
our challenge-response protocol, improve the Android app
and LED controller. Furthermore, we plan to utilise the
smartphone’s built-in sensors to deal with some of the im-
posed challenges caused by the unrestricted positioning of
the phone relative to the hand. After all of the mentioned
improvements have been implemented, we will further ex-
tend our mobile hand-vein data set by acquiring additional
subjects.
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