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Abstract

Rating a compression algorithms’ performance is usually done in experimental studies, where researchers have frequently used
JPEG pre-compressed data. It is not clear yet, if results of such compression experiments are reliable when conducted on pre-
compressed data. To investigate this issue, we first study the impact of using pre-compressed data in iris segmentation and evaluate
the relation between iris segmentation performance and general image quality metrics. In this context we propose a method to
overcome potential problems in case using pre-compressed data sets cannot be avoided. As the second step, we conduct experi-
mentation on the entire iris recognition pipeline. We find that overall, recognition accuracy results might not be entirely reliable in
case of applying JPEG XR or JPEG2000 to JPEG pre-compressed data.

1. Introduction

Iris recognition [1, 2] is one of the most deployed biomet-
ric modalities, standardised by the International Civil Aviation
Organisation (ICAO) for use in future passports, and one of
the technologies in the Unique Identification Authority of In-
dia’s (UID) Aadhaar project to uniquely identify Indian citi-
zens. The increasing market saturation of biometrics instead
of conventional access control methods raises the need for ef-
ficient means to store such data. The International Organisa-
tion for Standardisation (ISO) specifies iris biometric data to
be recorded and stored in (raw) image form (ISO/IEC FDIS
19794-6) rather than in extracted templates (e.g. iris-codes).
Such deployments benefit from future improvements (e.g. in
feature extraction stage) which can be easily incorporated with-
out re-enrollment of registered users. Since biometric templates
may depend on patent-registered algorithms, databases of raw
images also enable more interoperability and vendor neutrality
[2]. These facts motivate detailed investigations and optimisa-
tions of image compression on iris biometrics in order to pro-
vide an efficient storage and rapid transmission of raw biomet-
ric records. Furthermore, the application of low-powered mo-
bile sensors for image acquisition, e.g. mobile phones, raises
the need for reducing the amount of transmitted data.

As a consequence, according to the importance of this is-
sue, many studies comparing and optimising lossy compression
techniques for iris imagery may be found in literature. Since the
CASIA iris datasets have been very popular among researchers
ever since their establishment, many papers dealing with com-
pression have been relying on the (extended) CASIA V1.0
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dataset, including also first IREX investigations [3, 4, 5, 6, 7]
(apart from other examples using the ICE 2005 dataset [8, 9]).

Since it has been pointed out [10] that the CASIA V1.0
dataset exhibits manipulated pupil areas and should therefore
not be used any further in experimentation, compression re-
searchers moved to other (and more recent, more challenging
etc.) datasets, e.g. the CASIA V3.0 [11, 2], the CASIA V4.0
[12], the Bath [4, 13], and the UBIRIS.v1 [6, 14] datasets.
While the images of CASIA V1.0 and ICE 2005 are given in
uncompressed format, images in CASIA V3.0, CASIA V4.0,
UBIRIS and Bath datasets are provided as JPEG (the first three)
or JPEG2000 (the latter) lossy compressed data. Therefore,
any compression experiments conducted on these datasets op-
erate on pre-compressed data. This fact has not been ignored
entirely – for example, in [2], preparatory JPEG compression
experiments with uncompressed data reveal that slightly pre-
compressed data leads to better recognition performance due
to denoising effects. Thus experiments with pre-compressed
data are assessed to be unproblematic. The same argument is
used for JPEG2000 pre-compressed data [13]: In [4] it was also
shown that slight pre-compression with JPEG2000 improves
recognition rates, thus JPEG2000 pre-compression is not seen
problematic in any way. However, eventual artifacts resulting
from recompression effects are not accounted for in these con-
siderations. Recompression artifacts arise in cases where data
is compressed twice (or multiple times) with lossy compres-
sion schemes, i.e. where artifacts from the first compression
step (termed pre-compression) are aggravated or exploited by
the second compression step.

Two different types of such effects may be distinguished:
First, homogeneous recompression, where the same compres-
sion scheme is used several times, whereas in heterogeneous
recompression different methods are used in the different com-
pression steps. For example, in iris recognition, using JPEG
pre-compressed data and applying JPEG XR and JPEG2000
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[11] or JPEG2000 and fractal compression [14] is eventually
prone to heterogeneous recompression artifacts, while the ap-
plication of JPEG to JPEG pre-compressed data [12, 2] can be
prone to homogeneous recompression artifacts. However, ex-
periments prone to eventual recompression effects are not lim-
ited to compression in iris recognition. As a further example
we consider compression in face recognition, where [15] uses
the CMU Face In Action (FIA) Database (which is in JPEG for-
mat) to investigate H.264 compression effects and [16] eventu-
ally suffers from homogeneous recompression effects since the
original images shown in the paper before applying JPEG com-
pression clearly already exhibit JPEG compression artifacts.

While next to nothing can be found on the issue of hetero-
geneous recompression artifacts in the general compression lit-
erature, homogeneous recompression artifacts are better inves-
tigated, at least in the case of lossy JPEG compression. Soon
after the establishment of the JPEG standard [17], it was found
that JPEG recompression artifacts arise and do not follow a
linear behaviour [18]. Extensive experiments in this direc-
tion can also be found in [19], and following these observa-
tions, requantisation-based schemes have been suggested for
JPEG, reducing recompression artifacts considerably [20]. Re-
cently, the identification of images which underwent JPEG dou-
ble compression (i.e. JPEG homogeneous recompression) has
been a hot topic in image forensics [21]. Taking all these facts
together, it gets clear that recompression artifacts may impact
experimental results with respect to biometric recognition per-
formance, an issue, that has been neglected so far. As dis-
cussed, ISO/IEC FDIS 19794-6 requires storing biometric data
as raw images, hence all components of a biometric system are
affected when operating with compressed data. As we inves-
tigate the recompression issue by studying impact on an iris
recognition system, the influence on segmentation and texture
extraction as well as feature extraction, i.e. iris code computa-
tion, has to be evaluated. [22, 8] suggest that data reduction has
the highest impact on the iris segmentation. Since segmentation
is also the first step in the pipeline, this potentially effects the
performance of later steps as well and is therefore of particular
importance.

We systematically investigate eventual homogeneous and
heterogeneous recompression effects in an experimental study
for iris recognition. Given the importance of JPEG (as the CA-
SIA V3.0/V4.0 and UBIRIS.v1 datasets are only available in
this format), we focus on JPEG pre-compressed data. In our
experiments, we first compare iris segmentation and general
purpose image quality metrics applied to single compressed vs.
recompressed (i.e. JPEG pre-compressed) iris image data, be-
fore assessing eventual recompression effects on iris recogni-
tion accuracy. Section 2 discusses relevant aspects on gener-
ating single- and recompressed data. The used data sets and
methods are described in section 3. Section 4 introduces sev-
eral quality metrics and iris segmentation experiments and lists
their results, which are then compared in section 5. Section 6
presents experimental results on iris recognition accuracy in re-
compression scenarios. From the experiments’ individual and
comparison results, we draw conclusions in section 7.

