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Abstract—Non-reference image quality measures are used to
distinguish real biometric data from data as used in presentation
/ sensor spoofing attacks. An experimental study shows that
based on a set of 6 such measures, classification of real vs. fake
iris, fingerprint, and face data is feasible with an accuracy of
90% on average. However, we have found that the best quality
measure (combination) and classification setting highly depends
on the target dataset. Thus, we are unable to provide any other
recommendation than to optimise the choice of quality measure
and classification setting for each specific application setting.

I. INTRODUCTION

Biometric authentication techniques have emerged to re-
place or at least complement the traditional authentication
methods (e.g. passwords). Consequently, various attacks have
been increasingly observed threatening the reliability of this
authentication approach. In particular, artefacts mimicking real
biometrics traits or captured and displayed image or video
footage of real biometric traits have been used to deceive
biometric sensors and systems in so-called “presentation”-
or “sensor-spoofing”- attacks. In general, counter-measures to
such presentation attacks (or anti-spoofing [1]) in biometrics
can be categorised into (1) liveness-based, (2) motion-based,
and (3) texture-based methods. Liveness-based methods use
signs of vitality to ensure that the image is captured from a
living human being. In contrast, motion-based methods utilise
unnatural movements on scenes as indication of spoofing,
e.g. caused by hand motion when presenting a photo or a
display to the sensor. Texture-based methods aim to explore
textural artefacts in the images captured by the sensor (e.g.
caused by recapturing artefacts). While liveness-based tech-
niques are of course specific for the modality under invest-
igation, texture-based methods often employ general purpose
texture descriptors in a machine learning setting to discriminate
real biometric data from spoofed variants. For example, [2]
compares the attack detection performance of certain local
descriptors on collections of spoofed iris, fingerprint, and
face data. In order to circumvent the question which texture
descriptors to choose, also generative deep learning techniques
employing convolutional neural networks have been success-
fully used to identify spoofed data [3].

An entirely different approach is to consider the qual-
ity of the imagery in biometric anti-spoofing which can be
interpreted as a specific form of texture-based technique.
While this can be done in an approach entirely agnostic
of the underlying modality by employing general purpose
image quality measures (IQM) [4], a possible alternative is to
consider specific properties of the target modality in the quality
considerations (see e.g. [5] for quality assessment for face

recognition spoofing detection). In this paper we revisit general
purpose non-reference IQM (also termed “blind”) for their
suited-ness in presentation attack detection. Complementing
recent results [4], we aim at (i) a different and larger set of
non-reference IQM (6 instead of 2) and (ii) do not fuse the
results with full-reference IQM but focus on blind IQM as
a stand-alone technique (eventually also employing a single
metric contrasting to [4] where most results given correspond
to fusing a considerable amount of IQM also resulting in
significant computational effort).

Section 2 introduces and explains the blind IQM as used
in this paper. The databases specifically provided to test
presentation attack detection techniques for iris, fingerprint,
and face recognition used in the present work are described
in Section 3. Section 4 presents corresponding experimental
anti-spoofing results while Section 5 provides the conclusions
of this paper.

II. NON-REFERENCE IMAGE QUALITY METRICS

Current state-of-the-art non-reference Image Quality As-
sessment (NR IQM) algorithms are based on models that
can learn to predict human judgments from databases of
human-rated distorted images. These kinds of IQM models
are necessarily limited, since they can only assess quality
degradations arising from the distortion types that they have
been trained on. However, it is also possible to contemplate
sub-categories of general-purpose NR IQM models having
tighter conditions. A model is said to be opinion-aware (OA)
if it has been trained on a database(s) of human rated distorted
images and associated subjective opinion scores.

Algorithms like DIIVINE, BIQI, BLINDS-II and BRISQUE
are OA IQM measures. However, IQM like NIQE, and BI-
QAA are opinion-unaware (OU) and they make only use of
measurable deviations from statistical regularities observed in
natural images without being trained on human-rated distorted
images and indeed without any exposure to distorted images.

