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Abstract

For the first time, the feasibility of creating morphed
samples for attacking vascular biometrics is investigated, in
particular finger vein recognition schemes are addressed.
A conducted vulnerability analysis reveals that (i) the ex-
tent of vulnerability, (ii) the type of most vulnerable recog-
nition scheme, and (iii) the preferred way to determine the
best morph sample for a given target sample depends on
the employed sensor. Digital morphs represent a significant
threat as vulnerability in terms of IAPMR is often found to
be > 0.8 or > 0.6 (in sensor dependent manner). Physical
artefacts created from these morphs lead to clearly lower
vulnerability (with IAPMR ≤ 0.25), however, this has to be
attributed to the low quality of the artefacts (and is expected
be increase for better artefact quality).

1. Introduction
Since the introduction of the “magic passport” [4] con-

cept, the threat of using morphed facial portrait images in
ID documents has been discussed in depth. As this threat
has been considered a serious one since, we have observed
an explosion of work dedicated to face morphing (detec-
tion) consequently [20, 25]. Apart from the face modality,
the threat originating from morphed samples or templates
is less obvious, as there is no connection with ID docu-
ments. As a consequence, so far only a single proposal
for fingerprint morphing [3] and their detection [5, 18] has
been made. Another work deals with the construction of
morphed iris codes [16]. Also, a suggestion for systematic
analysis of biometric system vulnerability with respect to
morphing attacks included face and iris morphing [6]. Other
modalities have not yet been considered in the context with
morphing-based attacks.

In this work, we investigate the feasibility of creating
morphed vascular sample data, in particular we deal with
finger vein recognition systems. Based on the morphed
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finger vein samples we conduct a vulnerability analysis of
three different recognition systems using digital morphs as
well as artefacts created from those morphs, respectively.
The actual threat of such data is illustrated in Fig. 1 - the
most efficient attacks employ these morphed samples dur-
ing the enrolment process, to finally result in a morphed
template being stored in the template database. This allows
the subjects involved in creating the morphed sample origi-
nally to successfully authenticate with the finger vein recog-
nition system.

Figure 1. Points of presentation attack and insertion attack against
a biometric system.

The first attack facilitating this is an insertion (or injec-
tion) attack using the digital morph to tamper with the com-
munication channel between sensor and feature extraction
module during enrolment. The second attack is a presenta-
tion attack (PA) conducted with a physical artefact produced
from the digital morph and presented to the sensor during
enrolment as well. Recent related work summarizes the
state-of-the-art in presentation attack detection (PAD [7])
and liveness detection [22] for vascular recognition and pro-
vides an overview of pysical artefacts used in corresponding
PA against finger vein recognition systems [21].

The remainder of the paper is organised as follows. In
Section 2, we will explain how a digital morph can be cre-
ated from two finger vein samples. Section 3 explains the
experimental setup to conduct the vulnerability analysis, in-



Figure 2. Selection of control points in the warping process.

cluding the definition of the used recognition software and
finger vein datasets, respectively, defining the way how to
actually assess the vulnerability, and how the physical arte-
facts employed have been created. Experimental results are
presented and discussed in Section 4, while we conclude the
paper in Section 5.

2. Morphing of Finger Vein Samples

Morphing is defined originally as the transformation of
one image into another and involves two parts: cross dis-
solving and warping. Cross dissolving is linear interpola-
tion to fade from one image to another in terms of grayscale
or colour value. Considering to samples Sample1 and
Sample2, we interpolate a value from 0 to 1 and use
Sample1 ∗ α + Sample2 ∗ (1 − α) as the value of the
new pixel in the morphed sample. α is called “blending
factor” and defines the respective contribution of Sample1
and Sample2 to the morphed sample.