2. Compression scheme

As discussed, we investigate whether there is a difference in
using truly uncompressed data or pre-compressed data in ex-
periments rating the performance of an iris segmentation. Us-
ing pre-compressed data means a pre-compressed image Ip is
compressed a second time, resulting in an recompressed im-
age Ir. When compressing a truly uncompressed image Iu, the
resulting image Is is generated in a single compression step.
Since experiments are typically carried out on a data set with
more than one image, we denote I

(k)
u , I

(k)
p , I

(k)
s , I

(k)
r ∈ Rw×h

as the kth image with width w and height h. For simplicity,
Iu, Ip, Ir, Is subsequently denote a particular but unspecified
image of a data set. Furthermore, we define s(F ) ∈ N with
F ∼ I ∈ Rw×h as a function that returns the file size of the
file F storing an image I . Since common lossy compression al-
gorithms also employ lossless compression methods, e.g. run-
length encoding, before writing to a file, F is only loosely re-
lated to the pixel data, namely the image, I . For simplicity,
we denote s(I) as the file size of the file F encoding the pixel
values of an image I . cm(I, q) with q ∈ N describes the pro-
cess of compressing an image I using a particular method m
parametrised with the quality parameter q. In terms of this pa-
per we use the values m ∈ {jpg, jxr, j2k}, where

• jpg corresponds to the well-known (ISO/IEC IS 10918-1)
DCT-based image compression method JPEG,

• j2k corresponds to the wavelet-based image compression
standard JPEG2000 (ISO/IEC IS 15444-1), which can op-
erate at higher compression ratios and

• jxr corresponds to the compression standard JPEG-XR
based on Microsofts HD Photo, which is specified in
(ISO/IEC IS 29199-2).

For rating an image I’s compression effectiveness, we define
the compression ratio cr between an uncompressed image Iu
and a compressed image Ic as

cr(Iu, Ic) =
s(Iu)

s(Ic)
with Ic ∈ {Ir, Is} (1)

For the later described experiments, images are compressed
to a target compression ratio crt ∈ R. However, only the j2k
compression standard allows to specify a target compression ra-
tio crt directly via parameter q. Hence this is the only method
where we can control the file size s(Ic) directly. The other two
compression methods take a quality parameter q ∈ N only, con-
trolling the quality but not the file size s(Ic). Thus it is not pos-
sible to set this parameter to meet a certain target compression
ratio crt. Due to the quality parameter’s limited set of quality
values, the target compression ratio crt cannot be achieved ex-
actly for any of the three methods. Parameter optimisation can
be done, such that crt u cr(I

(k)
u , I

(k)
c ). We propose an algo-

rithm to compress a set of K uncompressed images Iu using
a particular method m to achieve a certain compression ratio
crt in a way that the compression ratio of each image is met as
closely as possible. This process, illustrated in Fig. 1, employs
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1. Compute the single-compressed image I
(k)
s with method

m such that cr(I
(k)
u , I

(k)
s ) ≈ crt. The optimal quality pa-

rameter q(k)s is computed for each image separately by

s
(k)
t =

s(I
(k)
u )

crt
(2)

q(k)s = argmin
q∈N

|s(cm(I(k)u , q))− s
(k)
t |, (3)

where s
(k)
t is the file size exactly meeting the target com-

pression ratio crt. This is implemented by iteratively
searching the quality parameter q that results in the closest
achievable compression ratio cr(Iu, Ic). The single com-
pressed images I

(k)
s using method m are computed with

the optimal parameters q(k)s as

I(k)s = cm(I(k)u , q(k)s ) (4)

2. Compute a pre-compressed image I
(k)
p using jpg-method

with an arbitrary but fixed quality parameter qp, i.e.

I(k)p = cjpg(I(k)u , qp) (5)

3. Now, find a quality parameter q(k)d that allows to compress
the pre-compressed image I(k)p a second time, such that the
resulting recompressed image I(k)r has the same file size as
the single-compressed image I

(k)
s , i.e. s(I(k)s ) u s(I

(k)
r ).

Such a quality parameter q(k)r can be found by optimising

q(k)r = argmin
q∈N

|s(cm(I(k)p , q))− s(I(k)s )| (6)

∀s(I(k)s ) ≥ s(I(k)r ) (7)

The condition s(I
(k)
s ) ≥ s(I

(k)
r ) is of importance to estab-

lish fair conditions, since it is very likely that the file sizes
s(I

(k)
s ), s(I

(k)
r ) cannot be equalised due to the limited set

of the quality parameters q. The recompressed images I(k)r

are then computed from the pre-compressed images I
(k)
p

with the found optimal parameters qr as

I(k)r = cm(I(k)p , q(k)r ) (8)

Using data sets generated with this method, we can inves-
tigate the impact of artifacts in an recompressed image Ir in
comparison to those in single-images Is. The first one contains
artifacts by two compression stages, while the latter one con-
tains artifacts from one compression step only.

3. Experimental setup

Although there are several iris data sets around, few are
available in uncompressed format. We use the IITD Iris data
base1. The main reason for this is the availability of a segmen-
tation ground truth created by an expert, which was recently

1IITD Iris Database version 1.0, www4.comp.polyu.edu.hk/
\textasciitildecsajaykr/IITD/Database\_Iris.htm

Figure 1: Compression principle to obtain two images achieving approximately
the same target compression ratio crt from an uncompressed image I(k)u using
a particular compression method m. One image, I(k)s , is compressed in a single
step while the other, I(k)r , uses a pre-compression and a final compression step.
The pre-compression step is always a jpg-compression, while the final one uses
the same method m as used in single-compression.

introduced by Hofbauer et al. [23] and used in [22]. The
kth image of this segmentation ground truth data set is sub-
sequently denoted as SGT (k). According to information by the
IITD iris data base’s authors, the images, stored in a 3-channel
uncompressed bitmap format2, are already JPEG-compressed
with 100% quality by the sensor (JIRIS, JPC1000). Since they
are stored as bitmaps, all images have an identical file size of
s(Iu)=230,454 bytes. While this reference file size is used for
experiments on image quality metrics and segmentation, we use
the “correct” original s(Iu)=76800 bytes filesize in the con-
text of iris recognition to consider even stronger compression
(since the only significant differences between single compres-
sion and recompression in iris segmentation have been found
for high compression ratios [24]). Thus, when comparing iden-
tical compression ratios between those two sections, they actu-
ally differ by a factor of 3. Despite not being optimal, using the
IITD was necessary due to the available ground truth, for rea-
sons becoming obvious in section 4.3. Furthermore, the IITD
– contrary to others, e.g. the ND-IRIS-0405 iris image dataset
[25] – is captured under favorable conditions, which allows for
lower segmentation errors. This is necessary to distinguish be-
tween noise and recompression-effects. We use the scheme in-
troduced in section 2 to compress obtain data sets with target
compression ratios crt ∈ {15, 20, 25, ..., 70, 75}. For each of
these target compression ratios crt, the pre-compression step
in recompression mode is carried out with quality parame-
ters qp ∈ {100, 80, 75, 70} to simulate different levels of pre-
compression. Each of these combinations is used to compress
with the introduced jpg, j2k and jxr methods. We start at
compression ratio crt = 15, because even a pre-compression
with qp = 100 achieves - depending on the image’s content -
already a compression ratio of cr(Iu, Ip) ≈ 10. For obvious
reasons, no smaller compression ratio cr(Iu, Ir) < cr(Iu, Ip)