Systematic comparisons of the NR IQM as used in this
paper have been published [6], [7]. Both, in non-trained [6] as
well as in specifically trained manner [7] the correspondence
to human vision turns out to be highly dependent on the dataset
considered and the type of distortion present in the data. Thus,
there has been no “winner” identified among the techniques
considered with respect to correspondence to subjective human
judgement and objective distortion strength.

A. NIQE - Natural Image Quality Evaluator

A NR OU-DU IQM (no reference, opinion unaware &
distortion unaware) is based on constructing a collection of



quality aware features and fitting them to a multivariate Gaus-
sian (MVG) model. The quality aware features are derived
from a simple, but highly regular natural scene statistic (NSS)
model. NIQE [8] only uses the NSS features from a corpus of
natural images while BRISQUE is trained on features obtained
from both natural and distorted images and also on human
judgments of the quality of these images.

The classical spatial NSS model begins with preprocessing:
local mean removal and divisive normalisation. Once the
new image pixels calculated by the preprocessing have been
computed, the image is partitioned into PxP image patches.
Specific NSS features are then computed from the coefficients
of each patch. Then the sharpness of each patch is determined
and only patches with higher sharpness are selected. A simple
model of the NSS features computed from natural image
patches can be obtained by fitting them with an MVG density.

NIQE is applied by computing the 36 identical NSS
features from patches of the size PxP from the image to
be quality analysed, fitting them with the MVG model, then
comparing its MVG fit to the natural MVG model. The NIQE
Index delivers performance comparable to top performing NR
IQA models that require training on large databases of human
opinions of distorted images.

B. BLIINDS-II - Blind Image Integrity Notator

BLINDS-II [9] uses natural scene statistics models of
discrete cosine transform (DCT) coefficients. The algorithm
can be divided into four stages. At the first stage the image
is subjected to local 2-D DCT coefficient computation. At
this point the image is partitioned into equally sized nxn
blocks, then computing a local 2-D DCT on each of the
blocks. The DCT coefficient extraction is performed locally
in accordance with the HVS (Human Visual System) property
of local spatial visual processing (i.e., in accordance with the
fact that the HVS processes the visual space locally), thus,
this DCT decomposition is accomplished across several spatial
scales.

The second stage applies a generalised Gaussian density
model to each block of DCT coefficients, as well as for
specific partitions within each DCT block. In order to capture
directional information from the local image patches, the DCT
block is partitioned directionally into three oriented subregions.
A generalised Gaussian fit is obtained for each of the oriented
DCT coefficient subregions. Another configuration for the
DCT block partition reflects three radial frequency subbands
in the DCT block. The upper, middle and lower partitions
correspond to the low-frequency, mid-frequency, and high-
frequency DCT subbands, respectively. A generalised Gaussian
fit is obtained for each of the radial DCT coefficient subregions
as well.

The third step computes functions of the derived general-
ised Gaussian model parameters. These are the features used
to predict image quality scores. The fourth and final stage is a
simple Bayesian model that predicts a quality score for the im-
age. Here the training is required. The prediction model is the
only element of BLIINDS-II that carries over from BLIINDS-I.
The Bayesian approach maximises the probability that the im-
age has a certain quality score given the model-based features
extracted from the image. The posterior probability that the

image has a certain quality score from the extracted features is
modelled as a multidimensional generalised Gaussian density.

C. BIQAA - Blind Image Quality Assessment through Aniso-
tropy

BIQAA [10] is based on measuring the variance of the
expected entropy of a given image upon a set of predefined
directions. Entropy can be calculated on a local basis by using
a spatial/spatial-frequency distribution as an approximation for
a probability density function. The generalised Renyi entropy
and the normalised pseudo-Wigner distribution (PWD) have
been selected for this purpose. As a consequence, a pixel-by-
pixel entropy value can be calculated, and therefore entropy
histograms can be generated as well. The variance of the ex-
pected entropy is measured as a function of the directionality,
and it has been taken as an anisotropy indicator. For this
purpose, directional selectivity can be attained by using an
oriented 1-D PWD implementation. So, the method is based
on measuring the averaged anisotropy of the image by means
of a pixel-wise directional entropy. BIQAA aims to show that
an anisotropy measure can be used to assess both, the fidelity
and quality of images.

