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Abstract

Rating a compression algorithm’s performance is usu-
ally done in experimental studies, where researchers have
frequently used JPEG pre-compressed data. It is not clear
yet, whether results of such compression experiments are
reliable if conducted from pre-compressed data. To investi-
gate this issue, we study the impact of using pre-compressed
data on iris segmentation and evaluate the relation between
iris segmentation performance and general quality metrics.
Furthermore we propose a method to overcome potential
problems in case using pre-compressed data sets cannot be
avoided, e.g. for reasons of ground-truth availability.

1. Introduction

Iris recognition [3, 22] is one of the most deployed bio-
metric modalities, standardized by the International Civil
Aviation Organization (ICAO) for use in future passports,
and one of the technologies in the Unique Identification
Authority of India’s (UID) Aadhaar project to uniquely
identify Indian citizens. The increasing market saturation
of biometric instead of conventional access control meth-
ods raises the need for efficient means to store such data.
The International Organization for Standardization (ISO)
specifies iris biometric data to be recorded and stored in
(raw) image form (ISO/IEC FDIS 19794-6) rather than in
extracted templates (e.g. iris-codes). Such deployments
benefit from future improvements (e.g. in feature extrac-
tion stage) which can be easily incorporated without re-
enrollment of registered users. Since biometric templates
may depend on patent-registered algorithms, databases of
raw images also enable more interoperability and vendor
neutrality [22]. These facts motivate detailed investigations
and optimisations of image compression on iris biometrics
in order to provide an efficient storage and rapid transmis-
sion of raw biometric records. Furthermore, the application
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of low-powered mobile sensors for image acquisition, e.g.
mobile phones, raises the need for reducing the amount of
transmitted data.

As a consequence, according to the importance of this
issue, many studies comparing and optimising lossy com-
pression techniques for iris imagery may be found in the
literature. Since the CASIA iris datasets have been very
popular among researchers ever since their establishment,
many papers dealing with compression have been relying
on the (extended) CASIA V1.0 dataset, including also first
IREX investigations [21, 13, 17, 9, 14] (apart from other
examples using the ICE 2005 dataset [8, 12]).

Since it has been pointed out [20] that the CASIA V1.0
dataset exhibits manipulated pupil areas and should there-
fore not be used any further in experimentation, compres-
sion researchers moved to other (and more recent, more
challenging etc.) datasets, e.g. the CASIA V3.0 [11, 22],
the CASIA V4.0 [25], the Bath [13, 18], and the UBIRIS.v1
[9, 4] datasets. While the images of CASIA V1.0 and ICE
2005 are given in uncompressed format, images in CASIA
V3.0, CASIA V4.0, UBIRIS and Bath datasets are provided
as JPEG (the first three) or JPEG2000 (the latter) lossy com-
pressed data. Therefore, any compression experiments con-
ducted on these datasets operate on pre-compressed data.
This fact has not been ignored entirely – for example, in
[22], preparatory JPEG compression experiments with un-
compressed data reveal that slightly pre-compressed data
leads to better recognition performance due to denoising ef-
fects. Thus experiments with pre-compressed data are as-
sessed to be unproblematic. The same argument is used for
JPEG2000 pre-compressed data [18] based on the results
in [13]. However, eventual artifacts resulting from recom-
pression effects are not accounted for in these considera-
tions. Recompression artifacts arise in cases where data is
compressed twice (or multiple times) with lossy compres-
sion schemes, i.e. where artifacts from the first compression
step (termed pre-compression) are aggravated or exploited
by the second compression step.

Two different types of such effects may be distin-
guished: First, intra-recompression, where the same com-