However, simply using cross-dissolving will cause a
double-exposure effect in misaligned regions. So we need
to align the two images before cross dissolving, which is
done by warping. Here, a mapping rule is used to de-
termine the way in which the pixels in one image should
be mapped to the pixels in the other image. We apply an
affine transformation for warping triangles. Two images are
sliced into triangles one-to-one. The one-to-one relation-
ship between a pair of triangles in two images is fixed for a
smooth transformation, the transformation matrix for each
pair of triangles needs to be computed. This is facilitated
with the help of control pixels/points, which usually spec-
ify prominent features in the images. Fig.2 illustrates the
control point selection on the finger vein samples, which
uses points along the finger contour (edge points) as well as
inner points related to finger knuckles, which are selected
manually in this feasibility study. Fig. 3 illustrates the tri-
angles generated from the defined control points. The actual
cross dissolving and warping is implemented using publicly
available software from https://hypjudy.github.
io/2017/04/25/image-morphing/.

However, for the envisioned attack we do not just morph
two arbitrary samples. We have an attacker sample, say

Figure 3. Generated triangles in the warping process.

Sample1, and need to select a suited Sample2 acquired
from a different subject to result in the best possible recog-
nition result for both subjects. There is work on this topic
for facial portrait data called “how to find the suited doppel-
gaenger” [17], but in the finger vein setting, we only need
to consider a smaller set of requirements for a suited “dop-
pelgaenger” finger vein sample. In order to investigate the
role this selection plays, we have chosen two approaches:
First, in “Similar” mode, we select Sample2 as the closest
sample of a different subject contained in the dataset deter-
mined in terms of template comparison score using a partic-
ular recognition system. Second, in “Unsimilar” mode, we
select Sample2 as the most distinct sample to Sample1 in
the same sense.

Figure 4. Morphing an original sample (left) into another original
one (right) for several blending factors α = 0.2, 0.4, 0.6, 0.8.

Fig. 4 visualises the morphing process for two arbitrary
samples of the UTFVP dataset (see next section). In the
subsequent experiments, we set α = 0.5 if not stated oth-
erwise. For the experiments, we selected the first sample of
the first 50 subjects in a dataset as Sample1, and created 50
morphed samples according to the “Similar” and “Unsimi-



lar” modes each.

3. Experimental Settings
3.1. Assessment Criteria

The vulnerability of a biometric recognition system to
attacks is determined by the Impostor Attack Presentation
Match Rate (IAPMR) introduced in ISO/IEC 30107-3 [8].
IAPMR is defined as the proportion of attack presentations
using the same type of presentation attack instruments in
which the target reference matches. This general mea-
sure has been adapted to the specific morphing scenario
[19] resulting in the Mated Morph Presentation Match Rate
(MMPMR), which covers the fact that not one target sub-
ject (contained in the morphed reference) is compared to
others - but for a successful morph attack, both data sub-
jects that previously contributed to the morphed image are
expected to match. However, as we only consider (sym-
metric) morphs with α = 0.5 for which we have found both
involved subjects to be equally well (or poorly) represented,
we resort to the simpler IAPMR for result reporting.

To investigate the importance of the actual sample used
to create the morph, we discriminate three IAPMR variants:

• IAPMR1 determines IAPMR by considering template
comparison scores for which the morphed sample is
compared to Sample1 only, i.e.the sample that has ac-
tually been used to create the morph.

• IAPMRn determines IAPMR by considering template
comparison scores for which the morphed sample is
compared to all samples of the subject from which
Sample1 has been acquired.

• IAPMRn−1 determines IAPMR by considering tem-
plate comparison scores for which the morphed sample
is compared to all samples of the subject from which
Sample1 has been acquired except for Sample1.

For defining a “successful” template comparison in the
context of IAPMR, we compute the EER of the correspond-
ing dataset / recognition scheme combination and use the
corresponding threshold in the decision.

3.2. Data and Recognition Software

For the experiments, two publicly available finger vein
databases were used. The data sets under investigation are:

• The University of Twente Finger Vascular Pattern
Database (UTFVP) [24] contains six fingers (ring,
middle and index finger from both hands) from 60 vol-
unteers in two sessions. At each session two samples
per finger were captured (resulting in 4 samples per fin-
ger). The samples have an original resolution of 672 ×
380 pixels, while their region of interest (RoI) is 672
× 285 pixels.