D. BRISQUE

BRISQUE [11] does not require any transformation to
another coordinate frame like DCT used by BLINDS-II
BRISQUE has very low computational complexity, making it
well suited for real time applications. The two main stages
of BRISQUE are natural scene statistics in the spatial domain
and quality evaluation. At the first stage an image is locally
normalised (via local mean subtraction and divisive normalisa-
tion). Subsequently, 2 parameters are estimated (o, 02) from a
generalised Gaussian distribution (GGD) fit of the normalised
pixel data. These form the first set of features that will be
used to capture image distortion. To show that pristine and
distorted images are well separated in GGD parameter space,
a set of pristine images from the Berkeley image segmentation
database was taken. Similar kinds of distortions as present
in the LIVE image quality database were introduced in each
image at varying degrees of severity to form the distorted
image set: JPEG 2000, JPEG, white noise, Gaussian blur,
and fast fading channel errors. A model for the statistical
relationships between neighboring pixels is also built. While
normalised coefficients are definitely more homogeneous for
pristine images, the signs of adjacent coefficients also exhibit
a regular structure, which gets disturbed in the presence of
distortion. To model this structure the empirical distributions
of pairwise products of neighboring normalised coefficients
along four orientations are used.

At the second stage a mapping is learned from feature
space to quality scores using a regression module, yielding
a measure of image quality. For that purpose a support vector
machine (SVM) regressor (SVR) is used. SVMs are popular as
classifiers since they perform well in high-dimensional spaces,
avoid over-fitting and have good generalisation capabilities. In
contrast to algorithms like NIQE and BLINDS-II BRISQUE
requires training.



E. DIVINE - Distortion Identification-based Image Verity and
Integrity Evaluation

DIIVINE [12] is based on a 2-stage framework involving
distortion identification followed by distortion-specific quality
assessment. Most present-day NR IQM algorithms assume that
the distorting medium is known - for example, compression,
loss induced due to noisy channel etc. Based on this as-
sumption, distortions specific to the medium are modelled and
quality is assessed. By far the most popular distorting medium
is compression which implies that blockiness and blurriness
should be evaluated. DITVINE targets three common distortion
categories, i.e. JPEG compression, JPEG2000 compression,
and blur.

In order to extract statistics from distorted images the
steerable pyramid decomposition is utilised. The steerable
pyramid is an over-complete wavelet transform that allows for
increased orientation selectivity. Since NR IQM algorithms are
generally trained and tested on various splits of a single dataset
(as described above), it is natural to wonder if the trained set of
parameters are database specific. However, the training process
of DIIVINE is simply a calibration, and once such training is
performed, DIIVINE is capable of assessing the quality of any
distorted image, since the performance of the algorithm was
evaluated on an alternate database. An SVR is used for the
classification into the distortion categories.

DIIVINE was actually not developed under the constraint
of real-time analysis of images, given that the performance of
DIIVINE is as good as leading full-reference quality assess-
ment (FR QA) algorithms.

F. BIQI -Blind Image Quality Index

BIQI [13] is also based on a 2-stage framework like
DIIVINE. The two steps are image distortion classification
based on a measure of how the natural scene statistic (NSS) are
modified, followed by quality assessment, using an algorithm
specific to the decided distortion. Once trained, an algorithm
of the proposed framework does not require further knowledge
of the distortion affecting the images to be assessed. The
framework is modular in that it can be extended to any number
of distortions.

BIQI starts with wavelet transforming an image over three
scales and three orientations using the Daubechies 9/7 wavelet
basis. The subband coefficients so obtained are parametrised
using a GGD. An 18-D vector is formed and it is the repres-
entative feature vector for each image.