pression scheme is used several times, whereas in inter-
recompression different methods are used in the differ-
ent compression steps. For example, using JPEG pre-
compressed data and applying JPEG XR and JPEG2000
[11] or JPEG2000 and fractal compression [4] is eventually
prone to inter-recompression artifacts, while the application
of JPEG to JPEG pre-compressed data [25, 22] can be prone
to intra-recompression artifacts. While next to nothing can
be found on the issue of inter-recompression artifacts in
the general compression literature, intra-recompression ar-
tifacts are better investigated, at least in the case of lossy
JPEG compression. Soon after the establishment of the
JPEG standard [19], it was found that JPEG recompres-
sion artifacts arise and do not follow a linear behaviour [5].
Extensive experiments in this direction can also be found
in [15], and following these obversations, requantisation-
based schemes have been suggested for JPEG, reducing re-
compression artifacts considerably [1]. Recently, the identi-
fication of images which underwent JPEG double compres-
sion (i.e. JPEG intra-recompression) has been a hot topic
in image forensics [24]. Taking all these facts together, it
gets clear that recompression artifacts may impact experi-
mental results with respect to biometric recognition perfor-
mance, an issue, that has been neglected so far. As dis-
cussed, ISO/IEC FDIS 19794-6 requires storing biometric
data as raw images, hence all components of a biometric
system are affected when operating with compressed data.
As we investigate the recompression issue by studying im-
pact on an iris recognition system, the influence on segmen-
tation and texture extraction as well as feature extraction,
i.e. iris code computation, has to be evaluated. [23, 8] sug-
gest that data reduction has the highest impact on the iris
segmentation. Since segmentation is also the first step in
the pipeline, this potentially effects the performance of later
steps as well and is therefore of particular importance.

We systematically investigate eventual intra- and inter-
recompression effects in an experimental study for iris seg-
mentation. Given the importance of JPEG (as the CASIA
V3.0/V4.0 and UBIRIS.v1 datasets are only available in this
format), we focus on JPEG pre-compressed data. In our ex-
periments, we compare iris segmentation and general pur-
pose image quality metrics applied to single compressed vs.
recompressed (i.e. JPEG pre-compressed) iris image data.
Section 2 discusses relevant aspects on generating single-
and recompressed data. The used data sets and methods are
described in section 3. Section 4 introduces several exper-
iments and lists their results, which are then compared in
section 5. From the experiments’ individual and compari-
son results, we draw conclusions in section 6.

2. Compression scheme
As discussed, we investigate whether there is a differ-

ence in using truly uncompressed data or pre-compressed

data in experiments rating the performance of an iris
segmentation. Using pre-compressed data means a pre-
compressed image Ip is compressed a second time, result-
ing in an recompressed image Ir. When compressing a truly
uncompressed image Iu, the resulting image Is is gener-
ated in a single compression step. Since experiments are
typically carried out on a data set with more than one im-
age, we denote I

(k)
u , I

(k)
p , I

(k)
s , I

(k)
r ∈ Rw×h as the kth im-

age with width w and height h. For simplicity, Iu, Ip, Ir, Is
subsequently denote a particular image but unspecified im-
age of a data set. Furthermore, we define s(F ) ∈ N with
F ∼ I ∈ Rw×h as a function that returns the file size of the
file F storing an image I . Since common lossy compres-
sion algorithms also employ lossless compression methods,
e.g. run-length encoding, before writing to a file, F is
only loosely related to the pixel data, namely the image,
I . For simplicity, we denote s(I) as the file size of the file
F encoding the pixel values of an image I . cm(I, q) with
q ∈ N describes the process of compressing an image I
using a particular method m parametrized with the qual-
ity parameter p. In terms of this paper we use the values
m ∈ {jpg, jxr, j2k}, where

• jpg corresponds to the well-known (ISO/IEC IS
10918-1) DCT-based image compression method
JPEG,

• j2k corresponds to the wavelet-based image compres-
sion standard JPEG2000 (ISO/IEC IS 15444-1), which
can operate at higher compression ratios and

• jxr corresponds to a compression standard JPEG-XR
based on Microsofts HD Photo, which is specified in
(ISO/IEC IS 29199-2).

For rating an image I’s compression effectiveness, we
define the compression ratio cr between an uncompressed
image Iu and a compressed image Ic as

cr(Iu, Ic) =
s(Iu)

s(Ic)
with Ic ∈ {Ir, Is} (1)

For the later described experiments, images are com-
pressed to a target compression ratio crt ∈ R. However,
only the j2k compression standard allows to specify a tar-
get compression ratio crt directly via parameter q. Hence
this is the only method where we can control the file size
s(Ic) directly. The other two compression methods take a
quality parameter q ∈ N only, controlling the quality but
not the file size s(Ic). Thus it is not possible to set this pa-
rameter to meet a certain target compression ratio crt. Due
to the quality parameter’s limited set of quality parameters,
the target compression ratio crt cannot be achieved exactly
for any of the three methods. Parameter optimisation can
be done, such that crt u cr(I