2We want to point out that storing in 1-channel bitmaps as done for recog-
nition experiments would be more efficient, since the images were captured in
near-infrared. However, we use the size information of the 3-channel bitmap in
computing compression ratios
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single: 1− cr(Iu,Is)
crt

recomp.: 1− cr(Iu,Ir)
crt

% jpg j2k jxr jpg j2k jxr
µ -3.21 -3.48 -4.33 -6.80 -7.04 -9.49
σ 2.74 2.51 2.87 4.83 4.23 4.34

Figure 2: Scatter plots of measured compression ratios cr(Iu, Is) over
cr(Iu, Ir) for methods jpg (left) and jxr (right). The graphs indicate that the
s(I

(k)
s ) ≥ s(I

(k)
r ) condition from equ. (7) is satisfied. While this is indeed

true for j2k and jxr, we observe a violation in 0.13% of the cases for jpg at
crt ≥ 70, because JPEG is already operating at its bitrate limits at such high
compression ratios. The table below the figures reveals, that on average the
aimed crt is met with 3.67% accuracy for single-compressed images Is, while
the recompressed ones Ir only reach 7.8%. This is due to the limited set of
quality parameters q, qp.

can be reached in recompression. This results in a total of 195
data sets with 2240 images each, whose distribution is shown
and discussed in Fig. 2.

4. Evaluation

We investigate the behaviour of iris segmentation employing
a segmentation error rate (section 4.3). Besides that, we as-
sess the image quality with full-reference metrics (section 4.1)
as well as non-reference metrics (section 4.2). The individual
results are then compared in section 5.

As correctly pointed out [26], image quality is by no means
equivalent to biometric quality. For example, an image of the
eye with closed lid might exhibit excellent image quality while
it is of lowest biometric quality in an iris recognition context.
However, images with low image quality will always also have
reduced biometric quality, as shown for many modalities e.g.
when samples are compressed. Therefore, it makes sense to
apply image quality metrics to look for eventual effects of re-
compression in order to be able to identify occurring effects by
just evaluating such metrics on the data instead of being forced
to conduct the more costly segmentation or even recognition
experimentation.

4.1. Full-reference quality metrics

Evaluating the quality of the compressed images with respect
to the original an assortment of full-reference metrics was cho-
sen. The choice was made according to different aspects of
human perception starting from mathematically defined to low-
level features based and finally to high-level features based. It
has to be pointed out that in general, the application of full-
reference metrics in a biometric environment is difficult as in
most cases, no undistorted original is available for the assess-
ment. However, in recent work it has been shown that the usage

of a different image of the subject to be authenticated (eventu-
ally stored from previous enrollment) can be used for quality as-
sessment with full-reference quality metrics quite successfully
[27]. The following metrics were included:

• PSNR: Peak signal-to-noise ratio.

• MSSIM [28]: Multi-scale structural similarity index is an
extension of the SSIM metric. After the extraction of lumi-
nance, structure and contrast components from the image
at scale 1, the algorithm iteratively applies a low pass fil-
ter and downsamples the filtered image by a factor of 2.
The overall result is the combination of measurements at
different scales.

• NQM [29]: Noise Quality Measure, a low-level HVS fea-
tures based metric. The contrast pyramid of Pelis work
was used to model the variation in contrast, sensitivity with
distance, dimensions and spatial frequency of the stimuli,
and with the variation of their local luminance mean.

• RFSIM [30]: Riesz-transform feature based similarity
metric approximates HVS by perceiving an image mainly
according to its low-level features and uses the 1st-order
and 2nd-order Riesz transform coefficients. The similarity
index is measured by comparing the two feature maps at
key locations marked by the feature mask. The mask is
generated by a Canny operator.

• VSNR [31]: Visual Signal-to-Noise Ratio, a wavelet based
metric. The metric is designed to evaluate both low-level
and mid-level HVS features. VSNR works in two stages:
The first computes the contrast detection thresholds, while
the second estimates visual fidelity by measuring the per-
ceived contrast and the extent to which the distortions dis-
rupt global precedence.

Applying these quality metrics, jpg, j2k and jxr resulted in
the following observations (see Fig. 3 and 4):

1. For jpg and crt > 15 single compressed images were
of higher quality compared to recompressed ones and at
crt=15 the single compressed images were of the lowest
quality as shown in Fig. 3 for MSSIM. The quality of the
recompressed images followed the trend that the higher the
qp the better the quality of the image. The previous obser-
vation of metrics for jpg was unanimous for all metrics.

2. For jk2 in all compression ratios and all metrics, the qual-
ity of the recompressed images followed the trend that the
higher the qp the better the quality of the image. Single
compressed images were of the highest quality compared
to recompressed data, which was valid for all metrics and
compression ratios as shown exemplary for MSSIM in Fig.
3.

3. For jxr and 15 ≤ crt ≤ 40 single compressed images
were of the lowest quality compared to recompressed data
for MSSIM and VSNR. The latter followed the trend of
the higher the qp the better the quality of the image (Fig.
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4). For 45 ≤ crt ≤ 75 images of single compression be-
came of the highest quality and recompressed data contin-
ued the same trend for MSSIM and VSNR metrics. NQM
showed the same behaviour, but crt=50 was observed to be
the changing point in this case. RFSIM showed a differ-
ent trend from the previous; single compressed data were
always of the best quality compared to recompressed data
which followed in terms of quality measurement.
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Figure 3: Left: MSSIM of jpg single- and recompressed data. Right: MSSIM
of j2k single- and recompressed data
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Figure 4: Left: RFSIM of jxr single- and recompressed data. Right: MSSIM of
jxr single- and recompressed data

4.2. Non-reference quality metrics

Out of the four metrics considered in this work, NRPQA and
BRISQUE have been already employed in a biometric context
recently [26].

• ANISOTROPY [32]: The anisotropy is measured as the
difference from the expectation value of the entropy for
different orientations in the image (where pointwise Renyi
entropy is actually computed). A distinct maximum value
is obtained for undistorted images.

• NRPQA [33]: Primarily measures compression artifacts
resulting from block-based lossy compression schemes
(like JPEG and JPEG XR). It is computed in the spatial do-
main as the combination of blockyness and activity estima-
tion (the latter reduced by removal of high frequency in-
formation) in both horizontal and vertical directions, man-
ifesting in three metrics: Blockyness, activity, and zero-
crossing rate. As we apply JPEG-based pre-compression,
all types of double compression schemes could / should be
detected with this metric.