• The PLUSVein-FV3 Dorsal Finger Vein Data Set
(PLUS) [9] contains dorsal images from the ring, mid-
dle and index finger of the left and right hand (5 sam-
ples per finger) and have been acquired using an open
access capturing device [10]. Here, only LED illumi-
nated images are used, the resolution of the single fin-
ger RoI cropped from the 3-finger capture is 736 × 192
pixels.

Sample images of the vein images contained in the chosen
data sets are depicted in Fig. 5.

Figure 5. Finger vein samples (scaled to uniform height in the fig-
ure) as used in experiments: UTFVP original (left), UTFVP RoI
(middle), PLUS RoI (right).

The finger detection, finger alignment and RoI extraction
for UTFVP and PLUS is done as described in [13]. After
pre-processing, the resulting binary features are used to per-
form the baseline experiments. We conducted these experi-
ments by applying the PLUS OpenVein Finger- and Hand-
Vein Toolkit (http://www.wavelab.at/sources/
OpenVein-Toolkit/ [11]). We selected three tech-
niques based on the binary vessel structure. The extrac-
tion schemes used are Gabor Filter (Gabor) [12], Maxi-
mum Curvature (MC) [14], and Principal Curvature (PC)
[1]. These binary feature templates are subsequently com-
pared using a correlation-based approach proposed in [14],
the so called Miura matcher.

Table 1 shows the recognition performance as obtained
using the software in FVC verification mode. Note that as
explained, the thresholds leading to the EERs as given in
the table are used to determine successful template compar-
isons to determine IAPMR.

3.3. Creation of Morphed Artefacts

The artefacts generated for the only two publicly avail-
able PA datasets for finger veins (i.e. IDIAP VERA [23]
and SCUT-SFVD [15]) have been generated using print-
outs presented to the sensor. We have been found that using
our target open access finger vein sensor [10] this approach



Table 1. Baseline Recognition Performance
UTFVP
Gabor PC MC

EER 0.007 0.005 0.005
ZeroFMR 0.03 0.02 0.02
ZeroFNMR 0.39 0.7 1.0

PLUS
Gabor PC MC

EER 0.003 0.001 0.001
ZeroFMR 0.01 0.002 0.002
ZeroFNMR 0.75 0.69 0.79

does not work. Therefore, we opted for using wax artefacts
as described in [2], however, improving them in the fol-
lowing manner. Binary vessel structures of all 100 digital
morphs created were printed on paper and sandwiched into
a top and bottom made of beeswax. The binarization was
accomplished by applying PC feature extraction in two dif-
ferent levels of vessel thickness, named “thick” and “thin”.
Acquisition by the sensor was done with LED illumination.

Fig. 6 illustrates the binary PC features extracted from
a morphed sample, and the result of presenting the artefact
(in two variants) to the sensor.

Figure 6. Binary features used in artefact creation (left), scanned
morphed artefacts (thin lines, middle and thick lines, right).

4. Experimental Results

We first discuss the case of digital morphs, i.e. repre-
senting the scenario of an insertion / injection attack, and
subsequently cover the case if morphed samples are pre-
sented to the sensor in the form or physical artefacts, thus
representing a PA.

4.1. Digital Morphs

Figs. 7 and 8 mainly serve for illustration purposes (note
that the distributions are fitted to achieve a better viewing
experience, i.e. the shape does not exactly correspond to
the underlying histograms). Both depict the original gen-
uine and impostor score distributions when applying PC
recognition to the UTFVP dataset. In addition, Figs. 7 also
shows the score values of the Similar and Unsimilar mode
as used in the computation of IAPMRn. We observe that
the distribution corresponding to the Similar mode is en-
tirely contained in the genuine score distribution, while the
distribution corresponding to the Unsimilar mode is shifted
towards the imposter distribution. Thus, higher vulnerabil-
ity is expected for the Similar mode in this case (which is
confirmed by the values in Table 2).
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Figure 7. Score distributions of similar and unsimilar morphs (PC
recognition on UTFVP).

Fig. 8 illustrates the role of the blending factor α (in
the Similar mode), which is varied in this case as α =
0.3, 0.5, 0.7. For α = 0.5 we get the same result as shown
in Fig. 7, the other two blending values behave exactly as
they should (i.e. move closer to the imposter distribution in
case Sample2 is stronger represented, or vice versa in case
Sample2 is weaker represented).