(k)
u , I

(k)
c ). We propose an al-

gorithm to compress a set of K uncompressed images Iu



using a particular method m to achieve a certain compres-
sion ratio crt in a way that the compression ratio of each
image is met as close as possible. This process, illustrated
in Fig. 1, employs

1. Compute the single-compressed image I
(k)
s with

method m such that cr(I(k)u , I
(k)
s ) ≈ crt. The opti-

mal quality parameter q(k)s is computed for each image
separately by

s
(k)
t =

s(I
(k)
u )

crt
(2)

q(k)s = argmin
q∈N

|s(cm(I(k)u , q))− s
(k)
t |, (3)

where s
(k)
t is the file size exactly meeting the target

compression ratio crt. This is implemented by iter-
atively searching the quality parameter q that results
in the closest achievable compression ratio cr(Iu, Ic).
The single compressed images I

(k)
s using method m

are computed with the optimal parameters q(k)s as

I(k)s = cm(I(k)u , q(k)s ) (4)

2. Compute a pre-compressed image I
(k)
p using jpg-

method with an arbitrary but fixed quality parameter
qp, i.e.

I(k)p = cjpg(I
(k)
u , qp) (5)

3. Now, find a quality parameter q(k)d that allows to com-
press the pre-compressed image I

(k)
p a second time,

such that the resulting recompressed image I
(k)
r has

the same file size as the single-compressed image I(k)s ,
i.e. s(I

(k)
s ) u s(I

(k)
r ). Such a quality parameter q(k)r

can be found by optimising

q(k)r = argmin
q∈N

|s(cm(I(k)p , q))− s(I(k)s )| (6)

∀s(I(k)s ) ≥ s(I(k)r ) (7)

The condition s(I
(k)
s ) ≥ s(I

(k)
r ) is of importance to

establish fair conditions, since it is very likely that the
file sizes s(I

(k)
s ), s(I

(k)
r ) cannot be equalized due to

the limited set of the quality parameters q. The re-
compressed images I

(k)
r are then computed from the

pre-compressed images I
(k)
p with the found optimal

parameters qr as

I(k)r = cm(I(k)p , q(k)r ) (8)

Using data sets generated with this method, we can in-
vestigate the impact of artifacts in an recompressed image
Ir in comparison to those in single-images Is. The first one
contains artifacts by two compression, while the latter one
contains artifacts from one compression step only.

Figure 1. Compression principle to obtain two images achieving
approximately the same target compression ratio crt from an un-
compressed image I(k)u using a particular compression method m.
One image, I(k)s , is compressed in a single step while the other,
I
(k)
r , uses a pre-compression and a final compression step. The

pre-compression step is always a jpg-compression, while the final
one uses the same method m as used in single-compression.

3. Experimental setup
Although there are several iris data sets around, few are

available in uncompressed format. We use the IITD Iris
data base1. The main reason for this is the availability of
a segmentation ground truth created by an expert, which
was recently introduced by Hofbauer et al. [10] and used in
[23]. The kth image of this segmentation ground truth data
set is subsequently denoted as SGT (k). According to in-
formation by the IITD iris data base’s authors, the images,
stored in a 3-channel uncompressed bitmap format2 are al-
ready JPEG-compressed with 100% quality by the sensor
(JIRIS, JPC1000). Since they are stored as bitmaps, all im-
ages have an identical file size of s(Iu)=230,454 bytes. De-
spite not being optimal, using the IITD was necessary due
to the available ground truth, for reasons becoming obvious
in section 4.2. Futhermore, the IITD – contrary to others,
e.g. the ND-IRIS-0405 iris image dataset [2] – is captured
under favorable conditions, which allows for lower segmen-
tation errors. This is necessary to distinguish between noise
and recompression-effects. We use the scheme introduced
in section 2 to compress obtain data sets with target com-
pression ratios crt ∈ {15, 20, 25, ..., 70, 75}. For each of
these target compression ratios crt, the pre-compression
step in recompression mode is carried out with quality pa-
rameters qp ∈ {100, 80, 75, 70} to simulate different lev-
els of pre-compression. Each of these combinations is used
to compress with the introduced jpg, j2k and jxr meth-
ods. We start at compression ratio crt = 15, because

1IITD Iris Database version 1.0,
www4.comp.polyu.edu.hk/˜csajaykr/IITD/Database Iris.htm