• BRISQUE [34]: This quality metric is a deviation measure
of a natural image from the regular statistics, indicating
distortion. It may thus be interpreted as a holistic assess-
ment of image naturalness. The underlying features are
computed from the empirical distribution of locally nor-
malised luminances and products of locally normalised lu-
minances under a spatial natural scene statistic model.

• NIQE [35]: NIQE is based as well on a quality aware col-
lection of statistical features based on a simple and suc-
cessful spatial domain natural scene model. Contrasting
to BRISQUE (and most other non-reference quality met-
rics), it is not trained on human-rated distorted images but
the natural scene statistics are derived only from a corpus
of natural, undistorted images without any exposure to dis-
torted images.

Applying these quality metrics, jpg, j2k and jxr resulted in
the following observations (see Figs. 5, 6 and 7):

1. For jpg we find the only two cases (shown in Fig. 5) where
metrics behave as expected from the full-reference met-
rics’ results. For increasing crt the superiority of the sin-
gle compressed case also increases, q100 is second best,
and the remaining qp are indistinguishable (for BRISQUE
and NRPQA). For ANISOTROPY, results are completely
useless (compare also Fig. 7), and for NIQE the ex-
pected behaviour is observed only for crt ≥ 50 while
for crt ≤ 30, recompression q70 delivers the best values
(ANISOTROPY and NIQE results not shown).
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Figure 5: Left: BRISQUE of jpg single- and recompressed data. Right: NR-
PQA of jpg single- and recompressed data

2. For j2k, we observe two metrics where single compression
is the best variant, and all other recompression settings
perform worse, except for recompression q70 which is
equally well than applying single compression (BRISQUE
and NIQE, not shown). For crt ≥ 50, for both NRPQA
and ANISOTROPY at least the single compression case
gives the best result, while the ranking of the other recom-
pression cases is somehow unexpected (e.g. q75 worst and
q70 best for ANISOTROPY). However, for crt ≤ 50, for
both metrics q70 results in the best overall values, q80 in the
worst values, and the single compressed case is in-between
(see Figs. 6 and 7).

3. For jxr, again the ANISOTROPY results are meaningless
since the metric behaves reverse to its definition (metric
values are better for higher crt, see Fig. 7) which is also
the case for jpg and makes further discussion on results
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Figure 6: Left: NIQE of jxr single- and recompressed data. Right: NRPQA of
j2k single- and recompressed data

meaningless. For the other three metrics, we observe a
similar picture: For crt ≤ 50, q70 results in the best overall
values, q80 in the worst values, and the single compressed
case is in-between (see Fig. 6 for the NIQE result). For
crt ≥ 50, the single compression case catches up to q70.
Note that this is quite similar to the results found for j2k
and NRPQA as well as ANISOTROPY.
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Figure 7: Left: ANISOTROPY of jxr single- and recompressed data. Right:
ANISOTROPY of j2k single- and recompressed data

Overall, we find a much more non-uniform and inconsis-
tent behaviour for non-reference metrics as compared to full-
reference ones. However, still there are several cases (and also
crt ranges), in which single compressed data is rated to deliver
best quality, while especially in the range crt ≤ 50 single com-
pression is often found to be rated between q70 (being best) and
q80 (being worst). ANISOTROPY completely fails to deliver
useful results for jpg and jxr.

4.3. Segmentation error rates
In iris recognition, the segmentation of an iris image is con-

sidered as one of the most critical parts [8, 22]. We investigate
the differences of single- and recompression as well as the as-
pects of which reference to use. We distinguish between using
an absolute reference, e.g. a ground truth, and a relative one,
e.g. the segmentation of the uncompressed images Iu, when
computing the error rate.

The segmentation accuracy is rated by the mean segmenta-
tion error rate, which corresponds to the suggested E1 error
rate in the Noisy Iris Challenge Evaluation - Part I (NICE.I).
We define the segmentation error rate ser as

ser(R,S) = R⊕ S ∈ [0, 1] with R, S ∈ {0, 1}w×h, (9)

where R is the binarised reference segmentation and S the bi-
narised segmentation result of the same image I . The mean

Figure 8: Segmentation masks of the expert ground truth [23], relative ground-
truth seg(I

(k)
u ) and an actual segmentation result seg(I

(k)
r ) (f.l.t.r)
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Figure 9: Relative and absolute segmentation error mserrel (left) and
mserabs (right) with WAHET (top) and CAHT (bottom) segmentation on jpg-
compressed data. Note that the mserabs is generally higher than mserrel, be-
cause the tested algorithms ignore eyelids, yet they are considered in the expert
ground truth [22].

value of the pixel-wise exclusive-or is the percentage of pixels
different in the segmented image S in respect to the reference
R. Due to multiple images in a data base, the mean segmenta-
tion error is computed from K images. We compute the abso-
lute mean segmentation error mserabs in respect to the ground
truth SGT and the relative mean segmentation error mserrel in
respect to the segmentation of the uncompressed images Iu for
single- and recompressed images Ic ∈ Is, Ir. By denoting the
segmentation result of an image I as seg(I) ∈ {0, 1}w×h we
have

mserabs =
1

K

K∑

k=1

ser(SGT (k), seg(I(k)c )) (10)

mserrel =
1

K

K∑

k=1

ser(seg(I(k)u ), seg(I(k)c )) (11)

The absolute segmentation error rate is considered to be op-
timal because of the available ground truth. However, for most
data bases no such ground truth is available. Therefore we eval-
uate if the same conclusions as from the mserabs can be drawn
from the mserrel. The benefit of such a relation (if it exists) is
that the mserrel can be computed for any arbitrary data set.

The data set described in section 3 is used to test the two
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Figure 10: Relative CAHT segmentation error rate mserrel for jxr-compressed
data (left) and absolute WAHET segmentation error rate mserabs for j2k-
compressed data (right)

iris segmentation algorithms, Contrast-adjusted Hough Trans-
form (CAHT) and Weighted Adaptive Hough and Ellipsopolar
Transform (WAHET), from the USIT Framework v1.0.33. The
behaviour of these algorithms wrt. compression and impact of
other artifacts is already analysed in literature [22, 2]. From our
results we make the following observations:

1. Results for homogeneous recompression experiments,
namely jpg on jpg pre-compressed data, in Fig. 9 indicate:

(a) For small and medium compression ratios (crt ≤ 50)
no significant difference in segmentation errors of
single- and recompressed data is observable. This
implies that for these compression ratios it has no im-
pact whether pre-compressed or uncompressed data
is used in experiments.

(b) For large compression ratios (crt > 50), segmen-
tation errors tend to be lower for single-compressed
data compared to recompressed data. Thus us-
ing pre-compressed or uncompressed data in experi-
ments matters.