Table 2 lists all IAPMR results considering Gabor, PC,
and MC recognition on the UTFVP dataset. The entries
in the Gaborsel, PCsel, MCsel columns correspond to the
Similar mode but are different in terms of the recognition
scheme used to determine the most similar Sample2 spec-
imens. In case Sample2 selection method and recognition
scheme do correspond, the IAPMR values are set in italic
mode to emphasise the correspondence. Note that for a
practical attack, to exploit this correspondence, the attacker
has to know the feature extraction scheme used by the tar-
get recognition scheme. Otherwise, without this correspon-
dence, an attack can be mounted in “blind” manner without
knowing the internals of the target system.

We notice that in almost all cases, the Similar mode for
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Figure 8. Score distribution of similar morphs using different
blending values (PC recognition on UTFVP).

Table 2. UTFVP Results
Gabor Recognition

Unsimilar Gaborsel PCsel MCsel

IAPMR1 1 1 1 0.92
IAPMRn 0.71 0.83 0.9 0.72
IAPMRn−1 0.61 0.77 0.87 0.65

PC Recognition
Unsimilar Gaborsel PCsel MCsel

IAPMR1 0.94 0.98 1 0.86
IAPMRn 0.64 0.76 0.88 0.75
IAPMRn−1 0.57 0.68 0.83 0.71

MC Recognition
Unsimilar Gaborsel PCsel MCsel

IAPMR1 0.92 0.98 0.96 0.88
IAPMRn 0.74 0.75 0.81 0.76
IAPMRn−1 0.68 0.67 0.76 0.71

selecting Sample2 leads to higher vulnerability as com-
pared to the Unsimilar mode in case Gabor and PC fea-
ture extraction is used to identify the most similar Sample2.
Thus, the similarity of Sample1 and Sample2 plays an im-
portant role. However, MC feature extraction should not be
used to determine Sample2 in Similar mode, not even in
case the entire recognition system is based on MC.

A further observation is that the correspondence between
the overall recognition scheme used and the feature extrac-
tion used to identify Sample2 in the Similar mode is not
important. We obtain always the highest vulnerability in
case of using PC to determine Sample2. This is an ad-
vantage for the attacker, as no detailed knowledge about
the target system is needed. Finally, we always observe
IAPMR1 > IAPMRn > IAPMRn−1 - this means, that the
involvement of Sample1 in the recognition process is ad-
vantageous for the attacker, but also in case the samples not
involved in morph creation are used in recognition only, the

attack still works.
In the following we evaluate the vulnerability in case of

the PLUS dataset. Fig. 9 exemplary visualises genuine dis-
tribution and imposter distribution in case of Gabor recog-
nition. We notice the same relative behaviour when com-
paring the distributions of the Similar and Unsimilar mode
as in the UTFVP case, respectively, however, both distri-
butions are clearly shifted towards the imposter distribu-
tion. Thus, we expect lower degree of vulnerability for this
dataset.
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Figure 9. Score distributions of similar and unsimilar morphs (Ga-
bor recognition on PLUS).

Table 3 lists all IAPMR results considering Gabor, PC,
and MC recognition on the PLUS dataset. We notice sig-
nificant differences as compared to the results for UTFVP.
Overall, the vulnerability is clearly lower. In particular,
with Gabor feature extraction used in the recognition sys-
tem, IAPMR < 0.3 in almost all cases. Vulnerability is
about twice as high for PC and MC recognition, but still
clearly below the values for the UTFVP dataset.