2We want to point out that storing in 1-channel bitmaps would be more
efficient, since the images were captured in near-infrared. However, we use
the size information of the 3-channel bitmap in computing compression
ratios



single: 1− cr(Iu,Is)
crt

recomp.: 1− cr(Iu,Ir)
crt

% jpg j2k jxr jpg j2k jxr
µ -3.21 -3.48 -4.33 -6.80 -7.04 -9.49
σ 2.74 2.51 2.87 4.83 4.23 4.34

Figure 2. Scatter plots of measured compression ratios cr(Iu, Is)
over cr(Iu, Ir) for methods jpg (left) and jxr (right). The graphs
indicate that the s(I(k)s ) ≥ s(I

(k)
r ) condition from equ. (7) is

satisfied. While this is indeed true for j2k and jxr, we observe a
violation in 0.13% of the cases for jpg at crt ≥ 70, because JPEG
is already working at it’s boundaries at such high compression ra-
tios. The table below reveals, that in average the aimed crt is met
with 3.67% accuracy for single-compressed images Is, while the
recompressed ones Ir only reach 7.8%. This is due to the limited
set of quality parameters q, qp.

even a pre-compression with qp = 100 achieves - depend-
ing on the image’s content - already a compression ratio of
cr(Iu, Ip) ≈ 10. For obvious reasons, no smaller compres-
sion ratio cr(Iu, Ir) < cr(Iu, Ip) can be reached in recom-
pression. This results in a total of 195 data sets with 2240
images each, whose distribution is shown and discussed in
fig. 2.

4. Evaluation
We investigate the behavior of iris segmentation employ-

ing a segmentation error rate (section 4.2). Besides that, we
assess the image quality with fully-referenced metrics (sec-
tion 4.1). The individual results are then compared in 5.

4.1. Full-referenced quality metrics

Evaluating the quality of the compressed images in re-
spect to the original an assortment of full-reference metrics
was chosen. The choice was made according to different
aspects of human perception starting from mathematically
defined to low-level features based and finally to high-level
features based. The following were included:

• PSNR: Peak signal-to-noise ratio.

• MSSIM[26]: Multi-scale structural similarity index is
an extension of the SSIM metric. After the extraction
of luminance, structure and contrast components from
the image at scale 1, the algorithm iteratively applies a
low pass filter and downsamples the filtered image by
a factor of 2. The overall result is the combination of
measurements at different scales.

• NQM[7]: Noise Quality Measure, a low-level HVS
features based metric. The contrast pyramid of Pelis
work was used to model the variation in contrast, sensi-
tivity with distance, dimensions and spatial frequency
of the stimuli, and with the variation of their local lu-
minance mean.

• RFSIM[16]: Riesz-transform feature based similar-
ity metric approximates HVS by perceiving an image
mainly according to its low-level features and uses the
1st-order and 2nd-order Riesz transform coefficients.
The similarity index is measured by comparing the two
feature maps at key locations marked by the feature
mask. The mask is generated by a Canny operator.

• VSNR[6]: Visual Signal-to-Noise Ratio, a wavelet
based metric. The metric is designed to evaluate both
low-level and mid-level HVS features. VSNR works in
two stages: The first computes the contrast detection
thresholds, while the second estimates visual fidelity
by measuring the perceived contrast and the extent to
which the distortions disrupt global precedence.

Applying these quality metrics jpg, j2k and jxr resulted
in the following observations in figure 3 and 4. It is ob-
served that:

1. For jpg and crt > 15 single compressed images were
of higher quality compared to recompressed ones and
at crt=15 the single compressed images were of the
lowest quality as shown in figure 3 for MSSIM. The
quality of the recompressed images followed the trend
that the higher the qp the better the quality of the im-
age. Previous observation of metrics for jpg was unan-
imous for all metrics.

2. For jk2 in all compression ratios and all metrics, the
quality of the recompressed images followed the trend
that the higher the qp the better the quality of the im-
age. Single compressed images were of the highest
quality compared to recompressed data, which was
valid for all metrics and compression ratios as shown
for MSSIM in fig. 3.

3. For jxr and 15 ≤ crt ≤ 40 single compressed images
were of the lowest quality compared to recompressed
data for MSSIM and VSNR. The latter followed the
trend of the higher the qp the better the quality of the
image (fig. 4). For 45 ≤ crt ≤ 75 images of sin-
gle compression became of the highest quality and re-
compressed data continued the same trend for MSSIM
and VSNR metrics. NQM showed the same behaviour,
but crt=50 was observed to be the changing point in
this case. RFSIM showed a different trend from the
previous; single compressed data were always of the



best quality compared to recompressed data which fol-
lowed in terms of quality measurement.