Given a training and test set of distorted images, a classifier
is based on the feature vector to classify the images into five
different distortion categories, based on the distortion type
JPEG, JPEG2000, WN, Blur, and FF. DIIVINE in contrast
only classifies the distortion images into 3 categories. The
classifier used is a SVM, which is also utilised in DIIVINE
and BRISQUE. BIQI works well for images corrupted by
white noise and blur and to some extent for JPEG2000 and
FF. However, the performance for JPEG compression is less
impressive.

III. USED SPOOFING / PRESENTATION ATTACK
DATABASES

ATVS-FIr DB: The ATVS-FlIr database consists of fake
and real iris samples of both eyes of 50 subjects and comple-
ments the real data of the BioSecure dataset [14]. Four samples
of each iris were captured in two acquisition sessions with the
LG Iris Access EOU3000. Thus the database holds 800 real
image samples (100 irises x 4 samples x 2 sessions ). The fake
samples were also acquired with the LG Iris Access EOU3000
from high quality printed images of the original sample. As
the structure is the same as for the real samples, the database
comprises 800 fake image samples (100 irises x 4 samples X
2 sessions). Fig. 1 displays example images.

v

(a) Iris; Right eye; Real
Figure 1: ATVS-FIr DB samples

(b) Iris; Right eye; Fake

The dataset has been used before in spoofing / presentation
attack detection investigations, e.g. [15], [4], [2].

ATVS-FFp DB: The ATVS-FFp database consists of fake and
real images taken from a human’s index and middle finger
of both hands. Those fingerprints can be divided into two
categories: With cooperation (WC) and Without cooperation
(WOC). With cooperation means that acquisition assumes the
cooperation of the fingerprint owner, whereas images taken
without cooperation are latent fingerprints which had to be
lifted from a surface.

Independent of the category, four samples of each finger
were captured in one acquisition session with three different
Sensors:

e  Flat optical sensor Biometrika Fx2000 (512 dpi)

e  Sweeping thermal sensor by Yubee with Atmel’s Fin-
gerchip (500 dpi)

e Flat capacitive sensor by Precise Biometrics model
Precise 100 SC (500 dpi).

As a result the database consists of 816 real/fake images
(68 fingers x 4 samples x 3 sensors) samples taken with co-
operation and 768 real/fake images (64 fingers x 4 samples X
3 sensors) samples taken without cooperation. Fig. 2 displays
example images from this dataset.

The dataset has been used before in spoofing / presentation
attack detection investigations, e.g. in [16], [17], [18].

IDIAP Replay-Attack DB [19]: The Replay-Attack database
for face spoofing consists of 1300 video clips of photo and
video attack attempts to 50 clients under different lighting
conditions. All videos were generated by either having a real
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Figure 2: ATVS-FFp DB samples

(k) WOC; Fake;
Thermal

client trying to access a laptop through its webcam or by
displaying a photo/video to the webcam. Real as well as fake
videos were taken under two different lighting conditions:

e controlled: The office light was turned on, blinds are
down, background is homogeneous.

e adverse: Blinds up, more complex background, office
lights are out.

To produce the attack, high-resolution videos were taken
with a Canon PowerShot SX150 IS camera. The way to
perform the attacks can be divided into two subsets: the first
subset is composed of videos generated using a tripod to
present the client biometry (“fixed”). For the second set, the
attacker holds the device used for the attack with his/her own
hands.

In total, 20 attack videos were registered for each client,
10 for each of the attacking modes just described:

e 4 x mobile attacks using an iPhone 3GS screen (with
resolution 480x320 pixels)

e 4 x high-resolution screen attacks using an iPad
(first generation, with a screen resolution of 1024x768
pixels)

e 2 X hard-copy print attacks (produced on a Triumph-
Adler DCC 2520 color laser printer) occupying the
whole available printing surface on A4 paper

As the algorithms used in our experiment are not com-
patible with videos, we extracted every Xth frame from each

video and used them as test data in our experiment. Fig. 3
displays example images used in experimentation.