(c) mserrel and mserabs generally show similar trends
for medium and large compression ratios, i.e. there
is a strong correlation of mserrel and mserabs for
crt > 30. This means, the relative error mserrel suf-
fices to rate performance on iris segmentation here,
implying no expert-generated ground truth is needed.

(d) However, WAHET segmentation errors reveal that
in some cases there can be a difference between
mserrel and mserabs for crt ≤ 30. Fig. 9 shows
here a different behaviour between absolute error
mserabs (top-right) and relative error mserrel (top-
left). Hence, for low compression ratios a ground
truth is required.

(e) In recompression, one might expect a linear relation
between used pre-compression quality qp and rank-
ing of the error rates. Interestingly, when looking at
Fig. 9 at high compression ratios, the poorest per-
formance corresponds to qp = 75, while the best
is related to qp = 70. In contradiction, qp = 100
performs significantly better than qp = 80 in most
settings.

3as available at http://wavelab.at/sources/ [2]

2. There are no clear trends for heterogeneous recompres-
sion experiments, namely jxr or j2k on jpg pre-compressed
data. Even so, some interesting observations are made,
which are illustrated in Fig. 10:

(a) Data generated in a single compression step gener-
ally tends to result in smaller error rates compared
to those computed from recompressed data. Inter-
estingly, for extreme values, namely very small and
very large compression ratios, single-compression
performs often poorer.

(b) For all experiments carried out with jxr and j2k, the
error rate flattens in some way for medium compres-
sion ratios, i.e. 45 ≤ crt ≤ 70. As an example this
can be seen in the mserabs for j2k (Fig. 10 right).
The characteristics of a curve’s flattening vary de-
pending on the pre-compression quality qp. Since
flattening can be seen in single- as well as recom-
pressed data, we conclude the effect is generally re-
lated to the used methods jxr and j2k. However, the
characteristics of the flattening seem to be controlled
by the pre-compression quality qp in a way that the
lower the pre-compression quality is, the clearer the
curve stagnates. Similar effects have been observed
in a recent paper [36] where it turns out that strong
compression artifacts are able to guide segmentation
algorithms as those artifacts usually appear close to
boundaries between differently structured areas (i.e.
pupil, iris texture, sclera). Thus, the segmentation er-
rors decrease while the compression ratio increases
which can contribute to the observed flattening ef-
fect.

Thus, we reach the following conclusions:

(jpg) Homogeneous recompression. Recompression effects
have a strong impact on experimental results for large compres-
sion ratios, i.e. crt > 50 (observations (1a),(1b)). Researchers
are often forced to use pre-compressed data sets for the sake
of ground truth availability. Results for compression ratios of
crt > 50 can therefore not be considered entirely reliable (ob-
servation (1b)). However, recompression effects have negative
influence on segmentation error rates, hence by using uncom-
pressed data for the same experiments, better results may be
achieved. If this behaviour is related to homogeneous recom-
pression in general or for jpg-recompression only, is topic to
further research.

From observation (1c) we know that for large compression
ratios, i.e. crt > 50, there is no difference in the progress of
mserrel and mserabs. Since this is (from observation (1b)) ex-
actly the range, where using single- or recompressed data does
have an impact, we propose - based on observations (1d) and
(1c) - to bench-mark compression algorithms in respect to iris
segmentation by using

• uncompressed data sets rated with relative measures, such
as the mserrel, for severe compression, i.e. crt > 50 and
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• pre-compressed data sets4 with absolute measures, such as
mserabs, for medium and light compression, i.e. crt ≤
50.

If this applies to homogeneous recompression with other
methods as well needs further investigation.

Heterogeneous recompression. We cannot observe comparable
behaviour. However, there are trends observable (see observa-
tions (2a),(2b)), which need further investigation.

5. Comparison of Quality Metrics and Segmentation Accu-
racy

Besides evaluating the segmentation error rate and the gen-
eral purpose quality measures independently, their correlation
is analysed additionally. Furthermore, we explicitly investi-
gate the correlation between mserrel and mserabs to back up
the observations in section 4.3. For this purpose, we used the
Spearman’s rank correlation coefficient (SRCC) in two ways:
First, computing quality metrics and segmentation errors per
compression ratio averaged over all images and then correlat-
ing the two ordered arrays (SRCCA, using the original defini-
tions of mserrel and mserabs), and second, computing SRCC
for each image individually between the images’ quality metric
values and segmentation error per compression ratio and subse-
quently averaging the individual SRCCs (SRCCI ). For SRCCA

we expect to learn about overall trends and more stable results
as smaller inconsistencies wrt. single images are better hidden,
however, it is not possible to provide confidence intervals us-
ing this approach. Thus, SRCCI is additionally considered to
account more for the behaviour of single images (i.e. if it is pos-
sible to predict segmentation errors by computing metric values
of single images).

In general, all five used general purpose full-reference qual-
ity metrics show a high linear relationship with a minimum
SRCCA of 0.852 to each other. Furthermore, all of these met-
rics are highly correlating with the segmentation error rate and
there are only minor differences between the segmentation al-
gorithms (CAHT exhibits slightly higher SRCCA values than
WAHET) and the relative and absolute segmentation error rates.
Table 1 shows the SRCCA correlation results for the homo-
geneous recompression (jpg) and the CAHT segmentation al-
gorithm. It can be observed that the mserrel shows over-
all a higher linear relationship to the quality metrics than the
mserabs. The reason for this can be seen in Fig. 9 (bottom)
where the mserrel has a larger slope for small and medium crt
while the mserabs is more flat in this region and is in general
more noisy as well.

Furthermore, it can be seen that for the MSSIM metric
(mserrel) in case of single compression the SRCCA is smaller
compared to the other metrics, which is due to the outlier of
the MSSIM at crt = 15 in Fig. 3. However, except for this
outlier, the MSSIM outperforms the other four quality metrics

4If absolutely necessary because of ground-truth availability, of course un-
compressed data is preferred

single rec.70 rec.75 rec.80 rec.100
PSNR -0.995 -0.995 -1.0 -1.0 -1.0
MSSIM -0.912 -0.995 -1.0 -1.0 -1.0
NQM -0.995 -0.995 -1.0 -1.0 -1.0
VSNR -0.995 -0.995 -1.0 -1.0 -1.0
RFSIM -0.995 -0.995 -1.0 -1.0 -0.995

single rec.70 rec.75 rec.80 rec.100
PSNR -0.857 -0.863 -0.929 -0.868 -0.841
MSSIM -0.923 -0.863 -0.929 -0.868 -0.841
NQM -0.857 -0.863 -0.929 -0.868 -0.841
VSNR -0.857 -0.863 -0.929 -0.868 -0.841
RFSIM -0.857 -0.863 -0.929 -0.868 -0.846

Table 1: SRCCA Spearman Rank Correlation Coefficient between quality met-
rics and mserrel (above) as well as mserabs (below) for homogeneous re-
compression (jpg) and the CAHT segmentation.