Figure 3. Left: MSSIM of jpg single- and recompressed data.
Right: MSSIM of j2k single- and recompressed data

Figure 4. Left: RFSIM of jxr single- and recompressed data.
Right: MSSIM of jxr single- and recompressed data

4.2. Segmentation error rates

In iris recognition, the segmentation of an iris image is
considered as one of the most critical parts [8, 23]. We in-
vestigate the differences of single- and recompression as
well as the aspects of which reference to use. We distin-
guish between using an absolute reference, e.g. a ground
truth, and a relative one, e.g. the segmentation of the un-
compressed images Iu, when computing the error rate.

The segmentation accuracy is rated by the mean segmen-
tation error rate, which corresponds to the suggested E1
error rate in the Noisy Iris Challenge Evaluation - Part I
(NICE.I). We define the segmentation error rate ser as

ser(R,S) = R⊕ S ∈ [0, 1] with R, S ∈ {0, 1}w×h,
(9)

where R is the binarized reference segmentation and S the
binarized segmentation result of the same image I . The

Figure 5. Segmentation masks of the expert ground truth [10],
relative groundtruth seg(I(k)u ) and an actual segmentation result
seg(I

(k)
r ) (f.l.t.r)

Figure 6. Relative and absolute segmentation error mserrel (left)
and mserabs (right) with WAHET (top) and CAHT (bottom) seg-
mentation on jpg-compressed data. Note that the mserabs is gen-
erally higher than mserrel, because the tested algorithms ignore
eyelids, yet they are considered in the expert ground truth [23].

mean value of the pixel-wise exclusive-or is the percentage
of pixels different in the segmented image S in respect to
the reference R. Due to multiple images in a data base, the
mean segmentation error mser is computed from K im-
ages. We compute the absolute mean segmentation error
mserabs in respect to the ground truth SGT and the rela-
tive mean segmentation error mserrel in respect to the seg-
mentation of the uncompressed images Iu for single- and
recompressed images Ic ∈ Is, Ir. By denoting the segmen-
tation result of an image I as seg(I) ∈ {0, 1}w×h we have

mserabs =
1

K

K∑

k=1

ser(SGT (k), seg(I(k)c )) (10)

mserrel =
1

K

K∑

k=1

ser(seg(I(k)u ), seg(I(k)c )) (11)

The absolute segmentation error rate is considered to be
optimal because of the available ground truth. However, for
most data bases no such ground truth is available. Therefore
we evaluate if the same conclusions as from the mserabs
can be drawn from the mserrel. The benefit of such a re-
lation (if it exists) is that the mserrel can be computed for
any arbitrary data set.

The data set described in section 3 is used to test the
two iris segmentation algorithms, Contrast-adjusted Hough
Transform (CAHT) and Weighted Adaptive Hough and El-
lipsopolar Transform (WAHET), from the USIT Frame-
work v1.0.33.The behaviour of these algorithms in respect
to compression and impact of other artifacts is already anal-

3as available at http://wavelab.at/sources/ [22]



Figure 7. Relative CAHT segmentation error rate mserrel for jxr-
compressed data (left) and absolute WAHET segmentation error
rate mserabs for j2k-compressed data (right)

ysed in literature [23, 22]. From the results we observe the
following:

1. Results for intra-recompression experiments, namely
jpg on jpg pre-compressed data, in figure 6 indicate:

(a) For small and medium compression ratios (crt ≤
50) no significant difference in segmentation er-
rors of single- and recompressed data is observe-
able. This implies that for these compression ra-
tios it has no impact whether pre-compressed or
uncompressed data is used in experiments.

(b) For large compression ratios (crt > 50), seg-
mentation errors tend to be lower for single-
compressed data compared to recompressed data.
Thus using pre-compressed or uncompressed
data in experiments matters.

(c) mserrel and mserabs generally show the similar
trends for medium and large compression ratios,
i.e. there is a strong correlation of mserrel and
mserabs for crt > 30. This means, the relative
error mserrel suffices to rate performance on iris
segmentation here, implying no expert-generated
ground truth is needed.