(a) Adverse; Real (b) Adverse; Fixed; Fake (c) Adverse; Hand; Fake

Highdef Mobile

(d) Controlled; Real  (e)

Controlled; Fixed; (f) Controlled;
Fake Highdef Fake Mobile

Hand;

(g) Adverse; Fixed; Fake (h) Adverse; Hand; Fake (i) Adverse; Fixed; Fake
Print Highdef Mobile

Figure 3: IDIAP Replay-Attack DB samples

The dataset has been used before in spoofing / presentation
attack detection investigations, e.g. in [19], [4], [5], [3], [2].

IV. EXPERIMENTS
A. Experimental Setup

For each image in the databases quality scores were
calculated with the IQM described in section II. We used
the MATLAB implementations from the developers of BIQI,
BLIINDS-2, NIQE, DIVINE, BRISQUE! and BIQAAZ. In all
cases, we used the default settings. We normalised the result
data with the result that O represents a good quality and 100 the
bad one which is already the default result in all cases except
BIQAA. Originally the data of BIQAA is between 0 and 1.
However, the values are so small that we had to define our
own limits for the normalisation. A thorough analysis shows
that our values are all between 0.00005 and 0.05 therefore we
used these figures as our limits. Moreover we had to change the
“orientation” of the BIQAA quality scores to be comformable
to our definition. Summarising, the following formula (1) was
built:

z — 0.05

!/
= ]_ _—— .
z =100 = 550005 — 0.05

100 1)

In the first experimental stage we consider the distribution
of the quality scores only. Our aim was to eventually find a

LAl available from http:/live.ece.utexas.edu/research/quality/
2Available  at  https:/www.mathworks.com/matlabcentral/fileexchange/
30800-blind-image-quality-assessment-through-anisotropy



threshold between the values of the real data and the fake ones
for the various IQM.

Afterwards, in the second stage, we used the quality scores
for a leave-one-out cross validation to get an exact assertion
about the classification possibility with NR IQM. To classify
our data we used k-nearest neighbours (kNN) classification.
Our used k were 1, 3, 5, 7 and 9 for this experiment. First, we
only used one quality score for the classification. In the next
step, we combined several quality scores of the different meas-
ures into one vector and used this for the kNN-classification.
This method allowed us to test all possible combinations of
IQM in a simple way. The distance for the kNN-classification
was in the first case the difference between the two values and
in the second case the distance between the two vectors. At
the end, we got the classification accuracy for discriminating
real from fake images for all IQM combinations.

B. Experimental Results

In Fig. 4, we display the distribution of IQM values for real
and fake data. For some cases, we notice a decent separation
of the values almost allowing to specify a separation threshold.
However, this is not possible for most configurations. In many
cases (see e.g. Fig. 5) we could not recognise any differences
between the distributions because they exhibited the same
spread for real and the fake data. That was the reason for
employing kNN-Classification.

Fingerprint (capacitiv, with Coop) with NIQE Fingerprint (thermal, without Coop) with BIQAA

T

1 90
70
12 60

real fake real fake

(a) Fingerprint (capacitiv, with coop)(b) Fingerprint (thermal, without coop)
with NIQE with BIQAA

Figure 4: Quality score distribution (positive examples)

In the case of kNN-classification with only one IQM, we
already obtain surprisingly good results. In table I we can see
that we got over 99% classification accuracy for a fingerprint
database (thermal, with coop). In this case we already could
see the differences of the distributions of the real and the fake
values of the quality scores (see Fig. 4b). For this reason, a
high accuracy with kNN-classification was already expected.
Nevertheless, we are above 80% overall classification accuracy
for all but a single database. Except for BIQAA, all measures
are present in the table, thus, we are not able to identify
a single IQM specifically well suited for the target task. In
contrast, it seems that the different distortions present in the
spoofed data are quite specific in terms of the nature and
characteristic of the distortions, which is the only explanation
of different IQM performing best on different datasets. In
fact, our results confirm the general results on IQM quality
prediction performance [6], [7] in that it is highly dataset and
distortion dependent which IQM provides the best results.