single rec.70 rec.75 rec.80 rec.100
PSNR -0.518 -0.527 -0.541 -0.554 -0.560
MSSIM -0.519 -0.528 -0.541 -0.554 -0.560
NQM -0.518 -0.527 -0.541 -0.554 -0.561
VSNR -0.519 -0.527 -0.541 -0.554 -0.560
RFSIM -0.519 -0.527 -0.541 -0.554 -0.560

single rec.70 rec.75 rec.80 rec.100
PSNR -0.054 -0.032 -0.055 -0.035 -0.039
MSSIM -0.054 -0.032 -0.055 -0.035 -0.038
NQM -0.053 -0.032 -0.055 -0.035 -0.039
VSNR -0.054 -0.032 -0.055 -0.035 -0.038
RFSIM -0.054 -0.032 -0.055 -0.035 -0.038

Table 2: SRCCI Spearman Rank Correlation Coefficient between quality met-
rics and mserrel (above) as well as mserabs (below) for homogeneous re-
compression (jpg) and the CAHT segmentation.

and in general represents the segmentation error rates best. In
case of homogeneous recompression MSSIM agrees clearest
with the trend already seen in section 4.3 (observation (1b))
that for crt > 50 the segmentation of the single-compressed
data shows a lower error and therefore a higher quality than the
recompressed data.

Table 2 shows the corresponding SRCCI results (homoge-
neous recompression and CAHT segmentation). The 95% con-
fidence intervals are obtained ± 0.012 – 0.013 for mserrel and
0.017 – 0.019 for mserabs. When replacing the mean in the
table by the median, the values are increased by ≈ 0.07, but the
overall trend is identical.

We clearly notice a very different behaviour as compared to
the SRCCA results. While for mserrel values indicate at least
linear relation with medium extent, no correlation at all is de-
tectable for mserabs. While lower correlation was expected
for SRCCI as compared to SRCCA, the vanishing of correla-
tion for mserabs is surprising. When looking into the single
SRCC values in detail it turns out that while mserrel exhibits
many values equal to zero5 which lead to reasonable SRCCI

when correlated with high quality values, mserabs has almost
all values > 0 randomly fluctuating6, which leads to very poor
correlation in medium and high quality areas.

5A mserrel = 0 is common because this only means that the very same
segmentation results are achieved in the uncompressed and the compressed im-
age.

6This is because already the segmentation results of the uncompressed im-
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single rec.70 rec.75 rec.80 rec.100
PSNR -0.697 -0.785 -0.412 -0.593 -0.275
MSSIM -0.697 -0.934 -0.385 -0.549 -0.368
NQM -0.697 -0.934 -0.385 -0.538 -0.368
VSNR -0.697 -0.934 -0.385 -0.549 -0.368
RFSIM -0.697 -0.934 -0.385 -0.538 -0.368

single rec.70 rec.75 rec.80 rec.100
NIQE 0.698 0.934 0.385 0.538 0.368
BRISQUE 0.698 0.934 0.385 0.538 0.368
NRPQA -0.698 -0.934 -0.385 -0.538 -0.368
ANISOTROPY 0.654 0.890 0.093 0.488 0.291

Table 3: SRCCA between full-reference (above) and non-reference (below)
quality metrics and mserabs for heterogeneous recompression (jxr) and the
WAHET segmentation.

In case of heterogeneous recompression for j2k, however, no
quality metric describes the behaviour of the mean segmenta-
tion errors well. Fig. 10 shows here the best example and
clearly differs from the MSSIM graph in Fig. 3. For the jxr
compression, MSSIM is again the best choice in representing
the segmentation error rates since it shows the most linear be-
haviour and therefore correlates better with the mserrel in Fig.
10 than the other metrics. So in general, MSSIM outperforms
the other general purpose quality metrics and agrees with the
global trend of the segmentation error rates. However, this met-
ric might be not a sufficient choice in all scenarios, especially if
a metric should describe more detailed behaviour than just the
global trend of iris segmentation as it could be observed in the
j2k heterogeneous recompression.

Table 3 shows the SRCCA correlation results for heteroge-
neous recompression (jxr) and the WAHET segmentation al-
gorithm, comparing full-reference metrics and non-reference
metrics. This setting is the one exhibiting lowest SRCCA val-
ues overall. The inconsistent results of (jxr) as compared to
the other two compression schemes are clearly shown for both
types of metrics (contrasting to these results, the SRCCA val-
ues across all settings for j2k are always > 0.87 and also for
jpg correlations are much more consistent compared to jxr).
It is also clearly visible, that both metric types exhibit simi-
lar strengths and weaknesses wrt. low correlations, where non-
reference metrics are slightly worse.

As already observed before, SRCCI values are rather poor
for mserabs which is also the case for heterogeneous re-
compression (jxr) and the WAHET segmentation when com-
pared to Table 3. Mean SRCCI values are found in the in-
terval [−0.129, 0.120] for all metrics (however, still clearly
better as compared to mserabs SRCCI values for jpg and
CAHT as shown in Table 2), where the 95% confidence inter-
val is around ± 0.014 – 0.018 the mean values. NIQE and
ANISOTROPY exhibit very low mean values even down to
0.027 (i.e. ANISOTROPY for pre-compression quality qp =
70). Considering the median value instead of the means im-
proves the interval to [−0.175, 0.169] with lowest values also
seen for NIQE and ANISOTROPY.

ages have a significant mserabs. As the segmentation result changes for dif-
ferent qualities no clear trend for the better or worse matching of the ground
truth is observable.

single rec.70 rec.75 rec.80 rec.100
jpg 0.703 0.835 0.890 0.786 0.863
j2k 0.978 0.962 0.978 0.923 0.978
jxr 0.742 0.956 0.423 0.544 0.412

single rec.70 rec.75 rec.80 rec.100
jpg 0.863 0.802 0.928 0.868 0.841
j2k 0.984 1.0 0.995 1.0 1.0
jxr 0.978 0.973 0.967 0.918 0.978

Table 4: SRCCA between mserrel and mserabs for all three methods and
both WAHET segmentation (above) and CAHT segmentation (below).

single rec.70 rec.75 rec.80 rec.100
jpg 0.338 0.361 0.379 0.377 0.365
j2k 0.376 0.401 0.384 0.376 0.369
jxr 0.260 0.285 0.279 0.256 0.261

single rec.70 rec.75 rec.80 rec.100
jpg 0.080 0.051 0.086 0.057 0.058
j2k 0.282 0.295 0.312 0.294 0.282
jxr 0.169 0.169 0.173 0.160 0.175

Table 5: SRCCI between mserrel and mserabs for all three compression
methods and both WAHET segmentation (above) and CAHT segmentation (be-
low).