(d) However, WAHET segmentation errors reveal
that in some cases there can be a difference be-
tween mserrel and mserabs for crt ≤ 30. Figure
6 shows here a different behaviour between abso-
lute error mserabs (top-right) and relative error
mserrel (top-left). Hence, for low compression
ratios a ground truth is required.

(e) In recompression, one might expect a linear re-
lation between used pre-compression quality qp
and ranking of the error rates. Interestingly, when
looking at figure 6 at high compression ratios,
the poorest performance corresponds to qp = 75,
while the best is related to qp = 70. In contradic-
tion, qp = 100 performs significantly better than
qp = 80 in most settings.

2. There are no clear trends for inter-recompression ex-
periments, namely jxr or j2k on jpg pre-compressed

data. Even so, some interesting observations are made,
which are illustrated figure 7:

(a) Data generated in a single compression step
generally tends to result in smaller error rates
compared to those computed from recompressed
data. Interestingly, for extreme values, namely
very small and very large compression ratios,
single-compression performs often poorer.

(b) For all experiments carried out with jxr and j2k,
the error rate flattens in some way for medium
compression ratios, i.e. 45 ≤ crt ≤ 70. As
an example this can be seen in the mserabs for
j2k-method (figure 7 left). The characteristics of
a curve’s flattening vary depending on the pre-
compression quality qp. Since flattening can be
seen in single- as well as recompressed data, we
conclude the effect is generally related to the
used methods jxr and j2k. However, the char-
acteristics of the flattening seem be controlled by
the pre-compression quality qp in a way that the
lower the pre-compression quality is, the clearer
the curve stagnates.

In (jpg) intra-recompression, recompression effects
have a strong impact on experimental results for large com-
pression ratios, i.e. crt > 50 (1a, 1b). Researchers are
often forced to use precompressed data sets for the sake of
ground truth availability. Results for compression ratios of
crt > 50 can therefore not be considered entirely reliable
(1b). However, recompression effects have negative influ-
ence on segmentation error rates, hence by using uncom-
pressed data for the same experiments, better results may be
achieved. If this behaviour is related to intra-recompression
in general or for jpg-recompression only, is topic to further
research.

From 1c we know that for large compression ratios, i.e.
crt > 50, there is no difference in the progress of mserrel
and mserabs. Since this is (from 1b) exactly the range,
where using single- or recompressed data does have an im-
pact, we propose - based on observations 1d and 1c - to
bench-mark compression algorithms in respect to iris seg-
mentation by using

• uncompressed data sets rated with relative measures,
such as the mserrel, for severe compression, i.e. crt >
50 and

• pre-compressed data sets4 with absolute measures,
such as mserabs, for medium and light compression,
i.e. crt ≤ 50.

4If absolutely necessary because of ground-truth availability, of course
uncompressed data is preferred



If this applies to intra-recompression with other methods
as well needs further investigation.

In inter-recompression we cannot observe such be-
haviour. However, there are trends observeable (2a, 2b),
which need further investigation.

5. Comparison
Besides evaluating the segmentation error rate and the

general purpose quality measures independently, their cor-
relation is analysed. Furthermore, we explicitly investigate
the correlation between mserrel and mserabs to back up
the observations in section 4.2. For this purpose, we used
the Spearman’s rank correlation coefficient (SRCC).

In general, all five used general purpose quality metrics
show a high linear relationship with a minimum SRCC of
0.852 to each other. Furthermore, all of these metrics are
highly correlating with the segmentation error rate and there
are only minor differences between the segmentation algo-
rithms (WAHET and CAHT) and the relative and absolute
segmentation error rates. Table 1 shows the correlation re-
sults for the intra-recompression (jpg) and the CAHT seg-
mentation algorithm. It can be observed that the mserrel
shows overall a higher linear relationship to the quality met-
rics than the mserabs. The reason for this can be seen in
Figure 6 (bottom) where the mserrel has a higher slope for
small and medium CRs where the mserabs is more flat in
this region and is in general more noisy as well. Further-
more, it can be seen that for the MSSIM metric (mserrel)
in case of single compression the SRCC is smaller com-
pared to the other metrics, which is due to the outlier of
the MSSIM at crt = 15 in Figure 3. However, except of
this outlier, the MSSIM outperforms the other four qual-
ity metrics and in general represents the segmentation error
rates best. In case of the intra-recompression the MSSIM
agrees clearest with the already in section 4.2 (1b) observed
trend that for crt > 50 the MSER of the single-compressed
data shows a lower error and therefore a higher quality than
the recompressed data. In case of the inter-recompression
for j2k, however, no quality metric describes the behaviour
of the MSER well. Figure 7 shows here the best exam-
ple and clearly differs from the MSSIM graph in Figure 3.
For the jxr compression, MSSIM is again the best choice in
representing the segmentation error rates since it shows the
most linear behaviour and therefore correlates better with
the mserrel in Figure 7 than the other metrics. So in gen-
eral, MSSIM outperforms the other general purpose quality
metrics and agrees with the global trend of the segmenta-
tion error rates. However, this metric might be not a suf-
ficient choice in all scenarios, especially if a metric should
describe more detailed behaviour than just the global trend
of iris segmentation as it could be observed in the j2k inter-
recompression.