Eye with BLINDS Face fixed with BIQAA

- ‘v*—r

Hiii

real fake real fake

(a) Eye with BLIINDS (b) Face fixed with BIQAA

30
20

Face hand with NIQE

real fake

(¢) Face hand with NIQE

Figure 5: Quality score distribution (negative examples)

Table I: Best results for kKNN-classification with only one IQM

Database Algorithm k  Accuracy
Eye BRISQUE 7 76.44%
Fingerprint (optical, with coop) BIQI 9 68.20%
Fingerprint (capacitive, with coop) NIQE 9 93.38%
Fingerprint (thermal, with coop) BIQI 5 99.08%
Fingerprint (optical, without coop) DIVINE 7 82.03%
Fingerprint (capacitive, without coop) NIQE 9 84.38%
Fingerprint (thermal, without coop) BIQI 5 94.92%
Face (hand) BLIINDS-2 5 84.76%
Face (fixed) BLIINDS-2 9 80.00%

A further increase in classification accuracy was obtained
by the combination of several IQM. Table II shows the best
combinations for the considered databases from an exhaustive
search. On average, we could improve our results by 7%
compared to the single measure results and so most of the
results are over 90%.

From the latter table we notice that there is a trend of
getting best results when combining a larger number of IQM,
confirming earlier results in this direction [4]. In order to look
into this effect more thoroughly (and to clarify the role of
the k-parameter in kNN-classification) we have systematically
plotted the results of the exhaustive classification scenarios.

We average all classification results by keeping the number
of combined metrics fixed (Figure 6b) and and by keeping the
parameter k fixed (Figure 6a). Combining more metrics and
choosing k large leads to better results on average, whereas
the top results as shown in table II are achieved when using 3
— 6 metrics depending on the considered dataset. In this table,
k is also found to be 1 for two datasets.

V. CONCLUSION

We have found a high dependency on the actual dataset
under investigation when trying to answer the question about
the optimal choice of an image quality measure. All but




Table II: Best IQM combinations

Database Combination k  Accuracy
Eye BIQI, BLIINDS, NIQE, DIVINE, BRISQUE, BIQAA 9 85.81%
Fingerprint (optical, with coop) BIQI, BLIINDS, DIVINE, BIQAA 7 81.25%
Fingerprint (capacitive, with coop) BIQI, BLIINDS, NIQE, DIVINE, BRISQUE, BIQAA 3 96.69%
Fingerprint (thermal, with coop) BIQI, BLIINDS, (NIQE), DIVINE, BRISQUE 1 99.63%
Fingerprint (optical, without coop) BIQI, BLIINDS, (NIQE), DIVINE, BRISQUE 7 87.69%
Fingerprint (capacitive, without coop) BLIINDS, NIQE, BIQAA 5 92.19%
Fingerprint (thermal, without coop) BIQI, BLIINDS, NIQE, BRISQUE, BIQAA 1 98.44%
Face (hand) BLIINDS, (NIQE), DIVINE, BRISQUE, BIQAA 7 92.86%
Face (fixed) BIQI, BLIINDS, NIQE, DIVINE, BRISQUE, BIQAA 9  92.38%

k —— Number of Metrics ——
£ —
82 B — "
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g 8l 8
2 2 80
> >
s s
S 80 S 75
79 70
78 65
1 3 5 7 9 1 2 3 4 5 6
k Number of combined metrics

(a) Dependent on k (b) Dependent on number of metrics

Figure 6: Average quality score

BIQAA are listed at least once as being the best option for
a specific dataset. While BIQAA is not seen among the best
performing IQM (and thus seems to be a candidate for the
worst-performing IQM), it is found in several IQM fusion
settings and thus obviously complements the other IQM (which
are all somehow based on NSS) in some way. Therefore, we
are not able to identify a clear “winner” or “looser” among
the IQM based on the results analysed. The same is true when
it comes to classifier settings, which are also rather dependent
on the dataset. Overall, there is a trend that more IQM being
combined lead to better classification accuracy.

Since the optimal choice of IQM is so dependent on the
dataset, it is probably also the nature of attack type that plays
a certain role (e.g. if the attack is based on replayed data or if
actual artefacts are being used). Thus, the generalisation of the
results to unseen attack types might be not straightforward.
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