The SRCCA between the relative and absolute segmentation
error rates confirms that both metrics follow the same trend as it
can be seen in Table 4. In case of the WAHET segmentation j2k
outperforms the other two compression methods. The smaller
SRCCA values for jpg are mainly due to the mserabs at smaller
compression ratios where the segmentation error rate is higher
for crt = 15 than for crt = 20. Also the small ripple at crt =
30 has an impact on the correlation here. The reason for the
intermediate SRCCA results in case of jxr are mainly due to
noise.

Table 5 shows the corresponding results for SRCCI . The
95% confidence intervals are obtained± 0.021 – 0.024 for WA-
HET and± 0.026 – 0.028 for CAHT. When replacing the mean
in the table by the median, the values are increased by ≈ 0.1 –
0.18, but the overall trend is identical.

When compared to SRCCA values, we notice very differ-
ent behaviour. SRCCI suggests better correlation for WAHET
compared to CAHT, where for both segmentation algorithms
j2k leads to highest correlation (though on a much lower level
as suggested by SRCCA results). jxr is worse compared to
jpg for WAHET, while jpg is clearly worst in terms of SRCCI

for CAHT (which confirms the poor correlation of mserabs
to the quality metrics as shown in Table 2). Results suggest
that CAHT in general tends to produce more fluctuating re-
sults for mserabs which impact SRCCI but are averaged out
for SRCCA.

Overall, we are able to demonstrate reasonable correlation
between image quality metrics and image segmentation errors
as long as averaged metrics values are correlated to averaged
segmentation error values. In case single image correlations
are considered and averaged subsequently, correlation drops
significantly and specific combinations (like jpg compression
and CAHT segmentation) lead to highly fluctuating mserabs
error values causing correlations to vanish entirely. Thus, the
quality of a single image cannot be used as a reliable predictor
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for the expected segmentation error, especially in problematic
cases like the ones described above.

6. Recompression Effects on Recognition Accuracy

Iris segmentation is only one component of the entire iris
recognition pipeline. Thus, for assessing recompression ef-
fects on iris recognition systems, experiments need to be con-
ducted considering the entire pipeline. In this context, it is
crucial to use different iris recognition schemes since it can
be expected that different feature extraction strategies will re-
act differently when being confronted with compression arti-
facts and reduced image quality in general. Thus, in addi-
tion to the two segmentation schemes used before, we employ
custom implementations of four feature extraction techniques
(for a description of our implementation of preprocessing, fea-
ture extraction, and matching see [2]). All implementations
are available in USIT (University of Salzburg Iris-Toolkit at
http://www.wavelab.at/sources).

The first scheme has been developed by Ko et al. and extracts
spatial domain features, while the second approach has been
designed by Monro et al. and relies on DCT-derived features
computed from rotated texture patches. The third scheme has
been published by Ma et al. using a 1D dyadic wavelet trans-
form maxima representation for small averaged stripes of the
iris texture while the fourth technique is a re-implementation of
the popular 1D log-Gabor MATLAB-code of Libor Masek.

For evaluation and computing the receiver operating charac-
teristic (ROC, which is used to rate and compare different con-
figurations), the protocol as suggested for the fingerprint veri-
fication contests (FVC [37]) is used: While all genuine scores
are computed, the impostor score set is generated using the first
sample of each eye only to result in a more balanced number
of genuine and imposter score matches. See Table 6 for equal
error rates (EERs) on uncompressed data (serving as “ground
truth”).

Masek Ma Monro Ko

CAHT 1.86 1.75 1.74 3.00
WAHET 6.65 6.88 6.74 9.40

Table 6: EER (%) of various settings on uncompressed data.

Depending on the data iris texture feature extraction is be-
ing applied to, two different compression scenarios can be dis-
tinguished: The compressed vs. compressed case, denoted as
CCC, where both templates involved in matching, the one gen-
erated from the sample data and the one from the database,
are derived from images compressed to the same bitrate. The
compressed vs. uncompressed case, denoted as CUC, where
the template generated from the compressed sample is matched
against the database containing templates derived from uncom-
pressed iris images.

In the following plots, the x-axis depicts compression rate
while the EER is shown on the y-axis. In each plot, the
EERs for single compression and four recompression settings

(qp = 70, 75, 80, 100) are plotted against increasing compres-
sion rate. Fig. 11 compares results of the two compression
scenarios CUC and CCC.

Figure 11: Comparing compression scenarios for j2k, WAHET segmentation,
and Masek feature extraction. Top: CUC, Bottom: CCC.

The first obvious thing to note is that EERs are consistently
lower for the CUC scenario and of course, EERs are already
increased at cr = 15 as compared to the uncompressed case
(compare Table 6). But also with respect to recompression ef-
fects we note a difference. For cr ≤ 60, pre-compression with
qp = 70 and qp = 75 leads to clearly worse EERs as com-
pared to single compression for CCC. A similar trend can be
observed for CUC, but it is less clear. This corresponds to very
general overall observations: First, we observe more distinct
differences between single compression and recompression in
the CCC scenario. Second, even more general, for settings re-
sulting in worse EERs, we observe more distinct differences
between single compression and recompression as well.

Fig. 12 investigates the effect of different segmentation
schemes while keeping the other parameters fixed (i.e. Ko fea-
ture extraction, CUC scenario, jxr).

Again, for both segmentation schemes, heterogeneous re-
compression with qp = 70 and qp = 75 tends to deliver
worse EERs as compared to single compression, however, more
clearly so for WAHET. This corresponds to the above state-
ment about more distinct differences for lower EERs in gen-
eral. In Fig. 13 we consider homogeneous jpg recompression
using two different feature extraction schemes. While the ho-
mogeneous recompression case exhibits the lowest differences
between single compression and recompression, this example
shows entirely contrasting behaviour at cr = 30: While for
Masek feature extraction recompression with qp = 70 is actu-
ally better than single compression, for Monro feature extrac-
tion the opposite is true and qp = 75 is even worse.

In Fig. 14 we provide additional experimental evidence that
in some settings, heterogeneous recompression with qp = 70
and qp = 75 delivers worse EERs as compared to single com-
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Figure 12: Comparing segmentations for jxr, Ko feature extraction in CUC
scenario. Top: CAHT, Bottom: WAHET.

Figure 13: Settings with contrasting effects for jpg, CAHT segmentation in
CCC scenario. Top: Masek, Bottom: Monro.

pression.
From the results we observe the following:

1. Results are not as clear as for assessing segmentation er-
rors only. In many compression, segmentation, and fea-
ture extraction combinations the differences between sin-
gle compression and recompression seem to be random
and even entirely differ among “adjacent” compression
rates.

2. While in the assessment of segmentation error dependency
on various (re)compression settings homogeneous jpg re-
compression gives the clearest (negative) results for high
compression rates, this type of recompression hardly in-
fluences overall recognition performance. It seems that
the compressions’ impact on iris texture quality dominates

Figure 14: Further examples for better values of single compression compared
to recompression in CCC scenario and WAHET segmentation. Top: j2k and
Ko, Bottom: jxr and Ma.

eventual negative effects in segmentation. Heterogeneous
recompression leads to more impact on recognition accu-
racy.