single rec.70 rec.75 rec.80 rec.100
PSNR -0.995 -0.995 -1.0 -1.0 -1.0
MSSIM -0.912 -0.995 -1.0 -1.0 -1.0
NQM -0.995 -0.995 -1.0 -1.0 -1.0
VSNR -0.995 -0.995 -1.0 -1.0 -1.0
RFSIM -0.995 -0.995 -1.0 -1.0 -0.995

single rec.70 rec.75 rec.80 rec.100
PSNR -0.857 -0.863 -0.929 -0.868 -0.841
MSSIM -0.923 -0.863 -0.929 -0.868 -0.841
NQM -0.857 -0.863 -0.929 -0.868 -0.841
VSNR -0.857 -0.863 -0.929 -0.868 -0.841
RFSIM -0.857 -0.863 -0.929 -0.868 -0.846

Table 1. Spearman Rank Correlation Coefficient between quality
metrics andmserrel (above) as well asmserabs (below) for intra-
recompression (jpg) and the CAHT segmentation.

single rec.70 rec.75 rec.80 rec.100
jpg 0.703 0.835 0.890 0.786 0.863
j2k 0.978 0.962 0.978 0.923 0.978
jxr 0.742 0.956 0.423 0.544 0.412

single rec.70 rec.75 rec.80 rec.100
jpg 0.863 0.802 0.928 0.868 0.841
j2k 0.984 1.0 0.995 1.0 1.0
jxr 0.978 0.973 0.967 0.918 0.978

Table 2. SRCC between mserrel and mserabs for all three meth-
ods and both WAHET segmentation (above) and CAHT segmen-
tation (below).

The SRCC between the relative and absolute segmenta-
tion error rates confirms that both metrics have the same
trend as it can be seen in Table 2. In case of the WA-
HET segmentation j2k outperforms the other two compres-
sion methods. The smaller SRCC values for jpg is mainly
due to the mserabs at smaller compression ratios where the
segmentation error rate is higher for crt = 15 than for
crt = 20. Also the small ripple at crt = 30 has an im-
pact on the correlation here. The reason for the intermediate
SRCC results in case of jxr are mainly due to noise.

6. Conclusion
Often researchers use JPEG pre-compressed data for

iris biometrics compression performance testing in ex-
perimental experiments, mostly because of ground-truth
availability. We investigated whether the outcome of
such experiments can be considered reliable by com-
paring segmentation error and quality metrics of single-
compressed and re-compressed data. In the segmentation
error rate, no tendency is observeable when comparing
single-compression and inter-recompressed data. However,
using intra-recompressed data, i.e. compressing JPEG pre-
compressed data with JPEG again, a different behaviour is
observed for high compression ratios compared to single-
compressed data sets. Thus results of studies using JPEG
compression on JPEG pre-compressed data cannot be con-
sidered entirely reliable. We showed for small compression
ratios, a ground truth is indeed necessary for accurate seg-



mentation error rating. We also propose a method to over-
come such problems in section 4.2. Interestingly, there is no
strictly linear relation between image quality and segmen-
tation error rate. Quality metrics tend to omit detailed be-
havior of the segmentation error in respect to compression
ratios. Nevertheless, quality metrics and segmentation error
follow the same trends and quality metrics can therefore be
used to estimate an iris segmentation algorithms behavior.

So far only the impact on two iris segmentation algo-
rithms has been considered. Recompression artifacts poten-
tially influence different algorithms and other parts of an iris
recognition system as well. This is topic to further research.
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