Table 3. PLUS Results
Gabor Recognition

Unsimilar Gaborsel PCsel MCsel

IAPMR1 0.2 0.24 0.28 0.32
IAPMRn 0.17 0.2 0.21 0.3
IAPMRn−1 0.16 0.2 0.19 0.29

PC Recognition
Unsimilar Gaborsel PCsel MCsel

IAPMR1 0.6 0.5 0.62 0.74
IAPMRn 0.56 0.48 0.55 0.65
IAPMRn−1 0.55 0.47 0.54 0.63

MC Recognition
Unsimilar Gaborsel PCsel MCsel

IAPMR1 0.6 0.54 0.68 0.72
IAPMRn 0.49 0.44 0.57 0.64
IAPMRn−1 0.46 0.42 0.55 0.62



Also the role of MC in the Similar mode entirely changes
– now it is the method of choice to select Sample2 regard-
less of the feature extraction scheme used overall in the sys-
tem. So again, this correspondence does not matter. How-
ever, results again confirm that similarity of Sample1 and
Sample2 does play an important role, as Similar mode re-
sults indicate a higher vulnerability as compared to Unsim-
ilar mode results.

4.2. Artefact-based Morphs

This section deals with the vulnerability assessment in
case a PA is conducted using artefacts produced with the
help of the digital morphs. Of course, using an artefact
captured under near-infrared illumination, the quality of the
obtained attack specimens is expected to be lower as com-
pared to the digital morphs. In Fig. 10, we visualise genuine
distribution and imposter distribution of the PLUS data and
distributions of scores when comparing morphs when using
PC recognition on the acquired artefact data. Additionally,
the behaviour of the digital morphs (Similar mode) under
PC recognition is shown (i.e. “Similar” graph).
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Figure 10. Score distributions of artefacts (PC recognition).

We observe that the two distributions of the scores ob-
tained with “Thin” and “Thick” artefacts are almost cov-
ered by the imposter distribution, the “Similar” graph has
a significant overlap with the genuine distribution. Based
on this observation, we do not expect a high vulnerability
using these artefacts.

Table 4 confirms this expectation as IAPMR < 0.18 for
all settings. Still, we are able to detect certain trends. First,
the “Thin” version of the artefacts results in higher vulner-
ability in almost all settings. Second, PC and MC recog-
nition are clearly more vulnerable as Gabor recognition, in
particular in case the Unsimilar mode has been used for the
morph employed to create the artefact. This confirms the
results of this sensor concerning the vulnerability against
digital morphs, where also Gabor recognition turned out to
be least vulnerable.

Table 4. Artefact Results

Gabor Recognition
SimThick SimThin UnThick UnThin

IAPMR1 0.06 0.04 0.02 0.06
IAPMRn 0.02 0.02 0.02 0.03
IAPMRn−1 0.02 0.02 0.02 0.03

PC Recognition
SimThick SimThin UnThick UnThin

IAPMR1 0.06 0.02 0.15 0.17
IAPMRn 0.06 0.03 0.14 0.16
IAPMRn−1 0.06 0.03 0.14 0.15

MC Recognition
SimThick SimThin UnThick UnThin

IAPMR1 0.09 0.13 0.17 0.23
IAPMRn 0.06 0.07 0.13 0.17
IAPMRn−1 0.06 0.06 0.11 0.15

However, the vulnerability analysis conducted clearly
depends on the quality of the generated artefacts. Since it is
known that PA artefact generation is difficult for the sensor
in question [2], the results of this last section can only be
considered as preliminary. Improvements in artefact gener-
ation will directly increase the observed vulnerability, thus,
this results have to be taken with care.

5. Conclusion & Future Work

We have investigated the feasibility of creating morphed
samples for attacking finger vein recognition schemes. A
conducted vulnerability analysis reveals that (i) the extent
of vulnerability and (ii) the type of most vulnerable recog-
nition scheme depends on the employed sensor. We have
also found that the similarity of the two samples involved
in the morph is crucial, so a random selection should be
avoided. The method how to identify the most suited morph
sample for a given target sample is also found to be sensor
dependent. Digital morphs represent a significant threat as
vulnerability in terms of IAPMR is often found to be > 0.8
or > 0.6 (depending on the used sensor). Physical artefacts
created from these morphs lead to clearly lower vulnerabil-
ity, however, this has to be attributed to the low quality of
the artefacts.

Future work includes the establishment of a fully auto-
mated morph generation (as currently the selection of con-
trol points for warping is done manually) and the consid-
eration of other (non-binary vasculature generating) feature
extraction schemes.
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