3. There is a trend that settings leading to lower overall EERs
exhibit more distinct differences between single compres-
sion and recompression (CUC vs. CCC; CAHT vs. WA-
HET; Ma, Masek, and Monro vs. Ko). However, this is no
strict rule and overall it is impossible to predict for which
settings relevant differences are found.

4. The largest differences observed are in the range of in-
creasing EER by 25% when comparing recompression and
single compression. However, it has to be clearly stated
that such large differences are rarely seen. In most cases,
differences are small and seem to be randomly fluctuating.

However, the EER only represents one specific point on the
ROC curve corresponding to a specific user convenience / sys-
tem security relation. In order to consider a second correspond-
ing relation, we investigate the situation in terms of the small-
est FRR, for which the FAR=0%. This corresponds to a high
security setting without any false accepts. Thus, in the fol-
lowing plots, the x-axis depicts compression ratio while the
FRR (%) at FAR=0 is shown on the y-axis. In each plot, the
FRRs for single compression and four recompression settings
(qp = 70, 75, 80, 100) are plotted against increasing compres-
sion rate. Fig. 15 compares results of the two compression
scenarios CUC and CCC.

Results confirm the observation for ERRs that in the CUC
scenario, results are clearly better. We again observe larger dif-
ferences among the different recompression settings in the CCC
scenario case, however, these differences do not seem to be sys-
tematic but are fluctuating randomly. Fig. 16 shows the same
comparison replacing j2k with jxr heterogeneous recompres-
sion. Again, the CCC scenario is clearly worse up to a com-
pression ratio of 55. The differences between the two scenarios
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Figure 15: Comparing compression scenarios for j2k, CAHT segmentation, and
Monro feature extraction (FRR @ FAR=0). Top: CUC, Bottom: CCC.

are observed on a rather regular basis throughout the results,
however the extent of difference is highly varying.

Figure 16: Comparing compression scenarios for jxr, CAHT segmentation, and
Monro feature extraction (FRR @ FAR=0). Top: CUC, Bottom: CCC.

Fig. 16 illustrates one of the rare cases where single com-
pression is clearly superior to recompression in terms of FRR –
for the CUC scenario only at compression ratios 20 and 25 (and
very clear compared to recompression with qp = 70 only), but
for CCC this is also true for compression ratio 15 and several
recompression settings. The same effect (i.e. superiority for
single compression at some compression ratios (ratios 15 and
20 for the top plot and 15 to 30 for the lower plot) for several
recompression settings) is seen in Fig. 17.

FRR @ FAR=0 results basically confirm results seen when
considering EER. While the differences between the two com-

Figure 17: Further examples for better values of single compression compared
to recompression in CCC scenario and jpg compression (FRR @ FAR=0). Top:
WAHET and Monro, Bottom: CAHT and Ko.

pression scenarios CUC and CCC are clear and systematic, we
find cases of heterogeneous recompression where we observe
differences between single compression and recompression but
these differences occur almost randomly and do not follow a
strict and predictable pattern. Having seen all these differences
the question arises naturally if the observed differences are sta-
tistically significant. While it is almost impossible to come up
with corresponding results for all possible configurations, we
follow the strategy proposed in [38] and provide bounds for
significant differences. Fig. 18 displays the required ∆ accord-
ing to [38] in terms of EER (left) and FRR (right – note that
the methodology in [38] may be easily extended to cover FRR
as well but leads to much larger required differences due to the
missing impostor matches) to result in a significant difference
in case the larger EERM or FRRM in a comparison is attained
as given on the x-axis.

0 10 20 30 40
0

0.2

0.4

0.6

EERM [%]

∆
E
E
R

[%
]

EER

pV = 5%

pV = 1%

0 20 40 60 80 100
0

2

4

6

FRRM [%]

∆
F
R
R

[%
]

FRR at FAR=0%

pV = 5%

pV = 1%

Figure 18: Visualisation of the required ∆ in terms of ERR (left) and FRR
(right) to result in a significant difference.

The values shown in Fig. 18 imply e.g. for Table 6 (com-
paring segmentation and feature extraction techniques on un-
compressed data), that WAHET results are significantly differ-
ent from CAHT ones for identical feature extraction, and that
Ko feature extraction is significantly different form the other
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feature extraction schemes, while Masek, Ma, and Monro fea-
ture extraction schemes are not significantly different from each
other when used with identical segmentation. With respect to
the observed differences in terms of compression settings CUC
and CCC (Fig. 11 for EER and Figs 15 as well as 16 for FRR)
most of the examples turn out to describe significant ones. The
same is true for the differences among different recompression
settings in all figures shown – for most differences clearly visi-
ble in the figures, a significance even at level pV = 1% can be
stated, for EER as well as for FRR @ FAR=0 results.

7. Conclusion

Often researchers use JPEG pre-compressed data for iris bio-
metrics compression performance testing in experimental ex-
periments, mostly because public data-set are often only avail-
able in this format. We investigated if the outcome of such
experiments can be considered reliable by comparing segmen-
tation error, image quality metrics, and recognition perfor-
mance of single-compressed and recompressed data. In the seg-
mentation error rate, no tendency is observable when compar-
ing single-compression and heterogeneous recompressed data.
However, using homogeneous recompressed data, i.e. com-
pressing JPEG pre-compressed data with JPEG again, a dif-
ferent behaviour is observed for high compression ratios com-
pared to single-compressed data sets. Thus results of studies
using JPEG compression on JPEG pre-compressed data cannot
be considered entirely reliable when focus is set on segmenta-
tion. We further showed for small compression ratios, a ground
truth is indeed necessary for accurate segmentation error rat-
ing. We also propose a method to overcome such problems in
section 4.3. Interestingly, there is no strictly linear relation be-
tween image quality and segmentation error rate. Quality met-
rics tend to omit detailed behaviour of the segmentation error
wrt. compression ratios. Nevertheless, quality metrics and seg-
mentation error follow the same trends and quality metrics can
therefore be used to estimate an iris segmentation algorithms
behaviour as long as averaged metrics values and segmenta-
tion errors of an entire dataset are being used while single im-
age results can be misleading. When the entire iris recognition
pipeline is considered, the picture changes somewhat. In homo-
geneous JPEG recompression we hardly find significant impact
on recognition accuracy when comparing single-compressed
and recompressed data. In heterogeneous recompression ap-
plying JPEG XR and JPEG2000 to JPEG pre-compressed data,
we indeed find cases where recognition accuracy is lower for re-
compressed data. However, for a given setting it is impossible
to predict these differences. This implies that from the overall
recognition accuracy viewpoint, studies using any other com-
pression scheme apart from JPEG on JPEG pre-compressed
data cannot be considered entirely reliable and need to be veri-
fied using uncompressed data in experimentation.
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